
The Java Memory Model is Fatally Flawed

William Pugh
Dept. of Computer Science

Univ. of Maryland, College Park
pugh@cs.umd.edu

Abstract

The Java memory model described in Chapter 17 of
the Java Language Specification gives constraints on
how threads interact through memory. This chapter
is hard to interpret and poorly understood; it im-
poses constraints that prohibit common compiler op-
timizations and are expensive to implement on exist-
ing hardware. Most JVMs violate the constraints of
the existing Java memory model; conforming to the
existing specification would impose significant perfor-
mance penalties.

In addition, programming idioms used by some
programmers and used within Sun’s Java Develop-
ment Kit is not guaranteed to be valid according
the existing Java memory model. Furthermore, im-
plementing Java on a shared memory multiprocessor
that implements a weak memory model poses some
implementation challenges not previously considered.

1 Introduction

The Java memory model, as described in chapter
17 of the Java Language Specification [GJS96], is
very hard to understand. Research papers that an-
alyze the Java memory model interpret it differently
[GS97, CKRW97, CKRW98]. Guy Steele (one of the
authors of [GJS96]) was unaware that the memory
model prohibited common compiler optimizations,
but after several days of discussion at OOPSLA98
agrees that it does.

Given the difficulty of understanding the memory
model, there may be disagreements as to whether the
memory model actually has all of the features I be-
lieve it does. However, I don’t believe it would be
profitable to spend much time debating whether it
does have these features. I am convinced that the
existing style of the specification will never be clear,
and that attempts to patch the existing specification

This work was supported National Science Foundation
grants ACI9720199 and CCR9619808.

by adding new rules will make even harder to un-
derstand. If we decide to change the Java memory
model, a completely new description of the memory
model should be devised.

A number of terms are used in the Java memory
model but not explicitly related to Java source pro-
grams nor the Java virtual machine. Some of these
terms have been interpreted differently by various
people. I have based my understanding of these terms
on conversations with Guy Steele, Doug Lea and oth-
ers.

A variable refers to a static variable of a loaded
class, a field of an allocated object, or element of
an allocated array. The system must maintain the
following properties with regards to variables and the
memory manager:

• It must be impossible for any thread to see a vari-
able before it has been initialized to the default
value for the type of the variable.

• The fact that a garbage collection may relocate a
variable to a new memory location is immaterial
and invisible to the memory model.

The existing Java memory model discusses use, as-
sign, lock and unlock actions:

• A use action corresponds to a getfield,
getstatic or array load (e.g., aaload) Java
bytecode instruction.

• An assign action corresponds to a putfield,
putstatic or array store (e.g, aastore) Java
bytecode instruction.

• A lock action corresponds to a monitorenter
Java bytecode instruction.

• A unlock action corresponds to a monitorexit
Java bytecode instruction.

1

Initially: x = y = 0
Thread 1 Thread 2

a = x b = y
y = 1 x = 1

Anomalous result: a = 1, b = 1

Figure 1: Execution valid for Java only due to pre-
scient stores

load x

use x

assign y

store y

read x

write y

load y

use y

assign x

store x

read y

write x

Figure 2: Actions and orderings for Figure 1 without
prescient stores (with prescient stores, delete order-
ings from assign actions to store actions)

2 Features of the Memory
Model

Due to the double indirection in the Java memory
model, it is very hard to understand. What features
does it provide?

Consider the example in Figure 1. Gontmakher
and Schuster [GS97] state that this is an execution
trace that is illegal for Java, but they are incorrect
because they do not consider prescient stores [GJS96,
§17.8]. Without prescient stores, the actions and or-
dering constraints required by the JMM are shown
in Figure 2. Since the write of y is required to come
after the read of x, and the write of x is required to
come after the read of y, it is impossible for both the
write of x to come before the read of x and for the
write of y to come before the read of y.

With prescient stores, the store actions are not re-
quired to come after the assign actions; in fact, the

// p and q might be aliased
int i = p.x
// concurrent write to p.x
// by another thread
int j = q.x
int k = p.x

Figure 3: Example showing that reads kill

store actions can be the very first actions in each
thread. This makes it legal for the write actions for
both x and y to come before either of the read actions,
and for execution to result in a = b = 1.

