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Abstract of  Introduction to HPC & 
Computational Science (HPCCS)

• Course Logistics
• Exemplar applications
• Status of High Performance Computing and 

Computation HPCC nationally 
• Application Driving Forces

– Some Case Studies -- Importance of algorithms, data and 
simulations

• Parallel Processing in Society
• Technology and Commodity Driving Forces

– Inevitability of Parallelism in different forms
– Moore’s law and exponentially increasing transistors
– Dominance of Commodity Implementation
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Basic Course Logistics
• Instructor: Geoffrey Fox -- gcf@indiana.edu, 

8122194643
• Backup: Marlon Pierce – mpierce@cs.indiana.edu, 
• Home Page is: 

http://grids.ucs.indiana.edu/ptliupages/jsucourse2005/
• A course with similar scope was given Spring 2000 at

http://www.old-npac.org/projects/cps615spring00/
– The machines have got more powerful and there are some 

architectural innovations but base ideas and software 
techniques are largely unchanged

• There is a two volume CD of resource material prepared 
in 1999 which we can probably make available

http://grids.ucs.indiana.edu/ptliupages/jsucourse2005/
http://www.old-npac.org/projects/cps615spring00/
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Books For Course
• The Sourcebook of Parallel Computing,

Edited by Jack Dongarra, Ian Foster, 
Geoffrey Fox, William Gropp, Ken Kennedy, 
Linda Torczon, Andy White, October 2002, 
760 pages, ISBN 1-55860-871-0, Morgan 
Kaufmann Publishers. 
http://www.mkp.com/books_catalog/catalog.a
sp?ISBN=1-55860-871-0

• Parallel Programming with MPI, Peter 
S. Pacheco, Morgan Kaufmann, 1997. 
Book web page: 
http://fawlty.cs.usfca.edu/mpi/

http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-871-0
http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-871-0
http://fawlty.cs.usfca.edu/mpi/
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Course Organization
• Graded on the basis of approximately 8 Homework sets

which will be due Thursday of the week following day 
(Monday or Wednesday given out)

• There will be one project -- which will start after 
message passing (MPI) discussed

• Total grade is 70% homework, 30% project
• Languages will Fortran or C
• All homework will be handled via email to 

gcf@indiana.edu

mailto:gcf@indiana.edu
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Useful Recent Courses on the Web
• Arvind Krishnamurthy, Parallel Computing, Yale

– http://lambda.cs.yale.edu/cs424/notes/lecture.html Fall 2004
• Jack Dongarra, Understanding Parallel Computing, Tennessee

http://www.cs.utk.edu/%7Edongarra/WEB-PAGES/cs594-2005.html Spring 2005
http://www.cs.utk.edu/%7Edongarra/WEB-PAGES/cs594-2003.html Spring 2003 

• Alan Edelman, Applied Parallel Computing, MIT 
http://beowulf.lcs.mit.edu/18.337/ Spring 2004

• Kathy Yelick, Applications of Parallel Computers, UC Berkeley
http://www.cs.berkeley.edu/~yelick/cs267/ Spring 2004

• Allan Snavely, CS260: Parallel Computation, UC San Diego
http://www.sdsc.edu/~allans/cs260/cs260.html Fall 2004

• John Gilbert, Applied Parallel Computing, UC Santa Barbara
http://www.cs.ucsb.edu/~gilbert/cs240aSpr2004/ Spring 2004

• Old course from Geoffrey Fox
http://www.old-npac.org/projects/cps615spring00/ Spring 2000

http://lambda.cs.yale.edu/cs424/notes/lecture.html
http://www.cs.utk.edu/%7Edongarra/WEB-PAGES/cs594-2005.html
http://www.cs.utk.edu/%7Edongarra/WEB-PAGES/cs594-2003.html
http://beowulf.lcs.mit.edu/18.337/
http://www.cs.berkeley.edu/~yelick/cs267/
http://www.sdsc.edu/~allans/cs260/cs260.html
http://www.cs.ucsb.edu/~gilbert/cs240aSpr2004/
http://www.old-npac.org/projects/cps615spring00/
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Generally Useful Links
• Summary of Processor Specifications

http://www.geek.com/procspec/procspec.htm
• Top 500 Supercomputers updated twice a year

http://www.top500.org/list/2003/11/
http://www.top500.org/ORSC/2004/overview.html

