= S WO

Sprmg Sem'ester 2005

Geoffrey Fox

Commun|t¥
& 53 Grids Laboratory

A Indiana Universi —
505 N Morton |Etie s
Suite 224 JRBElE=EEal

ASC Linux Cluster ~ ASC Cplant

Bloomington |\t
4/13/2005 acf@rnohiemiadiealid |

Abstract of MPI Presentation

This covers MPI from a user's point of view and Is to be
supplemented by either online tutorials or the
recommended book , by
Peter S. Pacheco, Morgan Kaufmann, 1997.

See for example
We describe background and history briefly

An Overview Is based on subset of 6 routines that cover
send/receive, environment inquiry (for rank and total
number of processors) initialize and finalization with
simple examples

Processor Groups, Collective Communication and
Computation, Topologies, and Derived Datatypes are

ﬁl!??g)og ISCUSSGd jsumpiO5 gef@indiana.edu 2

http://fawlty.cs.usfca.edu/mpi/
http://beige.ucs.indiana.edu/I590/

Why and What is Message Passing |

We are learning how to perform large scale
computations on the world’s largest computers

These computers are collections of CPU’s with various
architectures of which one of the most important is
distributed memory

Each CPU has its own memory and information is
communicated between the CPU’s by means of explicit
messages that take data in one CPU’s memory and
deliver it to the memory of another CPU

Without such messages, the CPU’s cannot exchange
Information and the only way they can be usefully
working on the same problem, is by exchanging
Information.

4/13/2005 jsumpiO5 gef@indiana.edu

Why and What is Message Passing ||

MPI or Message Passing Interface is the agreed
standard way of exchanging messages

MPI1 was result of much experimental work from
roughly 1983-1993 and is available on essentially all
parallel computers.

MPI is In the form of a subroutine library for C, Fortran
and Java

Memory Memory Memory Memory

CPU CPU CPU CPU

Communication Network

4/13/2005 jsumpiO5 gef@indiana.edu 4

SPMD Programming
In nearly all large scale scientific parallel computing, we use the
SPMD (Single Program Multiple Data) approach

This runs the same code on every processor in the parallel array
(This is SP part of SPMD)

However each CPU has its own memory and so Is processing
different data (This is MD part of SPMD)

Note we saw this in Hadrian’s wall where everybody was building
a wall but each bricklayer had a different part of wall

As we want to scale to 10,000 to 100,000 separate CPU’s we can’t
put different code on each processor

Note code can have data dependent branches, so each processor
can actually be executing code specialized to its own situation

MPI has the concept of rank so a given processor can find out
what part of computation/data it is responsible for.

4/13/2005 jsumpi05 gef@indiana.edu

Some Key Features of MPI

An MPI program defines a set of processes, each executing the
same program (SPMD)

(usually one process per parallel computer node)

... that communicate by calling MPI messaging functions
(point-to-point and collective)

... and can be constructed in a modular fashion
(communication contexts are the key to MPI libraries)

Note communicator in MPI specifies both a context and a
process group

Also

Support for Process Groups -- messaging in subsets of
Processors

Support for application dependent (virtual) topologies

Inquiry routines to find out properties of the environment such
as number of processors

4/13/2005 jsumpiO5 gef@indiana.edu §)

What is MP1?
A standard message-passing library
P4, NX, PVM, Express, PARMACS are precursors
MPI defines a language-independent interface
Not an implementation

Bindings are defined for different languages
So far, C and Fortran 77, C++ and F90
Ad-hoc Java bindings are available

Multiple implementations
MPICH is a widely-used portable implementation
See

Aimed at High Performance

4/13/2005 jsumpiO5 gef@indiana.edu

http://www.mcs.anl.gov/mpi/

History of MPI

Began at Williamsburg Workshop in April 1992
Organized at Supercomputing 92 (November 92)

Followed format and process similar to those setting Web
Standards in W3C and OASIS but less formal

Met every 6 weeks for two days

Extensive, open email discussions

Drafts, readings, votes
Pre-final draft distributed at Supercomputing 93
Two-month public comment period
Final version of draft in May 1994

Public and optimized Vendor implementations broadly available
with first implementations in 1995

MPI-2 agreed in 1998 but major implementation waited until
November 2002; it includes parallelism between CPU’s and disks
(MPI-1 is just between CPU’s); more than doubles number of

functions in library .
4/13/2005 jsumpiO5 gef@indiana.edu

Some Difficulties with MPI

MPI1 was designed by the Kitchen Sink approach and has 128
functions and each has many arguments

This completeness is strength and weakness!

Hard to implement efficiently and hard to learn all its
details

One can do almost everything with 6 functions

It Is not a complete operating environment and does not have
ability to create and spawn processes etc.

PVM is the previous dominant approach
It Is very simple with much less functionality than MPI

However it runs on essentially all machines including

heterogeneous workstation clusters

Further it is a complete albeit simple operating environment
However It Is clear that MPI has been adopted as the standard

messaging system by parallel computer vendors
4/13/2005 jsumpiO5 gef@indiana.edu 9

Sending/Receiving Messages: Issues

Process 0O

A: F
= Sent ———§= Heoy .

Questions:
What Is sent?
To whom Is the data sent?
How does the receiver identify it?
Do we acknowledge message?

4/13/2005 jsumpi05 gef@indiana.edu 10

Key MPI Concepts in a Nutshell

MP1 uses some concepts we will describe in detail later

Datatype allows general types of data (including
mixtures)

Communicators allow you to specify sets and subsets of

processors involved In this messaging

Note MPI supports both point to point and so called collective
communication involving multiple senders and/or receivers

Tags allow you to label message so that a receiver can
look at it quickly without unpacking buffer and see what
message involves and how important it it

Rank labels the processors and Size is total number of
them which must be fixed

4/13/2005 jsumpiO5 gef@indiana.edu 11

"User-created
Communicator

* MPI Communicators

MPI_COMM_WORLD

4/13/2005 jsumpi05 gcf@indiana.edu 12

MPI1 Conventions

All MPI routines are prefixed by MPI

C i1s always MPI_Xnnnnn(parameters) : C Is case sensitive

Fortran iIs case insensitive but we will write
MP1_XNNNNN(parameters)

