
jsumpi05 gcf@indiana.edu 14/13/2005

Message Passing Interface
MPI

Spring Semester 2005
Geoffrey Fox
Community

Grids Laboratory
Indiana University

505 N Morton
Suite 224

Bloomington IN
gcf@indiana.edu

4/13/2005 jsumpi05 gcf@indiana.edu 2

Abstract of MPI PresentationAbstract of MPI Presentation
This covers This covers MPIMPI from a user's point of view and is to be from a user's point of view and is to be
supplemented by either online tutorials or the supplemented by either online tutorials or the
recommended book recommended book Parallel Programming with MPIParallel Programming with MPI, by , by
Peter S. Pacheco, Morgan Kaufmann, 1997. Peter S. Pacheco, Morgan Kaufmann, 1997.
–– See for example See for example http://beige.ucs.indiana.edu/I590/http://beige.ucs.indiana.edu/I590/

We describe background and history brieflyWe describe background and history briefly
An Overview is based on An Overview is based on subset of 6 routinessubset of 6 routines that cover that cover
send/receivesend/receive, , environment inquiryenvironment inquiry (for rank and total (for rank and total
number of processors) number of processors) initializeinitialize and and finalizationfinalization with with
simple examplessimple examples
Processor GroupsProcessor Groups, , Collective CommunicationCollective Communication and and
Computation, Computation, TopologiesTopologies, and , and Derived Derived DatatypesDatatypes are are
also discussedalso discussed

http://fawlty.cs.usfca.edu/mpi/
http://beige.ucs.indiana.edu/I590/

4/13/2005 jsumpi05 gcf@indiana.edu 3

Why and What is Message Passing IWhy and What is Message Passing I
We are learning how to perform We are learning how to perform large scale large scale
computationscomputations on the on the worldworld’’s largest computerss largest computers
These computers are These computers are collections of CPUcollections of CPU’’ss with various with various
architectures of which one of the most important is architectures of which one of the most important is
distributed memorydistributed memory
Each CPU has its own memory and information is Each CPU has its own memory and information is
communicated between the CPUcommunicated between the CPU’’s by means of s by means of explicit explicit
messagesmessages that take data in one CPUthat take data in one CPU’’s memory and s memory and
deliver it to the memory of another CPUdeliver it to the memory of another CPU
Without such messages, the CPUWithout such messages, the CPU’’s cannot exchange s cannot exchange
information and the information and the only way they can be usefully only way they can be usefully
working on the same problemworking on the same problem, is by , is by exchanging exchanging
information.information.

4/13/2005 jsumpi05 gcf@indiana.edu 4

Why and What is Message Passing IIWhy and What is Message Passing II
MPIMPI or or Message Passing InterfaceMessage Passing Interface is the agreed is the agreed
standard way of exchanging messagesstandard way of exchanging messages
MPI was result of much experimental work from MPI was result of much experimental work from
roughly 1983roughly 1983--1993 and is available on essentially all 1993 and is available on essentially all
parallel computers.parallel computers.
MPI is in the form of a MPI is in the form of a subroutine librarysubroutine library for C, Fortran for C, Fortran
and Javaand Java

Communication Network

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

4/13/2005 jsumpi05 gcf@indiana.edu 5

SPMD ProgrammingSPMD Programming
In nearly all large scale scientific parallel computing, we use In nearly all large scale scientific parallel computing, we use the the
SPMD (SPMD (Single Program Multiple DataSingle Program Multiple Data) approach) approach
This runs the same code on every processor in the parallel arrayThis runs the same code on every processor in the parallel array
(This is SP part of SPMD)(This is SP part of SPMD)
However each CPU has its own memory and so is processing However each CPU has its own memory and so is processing
different data (This is MD part of SPMD)different data (This is MD part of SPMD)
Note we saw this in HadrianNote we saw this in Hadrian’’s wall where everybody was building s wall where everybody was building
a wall but each bricklayer had a different part of walla wall but each bricklayer had a different part of wall
As we want to scale to 10,000 to 100,000 separate CPUAs we want to scale to 10,000 to 100,000 separate CPU’’s we cans we can’’t t
put different code on each processorput different code on each processor
Note code can have data dependent branches, so each processor Note code can have data dependent branches, so each processor
can actually be executing code specialized to its own situationcan actually be executing code specialized to its own situation
MPI has the concept of rank so a given processor can find out MPI has the concept of rank so a given processor can find out
what part of computation/data it is responsible for.what part of computation/data it is responsible for.

4/13/2005 jsumpi05 gcf@indiana.edu 6

Some Key Features of MPISome Key Features of MPI
An An MPIMPI program defines a set of processes, each executing the program defines a set of processes, each executing the
same program (same program (SPMDSPMD))
–– (usually one process per parallel computer node)(usually one process per parallel computer node)

…… that communicate by calling that communicate by calling MPIMPI messaging functionsmessaging functions
–– ((pointpoint--toto--pointpoint and and collectivecollective))

…… and can be constructed in a and can be constructed in a modular fashionmodular fashion
–– ((communication contextscommunication contexts are the key to MPI libraries)are the key to MPI libraries)
–– Note communicator in MPI specifies both Note communicator in MPI specifies both a context and a a context and a

process groupprocess group
AlsoAlso
–– Support for Support for Process GroupsProcess Groups ---- messaging in subsets of messaging in subsets of

processorsprocessors
–– Support for Support for applicationapplication dependent (virtual) dependent (virtual) topologiestopologies
–– InquiryInquiry routines to find out properties of the environment such routines to find out properties of the environment such

as number of processorsas number of processors

4/13/2005 jsumpi05 gcf@indiana.edu 7

What is MPI?What is MPI?
A standard messageA standard message--passing librarypassing library
–– p4, NX, PVM, Express, PARMACSp4, NX, PVM, Express, PARMACS are precursorsare precursors

MPI defines a languageMPI defines a language--independent independent interfaceinterface
–– Not an implementationNot an implementation

BindingsBindings are defined for different languagesare defined for different languages
–– So far, So far, C C and and Fortran 77, C++Fortran 77, C++ and and F90F90
–– AdAd--hoc hoc JavaJava bindings are availablebindings are available

Multiple implementationsMultiple implementations
–– MPICHMPICH is a widelyis a widely--used portable implementationused portable implementation
–– See See http://www.mcs.anl.gov/mpi/http://www.mcs.anl.gov/mpi/