• Past Supercomputer Dreams
http://www.paralogos.com/DeadSuper/

• OpenMP Programming Model
http://www.openmp.org/

• Message Passing Interface
http://www.mpi-forum.org/

http://www.geek.com/procspec/procspec.htm
http://www.top500.org/list/2003/11/
http://www.top500.org/ORSC/2004/overview.html
http://www.paralogos.com/DeadSuper/
http://www.openmp.org/
http://www.mpi-forum.org/
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Very Useful Old References
• David Bailey and Bob Lucas CS267 Applications of Parallel 

Computers
– http://www.nersc.gov/~dhbailey/cs267/ Taught 2000

• Jim Demmel’s Parallel Applications Course: 
http://www.cs.berkeley.edu/~demmel/cs267_Spr99/

• Dave Culler's Parallel Architecture course:
http://www.cs.berkeley.edu/~culler/cs258-s99/

• David Culler and Horst Simon 1997 Parallel Applications:
http://now.CS.Berkeley.edu/cs267/

• Michael Heath  Parallel Numerical Algorithms:
http://www.cse.uiuc.edu/cse412/index.html

• Willi Schonauer book (hand written):
http://www.uni-karlsruhe.de/Uni/RZ/Personen/rz03/book/index.html

• Parallel computing at CMU:
http://www.cs.cmu.edu/~scandal/research/parallel.html

http://www.nersc.gov/~dhbailey/cs267/
http://www.cs.berkeley.edu/~demmel/cs267_Spr99/
http://www.cs.berkeley.edu/~culler/cs258-s99/
http://now.cs.berkeley.edu/cs267/
http://www.cse.uiuc.edu/cse412/index.html
http://www.uni-karlsruhe.de/Uni/RZ/Personen/rz03/book/index.html
http://www.cs.cmu.edu/~scandal/research/parallel.html
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Essence of Parallel Computing
• When you want to solve a large or hard problem, 

you don’t hire superperson, you hire lots of 
ordinary people
– Palaces and Houses have same building material 

(roughly); you use more on a Palace
• Parallel Computing is about using lots of 

computers together to compute large 
computations
– Issues are organization (architecture) and 

orchestrating all those CPUs to work together 
properly

– What mangers and CEOs do in companies
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History of High Performance Computers
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Performance from 1960 to 2010Performance from 1960 to 2010
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1024 Nodes full system
with hypercube Interconnect

1987 MPP
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Prescott has 125 Million Transistors
Compared to Ncube

100X Clock
500X Density

50000X Potential Peak 
Performance 
Improvement

Probably more like 
1000X 

Realized Performance
Improvement

So not so easy to 
organize all those 

transistors to work 
together
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Consequences of Transistor Deluge
The increase in performance of PC’s and Supercomputer’s 
comes from the continued improvement in the capability to build 
chips with more and more transistors
• Moore’s law describes this increase which has been a constant exponential 

for 50 years

This translates to more performance and more memory for a 
given cost or a given space
• Better communication networks and more powerful sensors driven by 

related technology (and optical fibre)

The ability to effectively use all these transistors is central 
problem in parallel computing
Software methodology has advanced much more slowly than the 
hardware
• The MPI approach we will describe is over 20 years old
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Some Comments on Simulation and HPCC
• HPCC is a maturing field with many organizations installing 

large scale systems
• These include NSF (academic computations) with TeraGrid

activity, DoE (Dept of Energy) with ASCI and DoD (Defense) with 
Modernization
– New High End Computing efforts partially spurred by Earth Simulator

• There are new applications with new algorithmic challenges
– Web Search and Hosting Applications
– ASCI especially developed large linked complex simulations with if not new 

much better support in areas like adaptive meshes
– On earthquake simulation, new “fast multipole” approaches to a problem 

not tackled this way before
– On financial modeling, new Monte Carlo methods for complex options 

• Integration of Grids and HPCC to build portals (problem solving 
Environments) and to supporting increasing interest in 
embarrassingly or pleasingly parallel problems
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Application Driving 
Forces
4 Exemplars
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Selection of Motivating Applications
• Large Scale Simulations in Engineering