What the JMM does require is Coherence
[ABJ+93]. Informally, for each variable in isolation,
the uses and assigns to that variable must appear as
if they acted directly on global memory in some or-
der that respects the order within each thread (i.e.,
each variable in isolation is sequentially consistent).
A proof that the Java memory model requires Co-
herence is given in [GS97]. That paper didn’t con-
sider prescient stores, but it doesn’t impact the proof
that the JMM requires Coherence; even with pre-
scient stores, the load and store actions for a par-
ticular variable cannot be reordered.

In discussions, Guy Steele stated that he had in-
tended the JMM model to have this property, because
he felt it was too non-intuitive for it not to. However,
Guy was unaware of the implications of Coherence on
compiler optimizations (below).

2.1 Coherence means that reads kill

Consider the code fragment in Figure 3 Since p and q
only might be aliased, but are not definitely aliased,
then the use of q.x cannot be optimized away (if it
were known that p and q pointed to the same object,
then it would be legal to replace the assignments to j
and k with assignments of the value of i). Consider
the case where p and q are in fact aliased, and an-
other thread writes to the memory location for p/q.x
between the first use of p.x and the use of q.x; the
use of q.x will see the new value. It will be illegal for
the second use of p.x (stored into k) to get the same
value as was stored into i. However, a fairly standard
compiler optimization would involve eliminating the
getfield for k and replacing it with a reuse of the value
stored into i. Unfortunately, that optimization is il-
legal in any language that requires Coherence.

If all three reads were from p.x, then it would also
be illegal to replace the third load with a reuse of
the value from the first load. However, in that case
there wouldn’t be any motivation to perform that op-

2

// p and q might be aliased
int i = r.y
int j = p.x
// concurrent write
// to p.x by another thread
int k = q.x
p.x = 42

Figure 4: Counter example to JMM ≡ Coherence

timization; instead, you would just replace both the
second and third loads with a reuse of the value from
the first load (which would be legal). The problem is
that the memory model is specified in terms of vari-
ables; the compiler may have two different names or
aliases for the same variable, but the semantics need
to be identical to the case where they had the same
name. If p and q were not aliased, it would be legal
to perform this optimization.

One way to think of it is that since a read of a
memory location may cause the thread to become
aware of a write by another thread, it must be treated
in the compiler as a possible write.

In talking with a number of people at OOPSLA98,
I found that most people were not aware of the im-
plications for compilers of Coherence in the JMM.
Most existing JVM’s perform optimizations that vi-
olate Coherence; this variance between the specifica-
tion and implementation is recorded as Javasoft Bug
4242244. That bugreport (available online at Java-
soft) gives code that tests to see if a JVM performs
the prohibited transformation. The testing code is
somewhat complicated because some JVM’s (such as
HotSpot) don’t compile optimized code for a method
until the second time the method is invoked, and be-
cause it has to check for whether threads are context
switching in the middle of loop bodies and whether
other optimizations are being performed.

Dan Scales, of Digital Western Research Laborato-
ries, did a preliminary study of the impact of Coher-
ence on performance. His results [Sca99] suggested
that for computational intensive programs, such as
the mpegaudio benchmark, enforcing “reads kill” in
the compiler results in programs running 20% - 45%
slower. Research on new techniques could probably
lower this cost, and better alias analysis would help as
well. Still, Coherence would create substantial com-
plications in compiler internal representations. For
example, in an SSA (Static Single Assignment) rep-
resentation [AWZ88, RWZ88] of a program, each read
would introduce a new phi node.

use r.y

use p.x

use p/q.x

assign p.x

load r.y

load p.x

load p/q.x

store p.x

read r.y

read p.x

read p/q.x

write p.x

write p.xa

a

a

b

e

b

e

c

e

g

g

h

h

f

c

d

f

Figure 5: JMM actions for Figure 4

2.2 JMM is stronger than Coherence

Initially, I tried to derive a proof that, excluding locks
and volatile variables, the Java memory model is ex-
actly Coherence. Instead, I came up with a counter-
example. Consider the code fragment in Figure 4, and
the scenario in which p and q are aliased (although
we are not able to prove it), and another write hap-
pens to update the value of p/q.x between the read
of p.x and the read of q.x, so that the use of p/q.x
sees a different value than the use of p.x. The actions
corresponding this execution, and their ordering con-
straints, are shown in Figure 5.