Aimed at High PerformanceAimed at High Performance

http://www.mcs.anl.gov/mpi/

4/13/2005 jsumpi05 gcf@indiana.edu 8

History of MPIHistory of MPI
Began at Began at WilliamsburgWilliamsburg Workshop in Workshop in April 1992April 1992
Organized at Organized at Supercomputing 92Supercomputing 92 (November 92)(November 92)
Followed format and process similar to those setting Web Followed format and process similar to those setting Web
Standards in W3C and OASIS but less formalStandards in W3C and OASIS but less formal
–– Met every 6 weeks for two daysMet every 6 weeks for two days
–– Extensive, open email discussionsExtensive, open email discussions
–– Drafts, readings, votesDrafts, readings, votes

PrePre--final draft distributed at final draft distributed at Supercomputing 93Supercomputing 93
TwoTwo--month public comment periodmonth public comment period
Final version of draft in Final version of draft in May 1994May 1994
PublicPublic and and optimized Vendoroptimized Vendor implementations broadly available implementations broadly available
with first implementations in 1995with first implementations in 1995
MPIMPI--2 2 agreed in 1998 but major implementation waited until agreed in 1998 but major implementation waited until
November 2002; it includes parallelism between CPUNovember 2002; it includes parallelism between CPU’’s and disks s and disks
(MPI(MPI--1 is just between CPU1 is just between CPU’’s); more than doubles number of s); more than doubles number of
functions in libraryfunctions in library

4/13/2005 jsumpi05 gcf@indiana.edu 9

Some Difficulties with MPISome Difficulties with MPI
MPIMPI was designed by the Kitchen Sink approach and has was designed by the Kitchen Sink approach and has 128 128
functionsfunctions and each has many argumentsand each has many arguments
–– This completeness is strength and weakness!This completeness is strength and weakness!
–– Hard to implement efficiently and hard to learn all its Hard to implement efficiently and hard to learn all its

detailsdetails
–– One can do almost everything with 6 functionsOne can do almost everything with 6 functions

It is It is notnot a a complete operating environmentcomplete operating environment and does not have and does not have
ability to create and spawn processes etc.ability to create and spawn processes etc.
PVMPVM is the previous dominant approachis the previous dominant approach
–– It is very simple with much less functionality than It is very simple with much less functionality than MPIMPI
–– However it runs on However it runs on essentially all machinesessentially all machines including including

heterogeneous workstation clustersheterogeneous workstation clusters
–– Further it is a Further it is a complete albeit simplecomplete albeit simple operating environmentoperating environment

However it is clear that However it is clear that MPIMPI has been adopted as the has been adopted as the standard standard
messaging systemmessaging system by parallel computer vendors by parallel computer vendors

4/13/2005 jsumpi05 gcf@indiana.edu 10

Sending/Receiving Messages: IssuesSending/Receiving Messages: Issues

Questions:Questions:
–– What is sent?What is sent?
–– To whom is the data sent? To whom is the data sent?
–– How does the receiver identify it?How does the receiver identify it?
–– Do we acknowledge message?Do we acknowledge message?

4/13/2005 jsumpi05 gcf@indiana.edu 11

Key MPI Concepts in a NutshellKey MPI Concepts in a Nutshell
MPI uses some concepts we will describe in detail laterMPI uses some concepts we will describe in detail later
DatatypeDatatype allows general types of data (including allows general types of data (including
mixtures) mixtures)
CommunicatorsCommunicators allow you to specify sets and subsets of allow you to specify sets and subsets of
processors involved in this messagingprocessors involved in this messaging
–– Note MPI supports both point to point and so called Note MPI supports both point to point and so called collective collective

communicationcommunication involving multiple senders and/or receiversinvolving multiple senders and/or receivers

TagsTags allow you to label message so that a receiver can allow you to label message so that a receiver can
look at it quickly without unpacking buffer and see what look at it quickly without unpacking buffer and see what
message involves and how important it message involves and how important it itit
Rank Rank labels the processors and labels the processors and SizeSize is total number of is total number of
them which must be fixedthem which must be fixed

4/13/2005 jsumpi05 gcf@indiana.edu 12

MPI Communicators

MPI_COMM_WORLD

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

User-created
Communicator

21

3 4 5

876

0

1

0

User-created
Communicator

4/13/2005 jsumpi05 gcf@indiana.edu 13

MPI ConventionsMPI Conventions
All All MPI MPI routines are prefixed by routines are prefixed by MPI_MPI_
–– CC is always is always MPI_XnnnnnMPI_Xnnnnn(parameters(parameters) : C is case sensitive) : C is case sensitive
–– FortranFortran is case insensitive but we will write is case insensitive but we will write

MPI_XNNNNNMPI_XNNNNN(parameters)(parameters)
MPI constantsMPI constants are in upper case as are are in upper case as are MPI MPI datatypesdatatypes, e.g. , e.g.
MPI_FLOATMPI_FLOAT for floating point number in Cfor floating point number in C
Specify overall constants withSpecify overall constants with
–– #include "#include "mpi.hmpi.h" in C programs" in C programs
–– include "include "mpif.hmpif.h" in Fortran" in Fortran

CC routines are actually integer functions and always return an routines are actually integer functions and always return an
integer status (error) codeinteger status (error) code
FortranFortran routines are really subroutines and have returned status routines are really subroutines and have returned status
code as last argumentcode as last argument
–– Please check on status codesPlease check on status codes although this is often skipped!although this is often skipped!