MPI constants are in upper case as are MPI datatypes, e.qg.
MPI1_FLOAT for floating point number in C

Specify overall constants with
#include ""mpi.h"" in C programs
Include ""mpif.h"" in Fortran

C routines are actually integer functions and always return an
Integer status (error) code

Fortran routines are really subroutines and have returned status
code as last argument

Please check on status codes although this is often skipped!
4/13/2005 jsumpiO5 gef@indiana.edu 13

Standard Constants in MPI

There a set of predefined constants in include files for each language
and these include:

MPI1_SUCCESS -- successful return code

MPI_COMM_WORLD (everything) and MPI_COMM_SELF(current
process) are predefined reserved communicators in C and Fortran

Fortran elementary datatypes are:

MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,
MPI_COMPLEX, MPI_DOUBLE_COMPLEX, MPI_LOGICAL,
MPI_CHARACTER, MPI_BYTE, MPI_PACKED

C elementary datatypes are:

MPI_CHAR, MPI_SHORT, MPI_INT, MPI_LONG,
MPI_UNSIGNED CHAR, MPI_UNSIGNED SHORT,
MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_FLOAT,
MPI_DOUBLE, MPI_LONG_DOUBLE, MPI_BYTE,
MPI_PACKED

4/13/2005 jsumpiO5 gef@indiana.edu 14

The Six Fundamental MPI routines

MPI_Init (argc, argv) -- initialize

MPI _Comm_rank (comm, rank) -- find process label
(rank) in group

MPI_Comm_size(comm, size) -- find total number of
processes

MPI_Send (sndbuf,count,datatype,dest,tag,comm) --
send a message

MPI1_Recv
(recvbuf,count,datatype,source,tag,comm,status) --
receive a message

MPI1_Finalize() -- End Up

4/13/2005 jsumpiO5 gef@indiana.edu 15

MPI _Init -- Environment Management

This MUST be called to set up MPI before any
other MPI routines may be called
For C: int MPI_Init(int , char)

and are conventional C main
routine arguments

As usual MPI1_Init returns an error

For Fortran: call MPI _INIT()
nonzero (more pedantically values not equal to
MPI _SUCCESS) values of represent

Errors

4/13/2005 jsumpiO5 gef@indiana.edu 16

MPI_Comm_rank -- Environment Inquiry

This allows you to identify each process by a unigue

Integer called the rank which runs from 0 to N-1 where
there are N processes

If we divide the region 0 to 1 by domain decomposition
Into N parts, the process with rank r controls
subregion covering r/N to (r+1)/N

for C:int MPI_Comm_rank(MPl_Comm , Int
)

comm iIs an MPI communicator of type
MPI_Comm

for FORTRAN: call MPI_COMM_RANK (
,)

4/13/2005 jsumpiO5 gef@indiana.edu 17

MPI1_Comm_size -- Environment Inquiry

This returns in integer number of processes in given

communicator (remember this specifies processor
group)
For C: int MPI_Comm_size(MPI_Comm int
*size)
For Fortran: call MPI_ COMM _SIZE (, ,
)
where , , are integers
IS Input; and returned

4/13/2005 jsumpiO5 gef@indiana.edu 18

MPI_Finalize -- Environment Management

Before exiting an MPI application, it Is courteous
to clean up the MPI state and MPI_FINALIZE
does this. No MPI routine may be called in a
given process after that process has called

MPI _FINALIZE

for C: int MPI_Finalize()
for Fortran:call MPI _FINALIZE()
IS an integer

4/13/2005 jsumpiO5 gef@indiana.edu 19

Hello World in C plus MPI

all processes execute this program
#include <stdio.h>
#include <mpi.h>
void main(int char *
{ Int , ,
MPI_Init(& , &); # Initialize
In following Find Process Number
MPI_Comm_rank(MPI_COMM_ WORLD, &);
If(rank == 0)
printf ("*hello World!\n"");
In following, Find Total number of processes
= MPI_Comm_size(MPI_COMM_WORLD, &si7¢);
If(I= MPI_SUCCESS)
MPI_Abort(MPI_COMM_WORLD,); # Abort
printf(*'l am processor %d out of total of %d\n"", rank, size);

MPI_Finalize(); # Finalize }
4/13/2005 jsumpiO5 gef@indiana.edu 20

Hello World with only rank and size.

Processor A Processor B Processor C Processor D
STDOUT STDOUT STDOUT STDOUT

“Hello World”

| am processor | am processor | am processor | am processor

0 out of 4. 1 out of 4. 2 out of 4. 3 out of 4.

N\ /S

Output merged in some order.

4/13/2005 jsumpi05 gcf@indiana.edu 21

Blocking Send: MPI1_Send(C) or MPI_SEND(Fortran)
call MPI1_SEND (

IN start address of data to send

IN number of items (length In bytes
determined by type)

IN type of each data element

IN Process number (rank) of

destination

IN tag of message to allow receiver to

filter

IN Communicator of both sender

and receiver group

OuT) Error Flag (absent in C)

4/13/2005 jsumpiO5 gef@indiana.edu 22

Example MPI_SEND iIn Fortran

¢ Integer , , , tag, ,
¢ real (50)

* = MPI COMM WORLD
otag=0

o =50

* = MP1 REAL

o call MP1_SEND (, , ,
]))

4/13/2005 jsumpiO5 gef@indiana.edu

23

Blocking Receive: MPI_RECV/(Fortran)
call MPI_RECV(

JN Address of place to store data(address is
Input -- values of data are of course output starting at this address!)
IN Maximum number of items allowed
IN Type of each data type
IN Processor number (rank) of source
JN only accept messages with this tag value
JN Communicator of both sender and receiver
group
OuT Data structure describing what happened!
OuT) Error Flag (absent in C)
Note that IS used after completion of receive to find actual
received length (IS a maximum length allowed), actual source
Processor and actual message

We will explain the term “Blocking for SEND/RECV” later — roughly it
means function returns when it is complete

4/13/2005 jsumpiO5 gef@indiana.edu 24

Blocking Receive: MPI_Recv(C)