– Model airflow around an aircraft
– Study environmental issues -- flow of contaminants
– Forecast weather
– Oil Industry: Reservoir Simulation and analysis of Seismic data

• Large Scale Academic Simulations (Physics, Chemistry, Biology)
– Study of Evolution of Universe
– Study of fundamental particles: Quarks and Gluons
– Study of protein folding
– Study of catalysts
– Forecast Earthquakes (has real world relevance)

• “Other Critical Real World Applications”
– Transaction Processing
– Web Search Engines and Web Document Repositories
– Run optimization and classification algorithms in datamining of 

Enterprise Information Systems
– Model Financial Instruments
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Units of HPCC
• From Jim Demmel we need to define:

1 Mflop 1 Megaflop 10^6 Flop/sec

1 Gflop 1 Gigaflop 10^9 Flop/sec

1 Tflop 1 Teraflop 10^12 Flop/sec

1 MB 1 Megabyte 10^6 Bytes

1 GB 1 Gigabyte 10^9 Bytes

1 TB 1 Terabyte 10^12 Bytes

1 PB 1 Petabyte 10^15 Bytes
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Application Motivation I: Earthquakes
• Kobe 1995 Earthquake caused $200 

Billion in damage and was quite 
unexpected -- the big one(s) in 
California are expected to be worse

• Field Involves Integration of 
simulation (of earth dynamics) with 
sensor data (e.g. new GPS satellite 
measurements of strains 
http://www.scign.org) and with 
information gotten from pick and 
shovel at the fault line.
– Laboratory experiments on shaking 

building and measurement of frictions 
between types of rock materials at faults

Northridge Quake
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Application Motivation I: Earthquakes (Contd.)
• Technologies include data-mining (is dog barking really correlated with 

earthquakes) as well as PDE solvers where both finite element and fast 
multipole methods (for Green’s function problems) are important

• Multidisciplinary links of ground motion to building response
simulations

• Applications include real-time estimates of after-shocks used by 
scientists and perhaps crisis management groups

• http://www.servogrid.org

http://www.servogrid.org/
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USArray

Seismic

Sensors
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Weather Requirements
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Application Motivation II: Web Search
• Note Web Search, like transaction 

analysis has “obvious” parallelization
(over both users and data)with modest 
synchronization issues

• Critical issues are: fault-tolerance (.9999 
to .99999 reliability); bounded search
time (a fraction of a second); scalability
(to the world); fast system upgrade times (days)
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Exemplar III: Database transaction processing
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• TPC-C Benchmark Results from March 96
• Parallelism is pervasive (more natural in SQL than Fortran)
• Small to moderate scale parallelism very important
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2004 TPC-C Results64 Processors
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Application Motivation IV: Numerical Relativity
• As with all physical simulations, realistic 3D computations require 

“Teraflop” (10^12 operations per second) performance
• Numerical Relativity just solves the “trivial” Einstein equations 

Gµν = 8πTµν with indices running over 4 dimensions
• Apply to collision of two black holes which are expected to be a 

major source of gravitational waves for which US and Europe are 
building major detectors

• Unique features includes freedom to choose coordinate systems
(Gauge freedom) in ways that changes nature of equations

• Black Hole has amazing boundary condition that no information 
can escape from it.
– Not so clear how to formulate this numerically and involves 

interplay between computer science and physics
• At infinity, one has “simple” (but numerically difficult) wave 

equation; near black hole one finds very non linear system
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Application Motivation IV: Numerical Relativity (Contd.)
• Fortran90 (array syntax) very attractive to handle equations 

which are naturally written in Tensor (multi-dimensional) form
• 12 independent field values defined on a mesh with black holes 

excised -- non trivial dynamic irregularity as holes rotate and 
spiral into each other in interesting domain 

• Irregular dynamic mesh is not so natural in (parallel) Fortran 90 
and one needs technology (including distributed data structures 
like DAGH) to support adaptive finite difference codes. 