4/13/2005 jsumpi05 gcf@indiana.edu 14

Standard Constants in MPIStandard Constants in MPI
There a set of predefined constants in include files for each laThere a set of predefined constants in include files for each language nguage
and these include:and these include:
MPI_SUCCESSMPI_SUCCESS ---- successful return codesuccessful return code
MPI_COMM_WORLDMPI_COMM_WORLD (everything) and (everything) and MPI_COMM_SELFMPI_COMM_SELF(current (current
process) are predefined reserved process) are predefined reserved communicatorscommunicators in C and Fortranin C and Fortran
FortranFortran elementary elementary datatypesdatatypes are:are:
–– MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION, MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,

MPI_COMPLEX, MPI_DOUBLE_COMPLEX, MPI_LOGICAL, MPI_COMPLEX, MPI_DOUBLE_COMPLEX, MPI_LOGICAL,
MPI_CHARACTER, MPI_BYTE, MPI_PACKEDMPI_CHARACTER, MPI_BYTE, MPI_PACKED

C C elementary elementary datatypesdatatypes are:are:
–– MPI_CHAR, MPI_SHORT, MPI_INT, MPI_LONG, MPI_CHAR, MPI_SHORT, MPI_INT, MPI_LONG,

MPI_UNSIGNED_CHAR, MPI_UNSIGNED_SHORT, MPI_UNSIGNED_CHAR, MPI_UNSIGNED_SHORT,
MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_FLOAT, MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_FLOAT,
MPI_DOUBLE, MPI_LONG_DOUBLE, MPI_BYTE, MPI_DOUBLE, MPI_LONG_DOUBLE, MPI_BYTE,
MPI_PACKEDMPI_PACKED

4/13/2005 jsumpi05 gcf@indiana.edu 15

The Six Fundamental MPI routinesThe Six Fundamental MPI routines
MPI_InitMPI_Init ((argcargc, , argvargv)) ---- initializeinitialize
MPI_Comm_rankMPI_Comm_rank ((commcomm, rank) , rank) ---- find process label find process label
(rank) in group(rank) in group
MPI_Comm_sizeMPI_Comm_size(comm(comm, size) , size) ---- find total number of find total number of
processesprocesses
MPI_SendMPI_Send ((sndbuf,count,datatype,dest,tag,commsndbuf,count,datatype,dest,tag,comm)) ----
send a messagesend a message
MPI_RecvMPI_Recv
((recvbuf,count,datatype,source,tag,comm,statusrecvbuf,count,datatype,source,tag,comm,status)) ----
receive a messagereceive a message
MPI_FinalizeMPI_Finalize() () ---- End UpEnd Up

4/13/2005 jsumpi05 gcf@indiana.edu 16

MPI_InitMPI_Init ---- Environment ManagementEnvironment Management
This MUST be called to set up MPI before any This MUST be called to set up MPI before any
other MPI routines may be calledother MPI routines may be called
For C: For C: intint MPI_InitMPI_Init(int(int **argcargc, char , char ****argvargv[][]))
–– argcargc and and argvargv[][] are conventional C main are conventional C main

routine argumentsroutine arguments
–– As usual As usual MPI_InitMPI_Init returns an errorreturns an error

For Fortran: call For Fortran: call MPI_INITMPI_INIT((mpierrmpierr))
–– nonzero (more pedantically values not equal to nonzero (more pedantically values not equal to

MPI_SUCCESSMPI_SUCCESS) values of) values of mpierrmpierr represent represent
errorserrors

4/13/2005 jsumpi05 gcf@indiana.edu 17

MPI_Comm_rank MPI_Comm_rank ---- Environment InquiryEnvironment Inquiry
This allows you to identify each process by a unique This allows you to identify each process by a unique
integer called the integer called the rank rank which runs from which runs from 00 to to NN--11 where where
there are there are N N processesprocesses
If we divide the region 0 to 1 by domain decomposition If we divide the region 0 to 1 by domain decomposition
into into NN parts, the process with parts, the process with rank rrank r controls controls
–– subregionsubregion covering covering r/Nr/N to to (r+1)/N(r+1)/N
–– for for C:intC:int MPI_Comm_rank(MPI_CommMPI_Comm_rank(MPI_Comm commcomm, , intint

*rank*rank))
»» commcomm is an MPI communicator of type is an MPI communicator of type

MPI_CommMPI_Comm
–– for FORTRAN: call for FORTRAN: call MPI_COMM_RANKMPI_COMM_RANK ((commcomm,,

rankrank,, mpierrmpierr))

4/13/2005 jsumpi05 gcf@indiana.edu 18

MPI_Comm_size MPI_Comm_size ---- Environment InquiryEnvironment Inquiry
This returns in integer This returns in integer sizesize number of processes in given number of processes in given
communicator communicator commcomm (remember this specifies processor (remember this specifies processor
group)group)
For C: For C: intint MPI_Comm_sizeMPI_Comm_size((MPI_CommMPI_Comm commcomm,int,int
**sizesize))
For Fortran: call For Fortran: call MPI_COMM_SIZEMPI_COMM_SIZE ((commcomm, , sizesize, ,
mpierrmpierr))
–– where where commcomm, , sizesize,, mpierrmpierr are integersare integers
–– commcomm is input; is input; sizesize and and mpierrmpierr returnedreturned

4/13/2005 jsumpi05 gcf@indiana.edu 19

MPI_Finalize MPI_Finalize ---- Environment ManagementEnvironment Management

Before exiting an Before exiting an MPIMPI application, it is courteous application, it is courteous
to clean up the MPI state and to clean up the MPI state and MPI_FINALIZEMPI_FINALIZE
does this. No MPI routine may be called in a does this. No MPI routine may be called in a
given process after that process has called given process after that process has called
MPI_FINALIZEMPI_FINALIZE
for C: for C: intint MPI_Finalize()MPI_Finalize()
for Fortran:call for Fortran:call MPI_FINALIZE(MPI_FINALIZE(mpierrmpierr))
–– mpierrmpierr is an integeris an integer

4/13/2005 jsumpi05 gcf@indiana.edu 20

Hello World in C plus MPIHello World in C plus MPI
all processes execute this program# all processes execute this program
#include <#include <stdio.hstdio.h>>
#include <#include <mpi.hmpi.h>>
void void main(intmain(int argc,argc,charchar **argvargv[])[])
{ { intint ierrorierror, , rankrank, , sizesize
–– MPI_InitMPI_Init(&(&argcargc, &, &argvargv);); # Initialize# Initialize
–– # In following Find Process Number# In following Find Process Number
–– MPI_Comm_rankMPI_Comm_rank((MPI_COMM_WORLDMPI_COMM_WORLD, &, &rankrank););
–– if(rank == 0)if(rank == 0)

»» printfprintf ("hello World!("hello World!\\n");n");
–– # In following, Find Total number of processes# In following, Find Total number of processes
–– ierrorierror = = MPI_Comm_sizeMPI_Comm_size((MPI_COMM_WORLDMPI_COMM_WORLD, &, &sizesize););
–– if(if(ierrorierror != != MPI_SUCCESSMPI_SUCCESS))

»» MPI_AbortMPI_Abort((MPI_COMM_WORLDMPI_COMM_WORLD,,ierrorierror);); # Abort# Abort
–– printf("Iprintf("I am processor %d out of total of %dam processor %d out of total of %d\\n", rank, size);n", rank, size);
–– MPI_Finalize(); MPI_Finalize(); # Finalize # Finalize }}

4/13/2005 jsumpi05 gcf@indiana.edu 21

Hello World with only rank and size.
Processor DProcessor B Processor CProcessor A

rank=0;
size = 4;
printf …;
printf …;

STDOUT

“Hello World”
I am processor
0 out of 4.

rank=1;
size = 4;

printf …;

STDOUT

I am processor
1 out of 4.

rank=2;
size = 4;

printf …;

STDOUT

I am processor
2 out of 4.

rank=3;
size = 4;

printf …;

STDOUT

I am processor
3 out of 4.