¢ In C syntax Is

¢ Int = MPI_Recv(
—void * ,
—Int ,
— MPI_DATATYPE ,
—Int ,
— Int tag,
— MPI_Comm ,
— MPI_Status)

4/13/2005 jsumpiO5 gef@indiana.edu

25

Fortran example: Receive

Integer (MPI_STATUS_SIZE) An array to store status of
received information

Integer , , : , Lag,
Integer (100)
=100
= MPI_REAL
= MPI_COMM_WORLD
= MPI_ANY_SOURCE accept any source processor

= MPI_ANY_ TAG accept any message tag
call MPI_RECYV (, : : , : ,
,)
Note and can be wild-carded

4/13/2005 jsumpiO5 gef@indiana.edu

Hello World:C Example of Send and Receive

All processes execute this program
#include “mpi.h”

main(int argc, char **argv)

{

char message[20];

Int I, , , 1a0=137; # Any value of tag allowed
MP1_Status status;
MPI _Init (&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &:i7c) #
Number of Processes

MPI_Comm_rank(MPI_COMM_WORLD, &), #
Who Is this process

4/13/2005 jsumpiO5 gef@indiana.edu 27

HelloWorld, continued

If(==0) { #We are on "root" -- Process 0
strcpy(message,''Hello World™); # Generate message

for(i=1; i<size; I++) # Send message to the size-1 other
Processes

MPI_Send(message, strlen(message)+1, MPI CHAR, I, tag,
MPI COMM_WORLD); }

else { # Any processor except root -- Process 0

MPI1_Recv(message,20, , 0, tag,

MPI_ COMM WORLD, &); }
printf(*‘lI am processor %d saying %s\n"’, , message);
MPI1_Finalize();

}

4/13/2005 jsumpiO5 gef@indiana.edu 28

Hello World with send and recelive.

Processor A Processor B Processor C Processor D
STDOUT STDOUT STDOUT STDOUT
| am processor | am processor | am processor | am processor

0 saying msg. 1 saying msg. 2 saying msg. 3 saying msg.

N\ /S

Output merged in some order.

4/13/2005 jsumpi05 gcf@indiana.edu 29

Sending and Receiving Arrays

#include <mpi.h>
int main(int argc,

char **argv)

int i, my rank, nprocs, x[4];
MPI Init (&argc, &argv) ;

MPI Comm rank (MPI COMM WORLD, &my rank) ;
if (my rank == 0)
x[0]=42; x[1]=43; x[2]=44; x[3]=45;
MPI Comm size (MPI_COMM WORLD, &np
for (i=1;i<nprocs;i++)
MPI Send(x,4,MPI INT,
} else { /* worker */

MPI Status status;
MPI INT|O|{O-MPI COMM WORLD,

MPI Recv (x,l4,

}

MPI Finalize();
exit (0) ;

{ /* master */

ag

Max number of
elements to receive

destination
and
source

user-defined
tag

&status)|;

T~

Can be examined via calls
like MPI1_Get_count(), etc.

4/13/2005

Now we go back to MPI
fundamentals and cover in more detail

jsumpiO5 gef@indiana.edu

31

Interpretation of Returned Message Status

InC IS a structure of type MPI_Status
gives actual source process
gives the actual message tag

In Fortran the IS an integer array and different elements
give:

In (MPI1_SOURCE) the actual source process

In (MPI_TAG) the actual message tag
In C and Fortran, the number of elements (called) In the
message can be found from call to
call MPI_GET_COUNT (IN , IN ,

OuUT , OUT)

where as usual in C last argument is missing as returned in
function call

4/13/2005 jsumpiO5 gef@indiana.edu

Process Groups
Tags and
Communicators

To Whom It Gets Sent: Process Identifiers

1st generation message passing systems
used hardware addresses

Was inflexible
Had to recode on moving to a new machine

Was inconvenient

Required programmer to map problem topology
onto explicit machine connections

Was insufficient

Didn’t support operations over a submachine (e.g.,
sum across a row of processes)

But was efficient and quite clear what was
happening!

4/13/2005 jsumpiO5 gef@indiana.edu

34

Generalizing the Process Identifier in MPI

MP1 supports process groups
Initial “all” group

Group management routines
Split group
Define group from list

All communication takes place in groups

Source/destination i1dentifications refer to
rank in group

Communicator = group + context

4/13/2005 jsumpiO5 gef@indiana.edu 35

Why use Process Groups?

We find a good example when we
consider typical Matrix Algorithm

(matrix multiplication)

Ry = 2 B C g

summed over k'th column of B

and k'th row of C

Consider a block decomposition of 16

by 16 matrices B and C as for

Laplace's equation. (Efficient
Decomposition as we study in foilset
on matrix multiplication)

Each sum operation involves a
subset(group) of 4 processors

4/13/2005 jsumpiO5 gef@indiana.edu

36

How Message Is Identified: Message Tags

1st generation message passing systems used an integer
“tag” (a.k.a. “type” or “id”) to match messages when
received

Most systems allowed wildcard on receive
wildcard means match any tag i.e. any message
Unsafe due to unexpected message arrival

Most could match sender id, some with wildcards
Wildcards unsafe; strict checks inconvenient
All systems let users pick the tags
Unsafe for libraries due to interference

4/13/2005 jsumpiO5 gef@indiana.edu 37

Sample Program using Library

Calls Subl and are from different libraries

Same sequence of calls on all processes, with no global
synch

We follow with two cases showing possibility of
error with messages getting mixed up between
subroutine calls

4/13/2005 jsumpi05 gef@indiana.edu

38

Correct Library Execution

Process 0 Process 1 Process 2

recviany) send{i)

4/13/2005 jsumpiO5 gef@indiana.edu

Incorrect Library Execution

Process 0 Process 1 Process 2

recviany) send{1)

4/13/2005 jsumpiO5 gef@indiana.edu

What Happened?

Each library was self-consistent
Correctly handled all messages it knew about
Interaction between the libraries killed them
“Intercepting” a message broke both
The lesson:
Don’t take messages from strangers
Other examples teach other lessons:
Clean up your own messages
Don’t use other libraries’ tags
Etc. ...