The boxes and arrows in this diagram arise for the
following reasons:

a [GJS96, §17.3, bullet 1]: All use and assign actions
by a given thread must occur in the order spec-
ified by the program being executed.

b [GJS96, §17.3, bullet 4]: ... must perform a load
before performing a use.

c Since the use of p/q.x sees a different value than
the use of p.x, there must be a separate load in-
struction for the use of p/q.x, which must pre-
cede the use of p/q.x and follow the use of p.x.

d [GJS96, §17.8, bullet 3]: No load of a value V in-
tervenes between the relocated [prescient] store
and the assign of V.

e [GJS96, §17.3, second list of bullets, 1st bullet]:
For each load, there must be a corresponding
preceding read.

f [GJS96, §17.3, second list of bullets, 2nd bullet]:
For each store, there must be a corresponding
following write.

3

use p/q.x

assign p.x

load p/q.x

store p.x

read p/q.x

write p.x

write p.xa

a

a

use r.y

load r.y

read r.y

b

e
use p.x

load p.x

read p.x

b

e

c

e

g

h

h

c

d

f

g
f

Figure 6: JMM actions for Figure 4 after re-ordering
use of r.y and use of p.x

g [GJS96, §17.2, 2nd bullet]: actions performed by
main memory for any one variable are totally
ordered.

[GJS96, §17.3, second list of bullets, 3rd bullet]:
edges between load/store actions on a variable V
and the corresponding read/write actions cannot
cross.

h Since we consider the situation where p and q are
aliased and the use of p/q.x sees a different value
than the use of p.x, there must have been an
intervening write to p.x by another thread be-
tween the load of p.x and the load of p/q.x.

Since the existing JMM is often interpreted dif-
ferently by different people, I went over this example
with Guy Steele and he agrees that the existing JMM
imposed the constraints shown in Figure 5.

The important point of Figure 5 is that there are a
series of constraints that force the read of r.y to oc-
cur before the write of p.x. This ordering constraint
is unexpected, unintuitive, unwanted, and can only
be enforced on some processors by explicit memory
barrier instructions. It also would cause substantial
and unknown complications for optimizing Java com-
pilers. However, a formal reading of specification re-
quires that the ordering constraint be enforced.

2.2.1 Bytecode reorderings are illegal

In Figure 5 it would be legal for the read r.y action
to occur after the read p.x action. But if we tried
to perform this transformation at the bytecode level
(moving the getfield r.y instruction to after the
getfield p.x action), we get the actions shown in

Figure 6. In these set of actions, it would be legal to
perform the read r.y action after the write p.x ac-
tion. So the set of legal transformations on Java pro-
grams are not closed under composition. You can’t
perform a transformation at the bytecode level with-
out reasoning about whether or not there might exist
any downstream component that might perform a re-
ordering that, when composed with your reordering,
produces an illegal reordering of the memory refer-
ences.

This pretty much prohibits any bytecode transfor-
mations of memory references. Although it would de-
pend on your intermediate representation, it is likely
that similar problems would arise for any internal rep-
resentation of a Java program used in a JIT (just-in-
time) compiler.

3 Safety Guarantees and Weak
Memory Models

Many shared memory multiprocessors implement a
weak memory model. These weak memory models
might allow higher performance, but also produce
surprising results when multithreaded programs are
not properly synchronized.

Although surprising results can arise in many pro-
gramming languages, they are particular severe in ob-
ject oriented languages and in languages that make
safety guarantees. The difficulty for object oriented
programs is due to the number of “hidden” data
structures manipulated by the runtime system (e.g.,
the virtual function table) and the richer mental
model programmers have of objects (and their sur-
prise when these models are violated by improperly
synchronized programs).

In devising a new memory model for Java, we need
to be aware of the issues raised by weak memory mod-
els, and think about the safety guarantees that should
be made in the language specification and the imple-
mentation cost of making those guarantees.

3.1 Weak memory models

A memory model describes how different
threads/processors can see their memory actions
interleave with those of other processors. A strong
memory model, such as sequential consistency,
imposes very strict constraints.