Output merged in some order.

4/13/2005 jsumpi05 gcf@indiana.edu 22

Blocking Send: MPI_Send(C) or MPI_SEND(Fortran)Blocking Send: MPI_Send(C) or MPI_SEND(Fortran)

call call MPI_SENDMPI_SEND ((
–– IN IN messagemessage start address of data to sendstart address of data to send
–– IN IN message_lenmessage_len number of items (length in bytes number of items (length in bytes

determined by type)determined by type)
–– IN IN datatypedatatype type of each data elementtype of each data element
–– IN IN dest_rankdest_rank Process number (rank) of Process number (rank) of

destinationdestination
–– IN IN message_tagmessage_tag tag of message to allow receiver to tag of message to allow receiver to

filterfilter
–– IN IN communicator communicator Communicator of both sender Communicator of both sender

and receiver groupand receiver group
–– OUT OUT error_messageerror_message) Error Flag (absent in C)) Error Flag (absent in C)

4/13/2005 jsumpi05 gcf@indiana.edu 23

Example MPI_SEND in FortranExample MPI_SEND in Fortran
integer integer countcount, , datatypedatatype, , destdest, , tagtag, , commcomm, , mpierrmpierr
real real sndbufsndbuf(50)(50)
commcomm = = MPI_COMM_WORLDMPI_COMM_WORLD
tagtag = 0= 0
countcount = 50= 50
datatypedatatype = = MPI_REALMPI_REAL
call call MPI_SENDMPI_SEND ((sndbufsndbuf, , countcount, , datatypedatatype, , destdest, ,
tagtag, , commcomm, , mpierrmpierr))

4/13/2005 jsumpi05 gcf@indiana.edu 24

Blocking Receive: MPI_RECV(Fortran)Blocking Receive: MPI_RECV(Fortran)
call call MPI_RECVMPI_RECV((
–– IN IN start_of_bufferstart_of_buffer Address of place to store data(address is Address of place to store data(address is

Input Input ---- values of data are of course output starting at this address!)values of data are of course output starting at this address!)
–– IN IN buffer_lenbuffer_len Maximum number of items allowedMaximum number of items allowed
–– IN IN datatypedatatype Type of each data typeType of each data type
–– IN IN source_ranksource_rank Processor number (rank) of sourceProcessor number (rank) of source
–– IN IN tag tag only accept messages with this tag valuonly accept messages with this tag valuee
–– IN IN communicatorcommunicator Communicator of both sender and receiver Communicator of both sender and receiver

groupgroup
–– OUT OUT return_statusreturn_status Data structure describing what happened!Data structure describing what happened!
–– OUT OUT error_messageerror_message) Error Flag (absent in C)) Error Flag (absent in C)

Note that Note that return_statusreturn_status is used after completion of receive to find actual is used after completion of receive to find actual
received length (received length (buffer_lenbuffer_len is a maximum length allowed), actual source is a maximum length allowed), actual source
processor processor source_ ranksource_ rank and actual message and actual message tagtag
We will explain the term We will explain the term ““Blocking for SEND/RECVBlocking for SEND/RECV”” later later –– roughly it roughly it
means function returns when it is completemeans function returns when it is complete

4/13/2005 jsumpi05 gcf@indiana.edu 25

Blocking Receive: Blocking Receive: MPI_Recv(CMPI_Recv(C))

In C syntax isIn C syntax is
intint error_messageerror_message = = MPI_RecvMPI_Recv((
–– void *void *start_of_bufferstart_of_buffer,,
–– intint buffer_lenbuffer_len,,
–– MPI_DATATYPEMPI_DATATYPE datatypedatatype,,
–– intint source_ranksource_rank, ,
–– intint tagtag, ,
–– MPI_CommMPI_Comm communicatorcommunicator, ,
–– MPI_StatusMPI_Status *return_status*return_status))

4/13/2005 jsumpi05 gcf@indiana.edu 26

Fortran example: ReceiveFortran example: Receive
integer integer statusstatus((MPI_STATUS_SIZEMPI_STATUS_SIZE) An array to store status of) An array to store status of
received informationreceived information
integer integer mpierrmpierr, , countcount, , datatypedatatype, , sourcesource, , tagtag, , commcomm
integer integer recvbufrecvbuf(100)(100)
count count = 100= 100
datatypedatatype = = MPI_REALMPI_REAL
commcomm = = MPI_COMM_WORLDMPI_COMM_WORLD
source source = = MPI_ANY_SOURCEMPI_ANY_SOURCE accept any source processoraccept any source processor
tag tag = = MPI_ANY_TAGMPI_ANY_TAG accept any message tagaccept any message tag
call call MPI_RECVMPI_RECV ((recvbufrecvbuf, , countcount, , datatypedatatype, , sourcesource, , tagtag, , commcomm, ,
statusstatus,, mpierrmpierr))
–– Note Note sourcesource and and tagtag can be wildcan be wild--cardedcarded

4/13/2005 jsumpi05 gcf@indiana.edu 27

Hello World:C Example of Send and ReceiveHello World:C Example of Send and Receive
All processes execute this program# All processes execute this program
#include #include ““mpi.hmpi.h””
main(main(intint argcargc, char **, char **argvargv))
{{
–– char message[20];char message[20];
–– intint i, i, rankrank, , sizesize, , tagtag=137; =137; # Any value of tag allowed# Any value of tag allowed
–– MPI_StatusMPI_Status status;status;
–– MPI_InitMPI_Init (&(&argcargc, &, &argvargv););
–– MPI_Comm_sizeMPI_Comm_size((MPI_COMM_WORLDMPI_COMM_WORLD, &, &sizesize)) # #