4/13/2005 jsumpiO5 gef@indiana.edu

41

Solution to the Tag Problem

Generalize tag to tag and communicator

A separate communication context for each family of messages
No wild cards allowed in communicator, for security
Communicator allocated by the system, for security

Communicator includes groups and possible subsetting for a
library within a group — roughly it identifies sets of tasks as a

library is usually thought of as a separate task although that’s

not necessary

Tags retained for use within a context
wild cards OK for tags

See

for more details on these capabilities

4/13/2005 jsumpiO5 gef@indiana.edu

42

http://www.llnl.gov/computing/tutorials/workshops/workshop/mpi/MAIN.html#Group_Management_Routines
http://www.llnl.gov/computing/tutorials/workshops/workshop/mpi/MAIN.html#Group_Management_Routines

4/13/2005

The many
Collective
Communication
Functions

jsumpiO5 gef@indiana.edu

43

Collective Communication

Provides standard interfaces to common global
operations

Synchronization

Communications, I.e. movement of data

Collective computation

A collective operation uses a process group

All processes in group call same operation at (roughly) the
same time

Groups are constructed “by hand” with MPI group
manipulation routines or by using MPI topology-definition
routines

Message tags not needed (generated internally)

All collective operations are blocking.
4/13/2005 jsumpiO5 gef@indiana.edu 44

Some Collective Communication Operations

MPI_BARRIER(comm) Global Synchronization within a given
communicator

MPI _BCAST Global Broadcast

MPI GATHER Concatenate data from all processors in a
communicator into one process

MPI_ALLGATHER puts result of concatenation in all
Processors
MPI _SCATTER takes data from one processor and scatters over
all processors

MPI_ALLTOALL sends data from all processes to all other
processes

MPI _SENDRECYV exchanges data between two processors --
often used to implement "'shifts"

this viewed as pure point to point by some
4/13/2005 jsumpiO5 gef@indiana.edu 45

Hello World:C Example of Broadcast

#include ""'mpi.h"
main(int argc, char **argv)

{

char message[20];
Int rank;
MPI_Init (&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank); # Who is this
processor

If(rank ==0) # We are on "'root" -- Processor 0
strcpy(message,''Hello MP1 World™); # Generate message

MPI1_Bcast sends from root=0 and receives on all other processor

MPI1_Bcast(message,20, MPI_CHAR, 0, MPI_COMM_WORLD);

printf(*‘l am processor saying “os\n", ,);

MPI_Finalize(); }

Note that all processes issue the broadcast operation, process 0 sends the
message and all processes receive the message.

4/13/2005 jsumpiO5 gef@indiana.edu

46

Hello World with broadcast.

Processor A Processor B Processor C Processor D

STDOUT STDOUT STDOUT STDOUT

| am processor | am processor | am processor | am processor
0 saying msg. 1 saying msg. 2 saying msg. 3 saying msg.

N\ /S

Output merged in some order.

4/13/2005 jsumpi05 gcf@indiana.edu 47

Collective Computation

One can often perform computing during a collective communication

MPI_REDUCE performs reduction operation of type chosen from
maximum(value or value and location), minimum(value or value
and location), sum, product, logical and/or/xor, bit-wise
and/or/xor

e.g. operation labeled MPI_MAX stores in location of
processor the global maximum of original in each processor
as in

call MPI_REDUCE(original, , 1, MPI_REAL, MPI_MAX, ,

comm, Ierror)
One can also supply one's own reduction function

MPI_ALLREDUCE is same as MPI_REDUCE but it stores result in all -- not
just one -- processors

MPI1_SCAN performs reductions with result for processor r depending on data
In processors 0 to r

4/13/2005 jsumpiO5 gef@indiana.edu 48

Examples of Collective
Communication/Computation

Four Processors where each has a send buffer of size 2

0

(2,4)

1 2 3 Processors
(5,7) (0,3) (6,2) Initial Send Buffers

MPI_BCAST with rooi=2

(%)

(0,3) (0,3) (0,3) Resultant Buffers

MPI REDUCE with action MPI_MIN and =0

vy

() (,) (_,) Resultant Buffers

MPI_ALLREDUCE with action MPI_MIN and =0

vy

(0,2) (0,2) (0,2) Resultant Buffers

MPI_REDUCE with action MPI_SUM and =1

L)

4/13/2005

(13,16) () (_,) Resultant Buffers

jsumpiO5 gef@indiana.edu

49

Collective Computation Patterns

MPI_REDUCE

Processors | MPI_ALLREDUCE

Function F()
F=Sum
MAX MIN etc. MPI_SCAN

q

4/13/2005 Jsumpli05 gcf@indiana.edu

More Examples of Collective

Communication/Computation
Four Processors where each has a send buffer of size 2

0 1 2 3 Processors
(2,4) (5,7) (0,3) (6,2) Initial Send Buffers
MPI _SENDRECYV with 0,1 and 2,3 paired
(5,7) (2,4) (6,2) (0,3) Resultant Buffers

MPI_GATHER with =0

(2,4,5,7,0,3,6,2) (_,) (,) (_,) Resultant Buffers

Now take four Processors where only =0 has send buffer
(2,4,5,7,0,3,6,2) (,) (,) (_,) Initial send Buffers
MPI_SCATTER with =0

(2,4) (5,7) (0,3) (6,2) Resultant Buffers

4/13/2005 jsumpiO5 gef@indiana.edu 51

Processors Data Movement (1)
—

Memory Locations

MPI_BCAST

sl

MPI_SCATTER

MPI GATHER

4/13/2005 jsumpi05 gef@indiana.edu

Examples of MP1_ALLTOALL

All to All Communication with i'th location Iin |'th
processor being sent to |'th location in i'th processor

Processor 0O 1 2 3
Start (a0,al,a2,a3) (b0,b1,b2,b3) (c0,cl,c2,c3) (d0,d1,d2,d3)
After (a0,b0,c0,d0) (al,bl,c1,dl) (a2,b2,c2,d2) (a3,b3,c3,d3)

There are extensions MPI_ALLTOALLY to handle case
where data stored in noncontiguous fashion in each
processor and when each processor sends different
amounts of data to other processors

Many MPI routines have such "‘vector'" extensions

4/13/2005 jsumpiO5 gef@indiana.edu 53

Data Movement (2)