Separate Holes are simulated till Merger

0.7 6.9 13.2Time
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Summary of Application Trends
• There is a dynamic interplay between application needing more 

hardware and hardware allowing new/more applications
• Transition to parallel computing has occurred for scientific and 

engineering computing but this is 1-2% of computer market
– Integration of Data/Computing

• Rapid progress in commercial computing
– Database and transactions as well as financial modeling/oil 

reservoir simulation
– Web servers including multi-media and search growing 

importance 
– Typically functional or pleasingly parallel

• Growing Importance of Observational Data
– Sensors are increasing in capacity as fast as computers
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Parallel Processing
in Society

It’s all well known ……
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Divide problem into parts; one part for each processor

8-person parallel processor
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Seismic Simulation of Los Angeles Basin
• This is a (sophisticated) wave equation and you divide 

Los Angeles geometrically and assign roughly equal 
number of grid points to each processor

Computer with
4 Processors

Problem represented by
Grid Points and divided

Into 4 Domains Divide surface 
into 4 parts 
and assign 
calculation of 
waves in each 
part to a 
separate 
processor
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Irregular 2D Simulation -- Flow over an Airfoil
• The regular grid 

points become 
finite element 
mesh nodal points 
arranged as 
triangles filling 
space

• All the action
(triangles) is near 
near wing 
boundary

• Use domain 
decomposition but 
no longer equal 
area as equal 
triangle count
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Amdahl’s Law of Parallel Processing
• Speedup S(N)  is ratio Time(1 Processor)/Time(N

Processors); we want S(N) ≥ 0.8 N
• Amdahl’s law said no problem could get a 

speedup greater than about 10
• It is not correct as it was gotten by looking at 

wrong or small problems
• For Hadrian’s wall S(N)  satisfies our goal as long 

as l > about 60 meters if loverlap = about 6 meters
• If l is roughly same size as loverlap then we have 

“too many cooks spoil the broth syndrome”
– One needs large problems to get good parallelism but 

only large problems need large scale parallelism
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The Web is also just message passing

Neural Network
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1984 Slide – today replace hypercube by cluster
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Inside CPU or Inner Parallelism

Between CPU’s
Called Outer Parallelism
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And today Sensors
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Technology Driving 
Forces

The commodity Stranglehold
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TOP 500 from Dongarra, Meuer, Simon, Strohmaier
• http://www.top500.org
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Top 500 Performance versus time 93-99

• First, 500th, SUM of all 
500 versus Time
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Projected Top 500 Until Year 2012

• First, 500th, SUM of all 
500 Projected in Time
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Architecture of Top 500 Computers

Proprietary 
processor with 

proprietary 
interconnect

33%

Commodity 
processor with 

proprietary 
interconnect

6%

Commodity 
processor with 

commodity 
interconnect

61%

Clusters
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Architecture/Systems ContinuumArchitecture/Systems Continuum
JD2

♦ Commodity processor with commodity interconnect
Clusters 

Pentium, Itanium, Opteron, Alpha, PowerPC
GigE, Infiniband, Myrinet, Quadrics, SCI

NEC TX7
HP Alpha
Bull NovaScale 5160

♦ Commodity processor with custom interconnect
SGI Altix

Intel Itanium 2
Cray Red Storm

AMD Opteron
IBM Blue Gene/L (?)

IBM Power PC

♦ Custom processor with custom interconnect
Cray X1
NEC SX-7
IBM Regatta

Loosely 
Coupled

Tightly 
Coupled



Slide 53

JD2 check bgl status
Jack Dongarra, 4/15/2004



jsuhpcintro2005       gcf@indiana.edu 541/10/2005

CPU Chips of the TOP 500
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The natural building block for multiprocessors is now 

also the fastest! We don’t make these plots any more
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But there are limiting forces: Increased 
cost and difficulty of manufacturing

• Moore’s 2nd law 
(Rock’s law)

Demo of 
0.06 
micron 
CMOS

January 11 2005: Intel 
expects to spend $5B 
on new manufacturing
equipment in 2005
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CPU Technology
• 10-20 years ago we had many competing 

– CPU Architectures (Designs)
– CPU Base Technology (Vacuum Tubes, ECL, CMOS, 

GaAs, Superconducting) either used or pursued
• Now all the architectures are about the same and 

there is only one viable technology – CMOS
– Some approaches are just obsolete
– Some (superconducting) we don’t see how to make 

realistic computers out of
– Others (Gallium Arsenide) might even be better but 

we  can’t afford to deploy infrastructure to support
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The Computing Pyramid
• Bottom of Pyramid has 100 times dollar value and 1000 

times compute power of best supercomputer
• This motivates cluster computing and peer to peer (P2P) 

projects like SETI@Home



1/10/2005 jsuhpcintro2005       gcf@indiana.edu
59

SIA Projections for Microprocessors

Compute power ~1/(λ = Feature Size)3 to 4
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Chip Evolution I
• Basic driver of performance advances is decreasing feature size    