Number of ProcessesNumber of Processes
–– MPI_Comm_rankMPI_Comm_rank((MPI_COMM_WORLDMPI_COMM_WORLD, &, &rankrank);); # #

Who is this processWho is this process

4/13/2005 jsumpi05 gcf@indiana.edu 28

HelloWorldHelloWorld, continued, continued
–– if(if(rankrank == 0) { == 0) { # We are on "root" # We are on "root" ---- Process 0Process 0

»» strcpy(message,"Hellostrcpy(message,"Hello World"); World"); # Generate message# Generate message
»» for(i=1; i<size; i++) for(i=1; i<size; i++) # Send message to the size# Send message to the size--1 other 1 other

processesprocesses
»» MPI_SendMPI_Send(message, strlen(message)+1, (message, strlen(message)+1, MPI_CHARMPI_CHAR, i, , i, tagtag, ,

MPI_COMM_WORLDMPI_COMM_WORLD);); }}
–– else { else { # Any processor except root # Any processor except root ---- Process 0Process 0

»» MPI_RecvMPI_Recv(message,20, (message,20, MPI_CHARMPI_CHAR, 0, , 0, tagtag, ,
MPI_COMM_WORLDMPI_COMM_WORLD, &, &statusstatus); }); }

–– printf(printf(““II am processor %d saying %sam processor %d saying %s\\n", n", rankrank, message);, message);
–– MPI_FinalizeMPI_Finalize(); ();

}}

4/13/2005 jsumpi05 gcf@indiana.edu 29

Hello World with send and receive.
Processor C Processor DProcessor BProcessor A

rank=0;
size = 4;
tag=137;
define msg;
send (msg, 1);
send (msg, 2);
send (msg, 3);
printf …;

STDOUT

I am processor
0 saying msg.

rank=1;
size = 4;
tag=137;

recv (msg, 0);

printf …;

rank=2;
size = 4;
tag=137;

recv (msg, 0);

printf …;

STDOUT

I am processor
2 saying msg.

rank=3;
size = 4;
tag=137;

recv (msg, 0);

printf …;

STDOUT

I am processor
3 saying msg.

STDOUT

I am processor
1 saying msg.

Output merged in some order.

Sending and Receiving Arrays
#include <mpi.h>

int main(int argc, char **argv) {

int i, my_rank, nprocs, x[4];

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

if (my_rank == 0) { /* master */

x[0]=42; x[1]=43; x[2]=44; x[3]=45;

MPI_Comm_size(MPI_COMM_WORLD,&nprocs);

for (i=1;i<nprocs;i++)

MPI_Send(x,4,MPI_INT,i,0,MPI_COMM_WORLD);

} else { /* worker */

MPI_Status status;

MPI_Recv(x,4,MPI_INT,0,0,MPI_COMM_WORLD,&status);

}

MPI_Finalize();

exit(0);

}

destination
and

source

user-defined
tag

Max number of
elements to receive

Can be examined via calls
like MPI_Get_count(), etc.

4/13/2005 jsumpi05 gcf@indiana.edu 31

Now we go back to MPI Now we go back to MPI
fundamentals and cover in more detailfundamentals and cover in more detail

4/13/2005 jsumpi05 gcf@indiana.edu 32

Interpretation of Returned Message StatusInterpretation of Returned Message Status
In C In C statusstatus is a structure of type is a structure of type MPI_StatusMPI_Status
–– status.sourcestatus.source gives actual source processgives actual source process
–– status.tagstatus.tag gives the actual message taggives the actual message tag

In Fortran the In Fortran the statusstatus is an integer array and different elements is an integer array and different elements
give:give:
–– in in statusstatus((MPI_SOURCEMPI_SOURCE) the actual source process) the actual source process
–– in in statusstatus((MPI_TAGMPI_TAG) the actual message tag) the actual message tag

In C and Fortran, the number of elements (called In C and Fortran, the number of elements (called countcount) in the) in the
message can be found from call tomessage can be found from call to
call MPI_GET_COUNTcall MPI_GET_COUNT (IN (IN statusstatus, IN , IN datatypedatatype, ,

OUT OUT countcount, OUT , OUT error_messageerror_message))
–– where as usual in C last argument is missing as returned in where as usual in C last argument is missing as returned in

function callfunction call

4/13/2005 jsumpi05 gcf@indiana.edu 33

Process GroupsProcess Groups
Tags andTags and

CommunicatorsCommunicators

4/13/2005 jsumpi05 gcf@indiana.edu 34

To Whom It Gets Sent: Process IdentifiersTo Whom It Gets Sent: Process Identifiers
1st generation message passing systems 1st generation message passing systems
used used hardware addresseshardware addresses
–– Was Was inflexibleinflexible

»» Had to recode on moving to a new machineHad to recode on moving to a new machine
–– Was Was inconvenientinconvenient

»» Required programmer to map problem topology Required programmer to map problem topology
onto explicit machine connectionsonto explicit machine connections

–– Was Was insufficientinsufficient
»» DidnDidn’’t support operations over a submachine (e.g., t support operations over a submachine (e.g.,

sum across a row of processes)sum across a row of processes)
–– But was But was efficient efficient and quite clear what was and quite clear what was

happening!happening!

4/13/2005 jsumpi05 gcf@indiana.edu 35

Generalizing the Process Identifier in MPIGeneralizing the Process Identifier in MPI

MPIMPI supports supports process groupsprocess groups
–– Initial Initial ““allall”” groupgroup
–– Group managementGroup management routinesroutines

»» SplitSplit groupgroup
»» Define groupDefine group from listfrom list

All communication takes place in All communication takes place in groupsgroups
–– Source/destination identifications refer to Source/destination identifications refer to

rankrank in groupin group
–– CommunicatorCommunicator = = group group + + contextcontext

4/13/2005 jsumpi05 gcf@indiana.edu 36

Why use Process Groups?Why use Process Groups?
We find a good example when we We find a good example when we
consider typical Matrix Algorithmconsider typical Matrix Algorithm
–– ((matrix multiplicationmatrix multiplication))
–– A A i,ji,j = = ΣΣkk B B i,ki,k C C k,jk,j

–– summed over summed over kk'th'th column of B column of B
and and kk'th'th row of Crow of C