MPI_ALLGATHER |

q

MPI_ALLTOALL

)

4/13/2005 jsumpi05 gef@indiana.edu

List of Collective Routines

Allgather Allgatherv Allreduce
Alltoall Alltoallv Barrier
Bcast Gather Gatherv

Reduce ReduceScatter Scan
Scatter Scatterv

¢ “ALL” routines deliver results to all
participating processes

¢ Routines ending in “\/” allow different
Sized Inputs on different processors

4/13/2005 jsumpi05 gef@indiana.edu

Example Fortran: Performing a Sum

call MPI_COMM_RANK(, , lerr)
If (.ed. 0) then
read *, n
end if
call MPI_BCAST(n, 1, MPI_INTEGER, 0, , lerr)

Each process computes its range of numbers to sum
lo = rank*n+1
hi = lo+n-1
sum = 0.0d0
doi=lo, hi
sum =sum + 1.0d0 /i
end do
call MPI_ALLREDUCE(sum, sumout, 1, MPI_DOUBLE,
& MPI_ADD_ DOUBLE, , lerr)

4/13/2005 jsumpiO5 gef@indiana.edu 56

Example C: Computing P

#include “mpi.h”
#include <math.h>

Int main (argc, argv)
Int argc; char *argv(];

{
Int N, , 1, Ic;
double P125DT = 3.14159265358979323842643;
double , 01, hysum, X, a;

MPI _Init(&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &
MPI _Comm_rank (MPI_COMM_ WORLD, &

4/13/2005 jsumpiO5 gef@indiana.edu

);

);

57

P1 Example continued

{ if (myid ==0)
{ printf (“Enter the number of intervals: (0 quits) “);
scanf (*“%d”, &n); }
MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMMWORLD);
If (n ==0) break;
h=1.0/(double) n;

sum = 0.0;

for (i = +1;1<=n;1+=)

{x=h*((double) i-0.5); sum+=4.0/1.0 + x*x): }
=h * sum;

MPI_Reduce (& , &p1,1, MP1_DOUBLE,MPI_SUM,
0,MPI_COMMWORLD);
If (myid ==0)
printf(“pi is approximately %.16f, Error is %.16f\n”,
MPI_Finalize; }

4/13/2005 jsumpiO5 gef@indiana.edu

, fabs(1-P135DT); }

58

4/13/2005

The many
Sending and Recelving
Functions

jsumpiO5 gef@indiana.edu

59

Buffering Issues

¢ Where does data go when you send it?
— Multiple buffer copies, asin A)?
— Straight to the network, as in B)?

¢ B) is more efficient than A), but not always safe as send
waits for receive in blocking mode

A) ProcO B) ProcO

?% =L
W L

i Procl

4/13/2005 jsumpiO5 gef@indiana.edu 60

Avoiding Buffering Costs

Copies are not needed if
Send does not return until the data is delivered, or
The data i1s not touched after the send

MPI provides modes to arrange this
Synchronous: Do not return until recv Is posted
Ready: Matching recv is posted before send
Buffered: If you really want buffering

When using asynchronous communication send
functions, use MP1_Wait or MPI_WaitAll before
reusing the buffer to ensure that all data has been safely
transferred on its way.

4/13/2005 jsumpiO5 gef@indiana.edu 61

Combining Blocking and Send Modes

¢ All combinations are legal
—m are fastest, |s][¥[s] are slow

Blocking Nonblocking

Bufering

MPI IRSEND

Synchronous | MFI_SSEND MPI_ISSEND

4/13/2005 jsumpi05 gef@indiana.edu 62

More on Send/Recelve

Note modes are only for SEND — not receive which only has
blocking MPI_RECYV and non blocking MPI1_IRECV

Note that the sending and receiving of messages synchronizes the
different nodes of a parallel computer
So waiting in an MPI1_RECYV for the sent data causes the
sending and receiving nodes to synchronize

The full pattern of sending and receiving then propagates this
synchronization to ensure all nodes are indeed synchronized

It Is easy to write inconsistent code
In A: SEND to B: RECV from A;

In B: SEND to A; RECV from B will hang in some MPI
Implementations (Interchange SEND and RECV in one node to

make it safe or better use MPI_SENDRECV)

4/13/2005 jsumpiO5 gef@indiana.edu 63

4/13/2005

TOPOLOGIES

jsumpiO5 gef@indiana.edu

64

Cartesian Topologies

¢ MPI provides routines to provide structure to collections of
processes. Although it also has graph topologies, here we
concentrate on cartesian.

¢ A Cartesian topology Is a mesh

¢ Example of a 3 x 4 mesh with arrows pointing at the right
neighbors:

(0,0) s (0,1) s (0,2 s (0,3)

(1,0) s (1,1 s (1,2 s (1,3)

(2,0) s (2,1) s (2,2 s (2,3)

4/13/2005 jsumpiO5 gef@indiana.edu

Defining a Cartesian Topology

The routine MPI1_Cart_create creates a Cartesian
decomposition of the processes, with the number of dimensions
given by the ndim argument. It returns a new communicator
(in comm2d in example below) with the same processes as in
the input communicator, but different topology.

=2;
[0] = 3; [1] = 4;
[0] = 0; [1] = 0; // periodic Is false
=1; // reordering Is true
lerr = MPI_Cart_create (MPI_COMM_WORLD, ,
, ,);
where specifies that it’s 0.k. to reorder the default

process rank in order to achieve a good embedding (with
good communication times between neighbors).

4/13/2005 jsumpiO5 gef@indiana.edu

MPI1 Cart coords and MPI1 Cart rank

Given the of the process Iin
MPI_COMM_WORLD, this routine gives a two
element (for two dimensional topology) array (

In example below) with the (i, J) coordinates of this
process in the new cartesian communicator.

lerr = MPI_Cart_coords (comm2d, rank, ndim,
coords);

coords[0] and coords[1] will be the 1 and |
coordinates.

Given the coords of a process, this routine gives the
rank number in the communicator.

lerr = MPI_Cart_rank (commz2d, coords, &rank);

4/13/2005 jsumpiO5 gef@indiana.edu 67

Who are my neighbors?

The routine MPI1_Cart_shift finds the neighbors in each
direction of the new communicator.