( λ); Circuits become either faster or lower in power
• The linear size of chips is growing too roughly like λ-1

– (area like λ-1 )
• Clock rate improves roughly proportional to improvement in λ-1

(slower as speed decreases)
• Number of transistors improves like λ-2 (or faster like  λ-3 as chip 

size increases)
• In total Performance grows like λ-4 

Chip size ∝ λ-1“wire” length and width ∝ λ-1

Transistor area ∝ λ-2
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Chip Evolution II

• Performance increases about 500x per decade;
clock rate <10x, rest of increase is due to 
transistor count

• Current microprocessor transistors are used: 1/3 
compute, 1/3 cache (on chip memory), 1/3 off-
chip connect

≥ 1
CPU

Cache

Interconnect

Chip
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Clock Frequency Growth Rate
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Transistor Count Growth Rate
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• 125 million transistors on Intel Prescott Chip Feb 2 2004.
• Transistor count grows faster than clock rate

- Factor of 2 every 1.5 years is Moore’s Law 
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Architecture and Transistor Count
• When “real” microprocessor chips  (1980) first appeared, they 

had < 50,000 transistors and there were simply not enough 
transistors to build a good architecture

• Once we reached around one million transistors (1988), we could 
build a good architecture and CMOS chips started to dominate 
computer market

INTEGER FLOATING POINT

Good Basic Architecture at Million Transistors
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DRAM Expectations from SIA
http://www.itrs.net/Common/2004Update/2004Update.htm
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The Cost of Storage about 1K$/TB  
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The Cost of Storage about 1K$/TB  
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Disk Evolution
• Capacity:100x in 10 years 

Kilo

Mega

Giga
1 TB 3.5” drive in 2005

20 TB?               in 2012?!   
• System on a chip  
• High-speed SAN

• Disk replacing tape
• Disk is super computer!

Tera

Peta

Exa

Zetta

Yotta
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Importance of Memory Structure in 
High Performance Architectures

computer as doing more computations per second requires 
accessing more memory cells per second!
– Harder for sequential than parallel computers

• Key limit is that memory gets slower as it gets larger and one tries 
to keep information as near to CPU as possible (in necessarily 
small size storage)

• This Data locality is unifying concept of caches (sequential) and 
parallel computer multiple memory accesses

• Problem seen in extreme case for Superconducting CPU’s which 
can be 100X current CPU’s but seem to need to use conventional 
memory

• Actually memory bandwidth is an essential problem in any 
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Processor-DRAM Growing 
Performance Gap (latency)

• This implies need for complex memory systems to hide memory latency
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Sequential Memory Structure
• Data locality implies CPU 

finds information it needs in 
cache which stores most 
recently accessed information

• This means one reuses a given 
memory reference in many 
nearby computations e.g.

• A1 = B*C
• A2 = B*D + B*B
• …. Reuses B
• The more one uses any value 

fetched from memory, the 
higher the performance you 
will get

Processor

Cache
L2 Cache

L3 Cache

Main
Memory

Disk

Increasing
Memory
Capacity

Decreasing
Memory Speed
(factor of 100 
difference
between processor
and main memory
speed)
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Parallel Computer Memory Structure
• For both parallel 

and sequential 
computers, cost is 
accessing remote 
memories with 
some form of 
“communication”

• Data locality
addresses in both 
cases

• Differences are 
quantitative size of 
effect and what is 
done by user and 
what automatically

Processor
Cache

L2 Cache

L3 Cache

Main
Memory

Processor
Cache

L2 Cache

Processor
Cache

L2 Cache

Board Level Interconnection Networks

…. ….