Consider a Consider a block decompositionblock decomposition of 16 of 16
by 16 matrices B and C as for by 16 matrices B and C as for
Laplace'sLaplace's equation. (Efficient equation. (Efficient
Decomposition as we study in Decomposition as we study in foilsetfoilset
on matrix multiplication)on matrix multiplication)
Each sum operation involves a Each sum operation involves a
subset(subset(groupgroup) of 4 processors

k = 2
) of 4 processors

4/13/2005 jsumpi05 gcf@indiana.edu 37

How Message Is Identified: Message TagsHow Message Is Identified: Message Tags
1st generation message passing systems used an integer 1st generation message passing systems used an integer
““tagtag”” (a.k.a. (a.k.a. ““typetype”” or or ““idid””) to match messages when) to match messages when
receivedreceived
–– Most systems allowed Most systems allowed wildcard wildcard on receiveon receive

»» wildcard means match any tag i.e. any messagewildcard means match any tag i.e. any message
»» UnsafeUnsafe due to unexpected message arrivaldue to unexpected message arrival

–– Most could match sender Most could match sender idid, some with , some with wildcardswildcards
»» Wildcards unsafe; strict checks inconvenientWildcards unsafe; strict checks inconvenient

–– All systems let All systems let usersusers pick the pick the tagstags
»» UnsafeUnsafe for libraries due to interferencefor libraries due to interference

4/13/2005 jsumpi05 gcf@indiana.edu 38

Sample Program using LibrarySample Program using Library
Calls Calls Sub1Sub1 and and Sub2Sub2 are from different librariesare from different libraries
Same sequence of calls on all processes, with no global Same sequence of calls on all processes, with no global
synchsynch

Sub1();Sub1();

Sub2();Sub2();

We follow with two cases showing possibility of We follow with two cases showing possibility of
error with messages getting mixed up between error with messages getting mixed up between
subroutine callssubroutine calls

4/13/2005 jsumpi05 gcf@indiana.edu 39

Correct Library ExecutionCorrect Library Execution

Sub1

Sub2

send(2) recv(0)

4/13/2005 jsumpi05 gcf@indiana.edu 40

Incorrect Library ExecutionIncorrect Library Execution

Sub1

Sub2

send(2) recv(0)

4/13/2005 jsumpi05 gcf@indiana.edu 41

What Happened?What Happened?
Each libraryEach library was was selfself--consistentconsistent
–– Correctly handled all messages it knew aboutCorrectly handled all messages it knew about

InteractionInteraction between the libraries killed thembetween the libraries killed them
–– ““InterceptingIntercepting”” a message broke botha message broke both

The lesson:The lesson:
–– DonDon’’t take messages from strangerst take messages from strangers

Other examples teach other lessons:Other examples teach other lessons:
–– Clean up your own messagesClean up your own messages
–– DonDon’’t use other librariest use other libraries’’ tagstags
–– Etc. Etc. ……

4/13/2005 jsumpi05 gcf@indiana.edu 42

Solution to the Tag ProblemSolution to the Tag Problem
Generalize Generalize tagtag to to tag tag and and communicatorcommunicator
A separate communication A separate communication contextcontext for each family of messagesfor each family of messages
–– No wild cards allowed in communicator, for securityNo wild cards allowed in communicator, for security
–– Communicator allocated by the system, for securityCommunicator allocated by the system, for security
–– Communicator includes groups and possible Communicator includes groups and possible subsettingsubsetting for a for a

library within a group library within a group –– roughly it identifies sets of tasks as a roughly it identifies sets of tasks as a
library is usually thought of as a separate task although thatlibrary is usually thought of as a separate task although that’’s s
not necessarynot necessary

TagsTags retained for use retained for use within a contextwithin a context
–– wild cardswild cards OK for OK for tagstags

See See
http://www.llnl.gov/computing/tutorials/workshops/workshop/mpihttp://www.llnl.gov/computing/tutorials/workshops/workshop/mpi
/MAIN.html#Group_Management_Routines/MAIN.html#Group_Management_Routines
for more details on these capabilitiesfor more details on these capabilities

http://www.llnl.gov/computing/tutorials/workshops/workshop/mpi/MAIN.html#Group_Management_Routines
http://www.llnl.gov/computing/tutorials/workshops/workshop/mpi/MAIN.html#Group_Management_Routines

4/13/2005 jsumpi05 gcf@indiana.edu 43

The manyThe many
CollectiveCollective

CommunicationCommunication
FunctionsFunctions

4/13/2005 jsumpi05 gcf@indiana.edu 44

Collective CommunicationCollective Communication
Provides standard interfaces to common global Provides standard interfaces to common global
operationsoperations
–– SynchronizationSynchronization
–– Communications,Communications, i.e. movement of datai.e. movement of data
–– Collective Collective computationcomputation

A collective operation uses a process groupA collective operation uses a process group
–– All processes in groupAll processes in group call same operation at (roughly) the call same operation at (roughly) the

same timesame time
–– GroupsGroups are constructed are constructed ““by handby hand”” with MPI group with MPI group

manipulation routines or by using MPI topologymanipulation routines or by using MPI topology--definition definition
routinesroutines

Message Message tags not neededtags not needed (generated internally)(generated internally)
All collective operations are All collective operations are blockingblocking..

4/13/2005 jsumpi05 gcf@indiana.edu 45

Some Collective Communication OperationsSome Collective Communication Operations

MPI_BARRIERMPI_BARRIER(comm(comm) Global Synchronization within a given) Global Synchronization within a given
communicatorcommunicator
MPI_BCASTMPI_BCAST Global BroadcastGlobal Broadcast
MPI_GATHERMPI_GATHER Concatenate data from all processors in a Concatenate data from all processors in a
communicator into one processcommunicator into one process
–– MPI_ALLGATHERMPI_ALLGATHER puts result of concatenation in all puts result of concatenation in all

processorsprocessors
MPI_SCATTERMPI_SCATTER takes data from one processor and scatters over takes data from one processor and scatters over
all processorsall processors
MPI_ALLTOALLMPI_ALLTOALL sends data from all processes to all other sends data from all processes to all other
processesprocesses
MPI_SENDRECVMPI_SENDRECV exchanges data between two processors exchanges data between two processors ----
often used to implement "shifts"often used to implement "shifts"
–– this viewed as pure point to point by somethis viewed as pure point to point by some