=0; //inCO0 for columns, 1 for rows
/[In Fortran, it’s 1 and 2
= 1; // specifies first neighbor to the right and left
lerr = MPI1_Cart_shift (, , , & ,
&):
This returns the process numbers (ranks) for a
communication of the bottom and top neighbors.

Typically, the neighbors are used with send/recv to exchange
data.

If a process in a non-periodic mesh is on the border and has
no neighbor, then the value MPI_PROCNULL Is returned.
This process value can be used in a send/recv, but it will have
no effect.

4/13/2005 jsumpiO5 gef@indiana.edu

68

Periodic meshes

In a periodic mesh, as shown below the processes at the
edge of the mesh wrap around in their dimension to find
their neighbors. The right neighbor is wrapped

@ & o O

2> @—‘

|
@ @ @ o

4/13/2005 jsumpiO5 gef@indiana.edu 69

Communication in Sub-Grids

Suppose that you have an algorithm, such as matrix multiply,
that requires you to communicate within one row or column
of a 2D grid.

For example, broadcast a value to all processes in one row.

MPI_Comm rowcomm,;
freecoords[0] = 0; freecoords[1] =1,
lerr = MPI_Cart_sub(comm?2d, freecoords, &rowcomm)

Defines nrow new communicators, each with the processes of
that row.

The array freecoords has boolean values specifying
whether the elements of that dimension “belong” to the
communicator; in example “1th” dimension is In returned
sub-grid (note sub-grid can have >1 included dimension)

You reurn sub-grid CONTAINING processor doing call

If bcastroot is defined as the root processor in each row,
broadcast a value along rows:
MPI_Bcast(value, 1, MPI_FLOAT, bcastroot, rowcomm);

4/13/2005 jsumpiO5 gef@indiana.edu

70

Message Buffers
and Datatypes

What Gets Sent: The Buffer

First generation message passing systems only allowed
one to transmit information originating in a contiguous
array of bytes

Hid the real data structure from hardware and
programmer

Might make it hard to provide efficient implementations as
Implied a lot of expensive memory accesses

Required pre-packing dispersed data, e.g.:

Rows (in Fortran, columns in C) of a matrix must be
transposed before transmission

Prevented convenient communication between
machines with different data representations

4/13/2005 jsumpiO5 gef@indiana.edu 72

Generalizing the Buffer in MPI

MPI specifies the buffer by starting address, datatype,
and count

starting address is obvious

datatypes are constructed recursively from
Elementary (all C and Fortran datatypes)
Contiguous array of datatypes
Strided blocks of datatypes
Indexed array of blocks of datatypes
General structures

count I1Is number of datatype elements

4/13/2005 jsumpiO5 gef@indiana.edu

73

Advantages of Datatypes

Combinations of elementary datatypes into a derived user defined
datatype allows clean communication of collections of disparate
types in a single MPI call.

Elimination of length (in bytes) in favor of count (of items of a
given type) Is clearer

Specifying application-oriented layouts allows maximal use of
special hardware and optimized memory use

However this wonderful technology is problematical in Java
where layout of data structures in memory is not defined in most
cases

Java’s serialization subsumes user defined datatypes as a
general way of packing a class of disparate types into a
message that can be sent between heterogeneous computers

4/13/2005 jsumpiO5 gef@indiana.edu 74

Motivation for Derived Datatypes in MPI

These are an elegant solution to a problem we struggled with a lot
In the early days -- all message passing is naturally built on
buffers holding contiguous data

However often (usually) the data is not stored contiguously. One
can address this with a set of small MP1_SEND commands but we
want messages to be as big as possible as latency is so high

One can copy all the data elements into a single buffer and
transmit this but this is tedious for the user and not very efficient
It has extra memory to memory copies which are often quite slow

So derived datatypes can be used to set up arbitary memory
templates with variable offsets and . Derived
datatypes can then be used in ""ordinary' MPI calls in place of
primitive datatypes MPI_REAL MPI_FLOAT etc.

4/13/2005 jsumpiO5 gef@indiana.edu 75

Derived Datatype Basics

Derived Datatypes should be declared integer in Fortran and
MPI_Datatype in C

Generally have form { (type0,disp0), (typel,displ) ... (type(n-
1),disp(n-1)) } with list of primitive data types typei and
displacements (from start of buffer) dispi

call MPI_TYPE_CONTIGUQOUS (, , ,)
creates a new datatype made up of repetitions
of old

one must use call MPI_TYPE_COMMIT(,)

before one can use the type In a communication call

call MPI_TYPE FREE(,) frees up space used by

this derived type

4/13/2005 jsumpiO5 gef@indiana.edu 76

Simple Example of Derived Datatype

integer

call MPI_TYPE CONTIGUOUS(lO MPI_ REAL,
)

call MPI_TYPE_COMI\/IIT(:)

call MP1_SEND(dlat7, 1, , dest, tag,
MPI_COMM_WORLD, icr1)

call MPI_TYPE FREE(,)
IS equivalent to simpler single call

call MPI_SEND(dat4, 10, MPI_REAL, dest, tag,
MPI_COMM WORLD, i¢rr)

and each sends 10 contiguous real values at location to
process

4/13/2005 jsumpiO5 gef@indiana.edu 77

Derived Datatypes: Vectors

MPI_TYPE_VECTOR (: : : ,

, Ierr)
IN Number of blocks to be added
IN Number of elements in block
IN Number of elements (NOT bytes) between
start of each block
IN Datatype of each element
OuT Handle(pointer) for new derived type

4/13/2005 jsumpiO5 gef@indiana.edu 78

Example of Vector type

¢ Suppose in C, we have an array
— phi [ypoints+2] [Xpoints+2]

— where we want to send rows and columns of elements from 1 :

nxblock and 1 : nyblock

— In C, arrays are stored row major order (Fortran is column
_major)
Contiguous elements

0 - xpoints+1

0
MPI_Type vector

(xpoints, 1, ypoints+2,
MPI_DOUBLE, &strided);

defines a type called strided
which refers to the column of
ypoints+1 elements

4/13/2005 jsumpiO5 gef@indiana.edu

79

Why is this interesting?