There are many weak memory models. They all
tend to support and/or need explicit memory barriers
or acquire/release operations. A possible implemen-
tation/intuition is shown in Figure 7. Each processor

4

writeread writeread

Shared
Memory

release
acquire

release
acquire

Figure 7: Implementation of a Weak Memory Model

Initially:

class Foo {

final int x;

int f(int y) { return x+y; }

Foo(int i) { x = i; }

static Foo bar;

}

Foo.bar = new Foo(1);

On Processor 1: On Processor 2:
Foo.bar = new Foo(2); int z = Foo.bar.f(3);

Figure 8: Unsynchronized access

reads and writes to a local cache. Updated mem-
ory locations may be flushed from the cache to main
memory at any time, and the cache can fill a mem-
ory location from main memory at any time. When
a processor does an acquire/lock operation, it must
reload the cache from main memory, and when a pro-
cessor does a release/unlock operation, it must flush
all modified memory locations from the cache to main
memory. Multiprocessors based on the DEC Alpha
and the Intel Merced chip provide this kind of weak
memory order.

3.1.1 What can go wrong?

Consider execution of Figure 8 on a multiprocessor
with a weak memory model; the processors have un-
synchronized access to Foo.bar. The initial code is
executed first and all processors see it. Next, it hap-
pens that processor 1 executes its code first. Further-
more, the cache happens to flush the modification of
Foo.bar back to main memory, but none of the other
writes. Then, when processor 2 executes its code, it
loads its cache only with the new value of Foo.bar
from main memory (finding old values in the cache
for all other memory locations).

What unexpected things could happen? When pro-
cessor 2 executes Foo::f and reads the x field of the
object allocated by processor 1, it won’t see the value
that the x field was initialized to by processor 1. It
could read garbage: an arbitrary value. Since x is

only an integer value, this is only moderately bad.
If x were a reference/pointer, then seeing a garbage
value would violate type safety and make any kind of
security/safety guarantee impossible.

We can allocate objects out of memory that all pro-
cessors agree has been zeroed. Essentially, you would
zero memory during garbage collection, and then
have all processors perform a memory barrier/acquire
before restarting after a garbage collection. This
would ensure that if processor 2 sees a stale value
for the x field of the object allocated by processor 1,
it will see zero/null. For references/pointers, this will
ensure type safety.

We could require that a processor perform a re-
lease/flush operation between creating an object and
publishing a reference to that object (by publishing, I
mean store a reference to the object in a place where
it might be read by other threads). A compiler could
easily figure out where such flush operations are re-
quired (e.g., after object initialization) and the cost
of doing such flushes would likely be small.

However, it isn’t enough. Under a weak memory
model, processor 2 must also do a barrier/acquire op-
eration to see all of the writes sent to main memory
by processor 1. The problem is that there isn’t any-
thing in the code executed by processor 2 to suggest
that we might be reading a reference to an object
created by another processor.

Perhaps we should just decide that seeing a
zero/null value for a field is OK. In Java, that is the
default value for a field, and if you allow an object to
escape before it is properly initialized, that it what
you will see anyway. (Some people are horrified by
this idea, but let’s run with it for the moment).

However, in an OO environment, we also have to
consider the object header fields. For example, when
processor 2 reads the vtbl (virtual method table) en-
try from the object referenced by Foo.bar, it might
see null. Dispatching the Foo::f() method could re-
sult in a SIGSEGV fault crashing your virtual machine;
this clearly should not be considered acceptable.

Other information must be considered suspect in
a multithreaded environment. In Java, the length of
an array might be seen as zero. In C++, the pointer
to a virtual base class might be null.

There are even worse problems if you consider dy-
namic class loading. Consider what happens if pro-
cessor 1, rather than just creating a instance of a
class that processor 2 already knows about, loads an
entirely new class Faz (a subclass of Foo that over-
rides f()), compiles native code for Faz::f() from
bytecode, creates an instance of Faz, and then stores
a reference to that instance in Foo.bar). There is

5

public MyFrame extends Frame {
private MessageBox mb;
private showMessage(String msg) {
if (mb == null) {

synchronized(this) {
if (mb == null)
mb = new MessageBox();

}
mb.setMessage(msg);
mb.pack(); mb.show();
}

// .. more methods and variables ...
}

Figure 9: Double-check and lazy instantiation idioms

still nothing in the code being executed by processor
2 to indicate that it will need to synchronize. How-
ever, any of the memory locations read by processor
2 might be null. Even if the reference to the virtual
function table isn’t null, an entry of the vtbl could
be null. Processor 2 might not see the native code
generated by processor 1.

What makes this particular difficult is that just one
of the memory locations read by processor 2 could be
stale, even though all the others see properly updated
values. Just checking to see if you got a valid pointer
to a vtbl won’t suffice.