4/13/2005 jsumpi05 gcf@indiana.edu 46

Hello World:C Example of BroadcastHello World:C Example of Broadcast
#include "#include "mpi.hmpi.h""
main(main(intint argcargc, char **, char **argvargv))
{ char message[20];{ char message[20];
–– intint rank;rank;
–– MPI_InitMPI_Init (&(&argcargc, &, &argvargv););
–– MPI_Comm_rankMPI_Comm_rank(MPI_COMM_WORLD, &rank); (MPI_COMM_WORLD, &rank); # Who is this # Who is this

processorprocessor
–– if(rank == 0) # We are on "root" if(rank == 0) # We are on "root" ---- Processor 0Processor 0

»» strcpy(message,"Hellostrcpy(message,"Hello MPI World"); MPI World"); # Generate message# Generate message
–– # # MPI_BcastMPI_Bcast sends from root=0 and receives on all other processorsends from root=0 and receives on all other processor
–– MPI_BcastMPI_Bcast(message,20, MPI_CHAR, 0, MPI_COMM_WORLD);(message,20, MPI_CHAR, 0, MPI_COMM_WORLD);
–– printf(printf(““II am processor am processor %d%d saying saying %s%s\\n", n", rankrank, , messagemessage););
–– MPI_FinalizeMPI_Finalize(); }(); }

Note that all processes issue the broadcast operation, process 0Note that all processes issue the broadcast operation, process 0 sends the sends the
message and all processes receive the message.message and all processes receive the message.

4/13/2005 jsumpi05 gcf@indiana.edu 47

Hello World with broadcast.
Processor C Processor DProcessor BProcessor A

rank=0;
size = 4;

define msg;

bcast(msg, 0);

printf …;

STDOUT

I am processor
0 saying msg.

rank=1;
size = 4;

msg == null

bcast (msg, 0);

printf …;

STDOUT

I am processor
1 saying msg.

rank=2;
size = 4;

msg == null

bcast (msg, 0);

printf …;

STDOUT

I am processor
2 saying msg.

rank=3;
size = 4;

msg == null

bcast (msg, 0);

printf …;

STDOUT

I am processor
3 saying msg.

Output merged in some order.

4/13/2005 jsumpi05 gcf@indiana.edu 48

Collective ComputationCollective Computation
One can often perform computing during a collective communicatioOne can often perform computing during a collective communicationn
MPI_REDUCE performs reduction operation of type chosen fromMPI_REDUCE performs reduction operation of type chosen from

–– maximummaximum(value or value and location), (value or value and location), minimumminimum(value or value (value or value
and location), and location), sumsum, , productproduct, , logical and/or/logical and/or/xorxor, , bitbit--wise wise
and/or/and/or/xorxor

–– e.g. operation labeled e.g. operation labeled MPI_MAXMPI_MAX stores in location stores in location resultresult of of
processor processor rankrank the global maximum of original in each processor the global maximum of original in each processor
as inas in

–– call call MPI_REDUCEMPI_REDUCE(original, (original, resultresult, 1, MPI_REAL, MPI_MAX, , 1, MPI_REAL, MPI_MAX, rankrank, ,
commcomm, , ierrorierror))

»» One can also supply one's own reduction functionOne can also supply one's own reduction function
MPI_ALLREDUCEMPI_ALLREDUCE is same as is same as MPI_REDUCEMPI_REDUCE but it stores result in all but it stores result in all ---- not not
just one just one ---- processorsprocessors
MPI_SCANMPI_SCAN performs reductions with result for processor performs reductions with result for processor rr depending on data depending on data
in processors in processors 00 to to rr

4/13/2005 jsumpi05 gcf@indiana.edu 49

Examples of Collective Examples of Collective
Communication/ComputationCommunication/Computation

FourFour Processors where each has a Processors where each has a send buffersend buffer of size of size 22
–– 0 1 2 3 Processors0 1 2 3 Processors
–– (2,4) (5,7) (0,3) (6,2) Initial Send B(2,4) (5,7) (0,3) (6,2) Initial Send Buffersuffers
–– MPI_BCASTMPI_BCAST with with rootroot==22
–– (0,3) (0,3) (0,3) (0,3) Resultant Buf(0,3) (0,3) (0,3) (0,3) Resultant Buffersfers
–– MPI_REDUCEMPI_REDUCE with action with action MPI_MINMPI_MIN and and rootroot==00
–– (0,2) (_,_) (_,_) (_,_) Resultant Buf(0,2) (_,_) (_,_) (_,_) Resultant Buffersfers
–– MPI_ALLREDUCEMPI_ALLREDUCE with action with action MPI_MINMPI_MIN and and rootroot==00
–– (0,2) (0,2) (0,2) (0,2) Resultant Buf(0,2) (0,2) (0,2) (0,2) Resultant Buffersfers
–– MPI_REDUCEMPI_REDUCE with action with action MPI_SUMMPI_SUM and and rootroot==11
–– (_,_) (13,16) (_,_) (_,_) Resultant Buffe(_,_) (13,16) (_,_) (_,_) Resultant Buffersrs

4/13/2005 jsumpi05 gcf@indiana.edu 50

Collective Computation PatternsCollective Computation Patterns

A

B
C

D
E

α

χ

β

δ

ε

♣

♦
♥

♠

A B C D EF()

α χβ δ ε
α χβ δ ε

α χβ δ ε

α χβ δ ε
α χβ δ ε

F()
F()
F()
F()
F()

♣

♦

♥
♠

♠

♥
♥

♦

♦

♦

♣

♣

♣

♣F()
F()
F()
F()
F()

MPI_ALLREDUCEProcessors

Function F()
F = Sum
MAX MIN etc.