In Jacobi like algoritms, each processor stores its own xpoints
by ypoints array of variables as well as guard rings
containing the rows and columns from neighbours. One loads
these guard rings at start of computation iteration and only
updates

points internal to array

Guard Rings

4/13/2005 jsumpiO5 gef@indiana.edu 80

Derived Datatypes: Indexed

Array of indices, useful for gather/scatter
MPI_TYPE_INDEXED (, : , :

, Ierr)
IN Number of blocks to be added
IN Number of elements in each block -- an array of
length
IN Displacements (an array of length) for each
block
IN Datatype of each element
OuT Handle(pointer) for new derived type

4/13/2005 jsumpiO5 gef@indiana.edu 81

Jacobl lteration
an example

Designing MPI Programs

Partitioning o
Before tackling MPI Problem |

Communication

Many point to collective
operations

Needed to produce MPI \

Communicatio m
Processes ﬂ@
14

Handled bv MPI \ Combined Tasks
anhdled oy @

Final Program

4/13/2005 jsumpi05 gef@indiana.edu

83

Jacobl Iteration: The Problem

Used to numerically solve a Partial Differential
Equation (PDE) on a square mesh -- below Is Poisson’s
Equation

Method:

Update each mesh point by the average of its neighbors
Repeat until converged

This is right hand side

u=0ifx=0,x =Ly =0,o0ry=1

4/13/2005 jsumpi05 gef@indiana.edu 84

Jacobi Iteration: MPI Program Design

Partitioning Is simple
Every point is a micro-task
Communication is simple

4 nearest neighbors in Cartesian mesh
Reduction for convergence test

Agglomeration works along dimensions

1-D packing for high-latency machines (as minimizes
number of messages)

2-D packing for others (most general as minimizes
Information sent)

One process per processor practically required

4/13/2005 jsumpiO5 gef@indiana.edu

85

Jacobi Iteration: MPI Program Design

¢ Mapping: Cartesian grid supported by MPI virtual topologies
¢ For generality, write as the 2-D version
— Create a 1xP (or Px1) grid for 1-D version
¢ Adjust array bounds, iterate over local array
— For convenience, include shadow region to hold communicated
values (not iterated over)

nx by ny points in a 0 Xpoints+2
npx by npy decomposition,
boundary values define problem

ypoints+2
4/13/2005 jsumpiO5 gef@indiana.edu 86

Jacobi Iteration: C MPI Program Sketch

/* sizes of data and data files */

int NDIM = 2;

Int Xxpoints = nx/npx; int ypoints = ny/npy;
double phi[ypoints+2][xpoints+2],
oldphi[ypoints+2][xpoints+2];

[* communication variables */
Int rank; int rankx, ranky;

Int coords[NDIM];

Int reorder = 0;

Int dims[NDIM], periods[NDIM];
MPI_Comm comm2d,
MPI_Datatype contig, strided;

4/13/2005 jsumpiO5 gef@indiana.edu

87

Jacobl Iteration: create topology

MPI1_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

periods[0] = 0; periods[1] =0;
dims[0] = npy; dims[1] = npx;

MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods,
reorder, &comma2d);

MPI_Cart_coords(comm2d, rank, 2, coords);

ranky = coords|0];

rankx = coords[1];

MPI_Cart_shift(commz2d, 0, 1, &bottomneighbor, &topneighbor);
MPI1_Cart_shift(commz2d, 1, 1, &leftneighbor, &rightneighbor);

4/13/2005 jsumpiO5 gef@indiana.edu 88

Jacobl I1teration: data structures

[* message types */

MPI_Type_ contiguous (ypoints, MPlI_DOUBLE, &contig);
MPI_Type vector (xpoints, 1, ypoints+2, MPI_DOUBLE, &strided);
MPI_Type commit (&contig);

MPI_Type commit (&strided);

/* define mask array to be true on boundary and false elsewhere in
each processor.

Define boundary values in phi array in each processor.
*/

4/13/2005 jsumpiO5 gef@indiana.edu 89

Jacobi Iteration: send guard values

while (err > tol) { /* copy phi array to oldphi */
/* communicate edge rows and columns to neighboring processor to
put in their guard rings */
/* Send right boundary to right neighbor
and receive left ghost vector in return from left neighbor™/
MPI_Sendrecv (&(oldphi[1][xpoints]), 1, strided,
rightneighbor, 31, &(oldphi[1][0]), 1, strided,
leftneighbor, 31, commz2d, &status);

4/13/2005 jsumpiO5 gef@indiana.edu 90

Remaining communication

/* Send left boundary in each processor to left neighbor */

MPI_Sendrecv (&(oldphi[1][1]), 1, strided, leftneighbor, 30,
&(oldphi[1][xpoints+1]), 1, strided, rightneighbor, 30,

commz2d, &status);

/* Send top boundary to top neighbor */

MPI_Sendrecv (&(oldphi[1][1]), 1, contig, topneighbor, 40,
&(oldphi[ypoints+1][1]), 1, contig, bottomneighbor, 40,
comm?2d, &status);

/* Send bottom boundary to bottom neighbor */

MPI_Sendrecv (&(oldphi[ypoints][1]), 1, contig,
bottomneighbor, 41, &(oldphi[0][1]), 1, contig,
topneighbor, 41, comm2d, &status);

4/13/2005 jsumpiO5 gef@indiana.edu

91

Jacobi Iteration: update and error
for (j = 1;] <= xpoints; j++)
{
for (i = 1; i <= ypoints; i++)
{
It (mask[i][]) <
phi[i][j] = 0.25 * (oldphi[i-1][j] +
oldphi[i+1][j]
+ oldphi[i][j-1] +
oldphi[i][j+1]);
diff = max(diff, abs(phi[i][j] - oldphi[i][j]));
y 1}

/* maximum difference over all processors */

MPI1_Allreduce(&diff, &err, 1, MPI_DOUBLE, MPI_MAX,

comm?2d);
If (err < ((double) TOLERANCE)) done =1,

4/1%/2005 jsumpiO5 gef@indiana.edu

92

The MPI Timer

The elapsed (wall-clock) time between two points in an MPI
program can be computed using MP1_Wtime:

double t1, t2;
tl = MPI_Wtime ();

t2 = MPI_Wtime ();
printf (“Elapsed time is %f \n”’, t2-t1);
The times are local; the attribute
MPI WTIME_IS_GLOBAL may be used to determine if

the times are also synchronized with each other for all
processes in MPI_COMM_WORLD.