System Level Interconnection Network

L3 Cache

Main
Memory

L3 Cache

Main
Memory

Slow Very Slow
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The cost of Accessing Data
• Both parallel and sequential computers must face the cost of data 

access and need for data locality
• Taking a 3 Ghz CPU, it does 3 operations every 10-9 seconds

– Ignore multiple operations per clock cycle; makes memory-CPU gap worse
• Delay in fetching from data from memory is about 300 CPU 

operations
– It can get several nearby data values simultaneously and so fetches blocks 

hoping you want nearby data
– Data in on chip registers and cache is “instantaneous”

• Time to transfer data between 2 CPU’s on a very optimized 
(expensive) parallel machine is about 3000 or more CPU 
operations

• Time to transfer data between 2 CPU’s on a local network is 
about 3,000,000 CPU operations

• Time to transfer data between 2 CPU’s across the world or 
continent is about 300,000,000 CPU operations
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Outer versus Inner Parallelism
• Consider a classic HPC problem – weather prediction –

your program would look like
– a) for(all points in the atmosphere) {
– b) Calculate new values for density, pressure, velocity, 

moisture and other chemical constituents based on 
fundamental equations }

• a) is outer and b) has inner or instruction or vector 
parallelism

• Both are important sources of parallelism
– a) is focus of this course and is achieved by YOU
– b) is “automatic” for CPU and compiler but can be aided by 

choice of programming styles
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Outer Parallelism
• It corresponds to that achieved by bricklayers in 

Hadrian’s wall
• For weather case, it could be three for loops over (x,y,z) 

– geographical position (x,y) and vertical distance z into 
atmosphere

• One can easily have 106 to 109 way parallelism for such 
3D problems (100x100X100 or 1000X1000X1000)

• As in Hadrian’s wall case, one needs to divide problem 
up into parts, so that each part is big enough that edge 
effects not important
– 100,000 parts each with 10,000 for loop values (grid point 

values) would be a typical good choice
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Inner Parallelism
• This corresponds to the arithmetic manipulating the 

values defined by outer parallelism for loop index values
• Whereas outer parallelism is huge and scales with size of 

problem
• Inner parallelism is modest (2 10) and largely 

independent of problem size
• Instruction Level Parallelism (ILP) executes statements 

like
– x=10.; y=10.; z=10; simultaneously but has to worry that
– x=10.; y=10.; fudge=0.2*x+0.8*y; cannot be done 

simultaneously
• Speculative execution boldly executes as many 

instructions as it can and redoes ones that have conflicts
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How to use more transistors?
• Parallelism in processing

– multiple operations per cycle reduces CPI
– One cycle is 0.3 10-9 seconds

• Cache to give locality in data access
– avoids latency and reduces CPI
– also improves processor utilization

• Both need (transistor) resources, so tradeoff
• ILP (Instruction Loop Parallelism) drove performance gains of 

sequential microprocessors over last 15 years
• ILP Success was not expected by aficionado's of parallel 

computing and this “delayed” relevance of scaling “outer-loop”
parallelism as user’s just purchased faster “sequential machines”

• Outer loop parallelism would correspond to putting several 
CPU’s on a chip but note we don’t know how to automate use of 
multiple CPUs; ILP is attractive as “automatic”

CPI = Clock Cycles 
per Instruction
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Possible Gain from ILP
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• Hardware allowed many instructions per cycle using transistor 
budget for ILP parallelism

• Limited Speed up (average 2.75 below) and inefficient (50% or 
worse)

• However TOTALLY automatic (compiler generated)
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Parallel Computing Rationale
• Transistors are still getting cheaper and cheaper and it only takes 

some 0.5-1 million transistors to make a very high quality CPU
• This chip would have little ILP  (or parallelism in “innermost 

loops”) 
• Thus next generation of processor chips more or less have to have 

multiple CPU’s as gain from ILP limited
– Might reconsider use of ILP once you have ability to exploit outer 

parallelism
• However getting much more speedup than this requires use of 

“outer loop” or data parallelism.
– This is naturally implemented with threads on chip 

• The March of Parallelism:
One CPU on Multiple boards --> Multiple chips on a board --> 
Multiple CPU’s on a chip

• Implies that “outer loop” Parallel Computing gets more and more 
important in dominant commodity market

• Use of “Outer Loop” parallelism can not (yet) be automated
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Trends in Parallelism

8 to 16 to 32 to 64 bits

80386 (1986) important
as first 32 bit Intel chip

Inner Parallelism
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