4 Unsafe idioms

Many Java programmers assume that immutable ob-
jects, such as Strings, are automatically thread safe.
But this isn’t true under the existing Java memory
model, and it may be difficult to efficiently implement
this guarantee on share memory multiprocessors with
weak memory models.

Consider what happens when thread 1 creates a
String, stores a reference to it in shared variable,
and then thread 2 reads that variable. Neither thread
does any synchronization. It is possible that thread
2 could see the reference written by thread 1, but
none of the writes that set the value of the fields of
the String. At some later point, thread 2 might see
those writes. Thus, thread 2 would see the value of
the string change, perhaps from “/tmp” to “/usr”.

For a number of security reasons, it is absolutely es-
sential that Strings be atomic and immutable. The
appropriate way to guarantee that is open to discus-
sion.

Another example of a programming idiom that is
unsafe according to the current Java Memory Model

is the double-check and lazy instantiation idioms, de-
scribed in a recent article [BW99b] and book [BW99a,
Chap. 9]. Figure 9 shows this idiom. This id-
iom is unsafe because the writes that initialize the
MessageBox don’t need to be sent to main memory
before the storing of the reference to the MessageBox
into mb.

5 The semantics of data races

Few programming languages have defined the seman-
tics of programs that contain unsynchronized access
to shared data. Ada and Modula3 define a multi-
threaded semantics, but simply say that it is erro-
neous to have unsynchronized access to shared data.

A group of people are discussing a number of safety
guarantees that can’t be taken for granted in unsyn-
chronized code. An example is initialization safety:
if an object isn’t made visible outside the construc-
tor until after the constructor terminates, then no
code, even unsynchronized code in another thread,
can see that object without seeing all of the effects
of the constructor for that object. However, we don’t
know the cost to implement this safety guarantee on
multiprocessors with weak memory models.

6 More information

There is a mailing list for discussion of a specifica-
tion of the multithreaded semantics of Java and the
issues involved with implementing OO runtime sys-
tems on multiprocessors with weak memory models.
Information at:

http://www.cs.umd.edu/∼pugh/java/memoryModel

Acknowledgments

Thanks to the many people who are participating in
the discussions of this topic, particularly Sarita Adve,
Joshua Block, Joseph Bowbeer, Sanjay Ghemawat,
Paul Haahr, Doug Lea, Raymie Stata, Guy Steele
and Dennis Sosnoski.

References

[ABJ+93] M. Ahamad, R. A. Bazzi, R. John, P. Kohli,
and G. Neiger. The power of processor con-
sistency. In Proceedings of the Fifth ACM
Symp. on Parallel Algorithms and Architec-
tures (SPAA), 1993.

6

[AWZ88] B. Alpern, M. N. Wegman, and F. K.
Zadeck. Detecting equality of values in pro-
grams. Conference Record of the Fifteenth
ACM Symposium on Principles of Program-
ming Languages, pages 1–11, January 1988.

[BW99a] Philip Bishop and Nigel Warren. Java in
Practice: Design Styles and Idioms for Ef-
fective Java. Addison-Wesley, 1999.

[BW99b] Philip Bishop and Nigel Warren. Lazy
instantiation: Balancing performance
and resource usage. JavaWorld, 1999.
http://www.javaworld.com/javaworld/
javatips/jw-javatip67.html.

[CKRW97] Pietro Cenciarelli, Alexander Knapp, Bern-
hard Reus, and Martin Wirsing. From se-
quential to multi-threaded java: An event-
based operational semantics. In In Proc.
6th Int. Conf. Algebraic Methodology and
Software Technology, Berlin, October 1997.
Springer-Verlag.

[CKRW98] Pietro Cenciarelli, Alexander Knapp, Bern-
hard Reus, and Martin Wirsing. Formal Syn-
tax and Semantics of Java. Springer-Verlag,
1998.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The
Java Language Specification. Addison Wesley,
1996.

[GS97] Alex Gontmakher and Assaf Schuster. Java
consistency: Non-operational characteriza-
tions for the java memory behavior. Technical
Report CS0922, Dept. of Computer Science,
Technion, November 1997.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Global value numbers and redun-
dant computations. Conference Record of the
Fifteenth ACM Symposium on Principles of
Programming Languages, pages 12–27, Jan-
uary 1988.

[Sca99] Dan Scales. Impact of ”reads kill” in
java. http://www.cs.umd.edu/ ∼pugh/
java/readsKillImpact.html, May 1999.

7