4/13/2005 jsumpiO5 gef@indiana.edu

93

MPI-2

The MPI Forum produced a new standard which
Include MPI 1.2 clarifications and corrections to MPI
1.1

MPI1-2 new topics are:

process creation and management, including client/server
routines

one-sided communications (put/get, active messages)
extended collective operations

external interfaces

1/0O

additional language bindings for C++ and Fortran-90

4/13/2005 jsumpiO5 gef@indiana.edu 94

/O included in MPI-2

Goal Is to provide model for portable file system allowing for
optimization of parallel 1/0

portable 1/O interface POSIX judged not possible to allow
enough optimization

Parallel 1/0 system provides high-level interface supporting
transfers of global data structures between process memories and
files.

Significant optimizations required include:
grouping, collective buffering, and disk-directed 1/O
Other optimizations also achieved by

asynchronous 1I/O, strided accesses and control over physical
file layout on disks.

1/O access modes defined by data partitioning expressed with

derived datatypes
4/13/2005 jsumpiO5 gef@indiana.edu 95

Comments on Parallel Input/Output - |

Parallel 1/0 has technical issues -- how best to optimize access to
a file whose contents may be stored on N different disks which

can deliver data in parallel and

Semantic issues -- what does printf in C (and PRINT in Fortran)

mean?

The meaning of printf/PRINT is both undefined and changing
In my old Caltech days, printf on a node of a parallel
machine was a modification of UNIX which automatically
transferred data from nodes to "*host e.g. node 0" and
produced a single stream
In those days, full UNIX did not run on every node of
machine
We introduced new UNIX I/O modes (singular and multiple)

to define meaning of parallel 1/O and I thought this was a

reat idea but it didn't catch on!!
4/13/2005 jsumpiO5 gef@indiana.edu 96

Comments on Parallel Input/Output - 11

Today, memory costs have declined and ALL mainstream MIMD
distributed memory machines whether clusters of
workstations/PC’s or integrated systems such as T3D/ Paragon/
SP-2 have enough memory on each node to run UNIX or Windows
NT

Thus printf today means typically that the node on which it runs
will stick It out on *'standard output™ file for that node

However this is implementation dependent
If on other hand you want a stream of output with information in order
Starting with that from node 0, then node 1, then node 2 etc.
This was default on old Caltech machines but

Then in general you need to communicate information from nodes 1 to N-
1 to node 0 and let node 0 sort it and output in required order

MPI-10 standard links 1/O to MPI in a standard fashion

4/13/2005 jsumpiO5 gef@indiana.edu 97

	Message Passing InterfaceMPI
	Abstract of MPI Presentation
	Why and What is Message Passing I
	Why and What is Message Passing II
	SPMD Programming
	Some Key Features of MPI
	What is MPI?
	History of MPI
	Some Difficulties with MPI
	Sending/Receiving Messages: Issues
	Key MPI Concepts in a Nutshell
	MPI Communicators
	MPI Conventions
	Standard Constants in MPI
	The Six Fundamental MPI routines
	MPI_Init -- Environment Management
	MPI_Comm_rank -- Environment Inquiry
	MPI_Comm_size -- Environment Inquiry
	MPI_Finalize -- Environment Management
	Hello World in C plus MPI
	Hello World with only rank and size.
	Blocking Send: MPI_Send(C) or MPI_SEND(Fortran)
	Example MPI_SEND in Fortran
	Blocking Receive: MPI_RECV(Fortran)
	Blocking Receive: MPI_Recv(C)
	Fortran example: Receive
	Hello World:C Example of Send and Receive
	HelloWorld, continued
	Hello World with send and receive.
	Sending and Receiving Arrays
	Now we go back to MPI fundamentals and cover in more detail
	Interpretation of Returned Message Status
	Process GroupsTags andCommunicators
	To Whom It Gets Sent: Process Identifiers
	Generalizing the Process Identifier in MPI
	Why use Process Groups?
	How Message Is Identified: Message Tags
	Sample Program using Library
	Correct Library Execution
	Incorrect Library Execution
	What Happened?
	Solution to the Tag Problem
	The manyCollectiveCommunicationFunctions
	Collective Communication
	Some Collective Communication Operations
	Hello World:C Example of Broadcast
	Hello World with broadcast.
	Collective Computation
	Examples of Collective Communication/Computation
	Collective Computation Patterns
	More Examples of Collective Communication/Computation
	Data Movement (1)
	Examples of MPI_ALLTOALL
	Data Movement (2)
	List of Collective Routines
	Example Fortran: Performing a Sum
	Example C: Computing Pi
	Pi Example continued
	The manySending and ReceivingFunctions
	Buffering Issues
	Avoiding Buffering Costs
	Combining Blocking and Send Modes
	More on Send/Receive
	TOPOLOGIES
	Cartesian Topologies
	Defining a Cartesian Topology
	MPI_Cart_coords and MPI_Cart_rank
	Who are my neighbors?
	Periodic meshes
	Communication in Sub-Grids
	Message Buffersand Datatypes
	What Gets Sent: The Buffer
	Generalizing the Buffer in MPI
	Advantages of Datatypes
	Motivation for Derived Datatypes in MPI
	Derived Datatype Basics
	Simple Example of Derived Datatype
	Derived Datatypes: Vectors
	Example of Vector type
	Why is this interesting?
	Derived Datatypes: Indexed
	Jacobi Iterationan example
	Designing MPI Programs
	Jacobi Iteration: The Problem
	Jacobi Iteration: MPI Program Design
	Jacobi Iteration: MPI Program Design
	Jacobi Iteration: C MPI Program Sketch
	Jacobi Iteration: create topology
	Jacobi iteration: data structures
	Jacobi Iteration: send guard values
	Remaining communication
	Jacobi Iteration: update and error
	The MPI Timer
	MPI-2
	I/O included in MPI-2
	Comments on Parallel Input/Output - I
	Comments on Parallel Input/Output - II