4/13/2005 jsumpi05 gcf@indiana.edu 51

More Examples of Collective More Examples of Collective
Communication/Computation Communication/Computation

FourFour Processors where each has a Processors where each has a send buffersend buffer of size of size 22
–– 0 1 2 3 Processors0 1 2 3 Processors
–– (2,4) (5,7) (0,3) (6,2) (2,4) (5,7) (0,3) (6,2) Initial SendInitial Send BuffersBuffers
–– MPI_SENDRECVMPI_SENDRECV with with 0,10,1 and and 2,32,3 pairedpaired
–– (5,7) (2,4) (6,2) (0,3) Resultant Buff(5,7) (2,4) (6,2) (0,3) Resultant Buffersers
–– MPI_GATHERMPI_GATHER with with rootroot==00
–– (2,4,5,7,0,3,6,2) (_,_) (_,_) (_,_) Resultant Buffers(2,4,5,7,0,3,6,2) (_,_) (_,_) (_,_) Resultant Buffers
–– Now take four Processors where Now take four Processors where onlyonly rankrank==00 has has send buffersend buffer
–– (2,4,5,7,0,3,6,2) (_,_) (_,_) (_,_) (2,4,5,7,0,3,6,2) (_,_) (_,_) (_,_) Initial sendInitial send BuffersBuffers
–– MPI_SCATTERMPI_SCATTER with with rootroot==00
–– (2,4) (5,7) (0,3) (6,2) Resultant Buff(2,4) (5,7) (0,3) (6,2) Resultant Buffersers

4/13/2005 jsumpi05 gcf@indiana.edu 52

Data Movement (1)Data Movement (1)Processors

A

B

C

D

E

A

A

A

A

A

A

B

C

D

E

Memory Locations

A B C D E

4/13/2005 jsumpi05 gcf@indiana.edu 53

Examples of MPI_ALLTOALLExamples of MPI_ALLTOALL
AllAll to to AllAll Communication with Communication with ii'th'th location in location in jj'th'th
processor being sent to processor being sent to jj'th'th location in location in ii'th'th processorprocessor
Processor Processor 0 1 2 30 1 2 3
StartStart (a0,a1,a2,a3) (b0,b1,b2,b3) (c0,c1,c2,c3) (d0,d1,d2,d3)(a0,a1,a2,a3) (b0,b1,b2,b3) (c0,c1,c2,c3) (d0,d1,d2,d3)
AfterAfter (a0,b0,c0,d0) (a1,b1,c1,d1) (a2,b2,c2,d2) (a3,b3,c3,d3)(a0,b0,c0,d0) (a1,b1,c1,d1) (a2,b2,c2,d2) (a3,b3,c3,d3)
There are extensions There are extensions MPI_ALLTOALLVMPI_ALLTOALLV to handle case to handle case
where data stored in noncontiguous fashion in each where data stored in noncontiguous fashion in each
processor and when each processor sends different processor and when each processor sends different
amounts of data to other processorsamounts of data to other processors
Many MPI routines have such "Many MPI routines have such "vectorvector" extensions" extensions

4/13/2005 jsumpi05 gcf@indiana.edu 54

Data Movement (2)Data Movement (2)
A

B

C

D

E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A

B

C

D

E

a

b

c

d

e

1

2

3

4

5

α

β

χ

δ

ε

♣

♦

♥

♠

A B C D E

a b c d e

α β χ δ ε

1 2 3 4 5

♣ ♦ ♥ ♠

MPI_ALLTOALL

MPI_ALLGATHER

4/13/2005 jsumpi05 gcf@indiana.edu 55

List of Collective RoutinesList of Collective Routines

Allgather Allgatherv Allreduce
Alltoall Alltoallv Barrier
Bcast Gather Gatherv

Reduce ReduceScatter Scan
Scatter Scatterv

“ALL” routines deliver results to all
participating processes
Routines ending in “V” allow different
sized inputs on different processors

4/13/2005 jsumpi05 gcf@indiana.edu 56

Example Fortran: Performing a SumExample Fortran: Performing a Sum
call call MPI_COMM_RANKMPI_COMM_RANK((commcomm, , rankrank, , ierrierr))
if (if (rank rank ..eqeq. 0) then. 0) then
read *, nread *, n

end ifend if
call call MPI_BCASTMPI_BCAST(n, 1, MPI_INTEGER, 0, (n, 1, MPI_INTEGER, 0, commcomm, , ierrierr))
Each process computes its range of numbers to sum# Each process computes its range of numbers to sum
lo = rank*n+1lo = rank*n+1
hi = lo+nhi = lo+n--11
sum = 0.0d0sum = 0.0d0
do i = lo, hido i = lo, hi

sum = sum + 1.0d0 / isum = sum + 1.0d0 / i
end doend do
call call MPI_ALLREDUCEMPI_ALLREDUCE(sum, (sum, sumoutsumout, 1, , 1, MPI_DOUBLEMPI_DOUBLE,,
& & MPI_ADD_DOUBLEMPI_ADD_DOUBLE, , commcomm, , ierrierr))

4/13/2005 jsumpi05 gcf@indiana.edu 57

Example C: Computing PiExample C: Computing Pi
#include #include ““mpi.hmpi.h””
#include <math.h>#include <math.h>
intint main (main (argcargc, , argvargv))
intint argcargc; char *; char *argvargv[];[];
{{
intint n, n, myidmyid, , numprocsnumprocs, i, , i, rcrc;;
double PI25DT = 3.14159265358979323842643;double PI25DT = 3.14159265358979323842643;
double double mypimypi, , pipi, h, sum, x, a;, h, sum, x, a;

MPI_InitMPI_Init(&argc(&argc, &, &argvargv););
MPI_Comm_sizeMPI_Comm_size ((MPI_COMM_WORLDMPI_COMM_WORLD, &, &numprocsnumprocs););
MPI_Comm_rankMPI_Comm_rank ((MPI_COMM_WORLDMPI_COMM_WORLD, &, &myidmyid););

4/13/2005 jsumpi05 gcf@indiana.edu 58

Pi Example continuedPi Example continued
{ if ({ if (myidmyid == 0)== 0)

{ { printfprintf ((““Enter the number of intervals: (0 quits) Enter the number of intervals: (0 quits) ““););
scanfscanf ((““%d%d””, &n); }, &n); }

MPI_BcastMPI_Bcast (&n, 1, (&n, 1, MPI_INTMPI_INT, 0, , 0, MPI_COMMWORLDMPI_COMMWORLD););
if (n == 0) break;if (n == 0) break;
h = 1.0 / (double) n;h = 1.0 / (double) n;
sum = 0.0;sum = 0.0;
for (i = for (i = myidmyid+1; i <= n; i += +1; i <= n; i += numprocsnumprocs))
{ { x = h * ((double) i x = h * ((double) i -- 0.5); sum += 4.0 / 1.0 + x*x): 0.5); sum += 4.0 / 1.0 + x*x): }}
mypimypi = h * sum;= h * sum;
MPI_ReduceMPI_Reduce (&(&mypimypi, &, &pipi,1, ,1, MPI_DOUBLEMPI_DOUBLE,,MPI_SUMMPI_SUM, ,
0,0,MPI_COMMWORLDMPI_COMMWORLD););
if (if (myidmyid == 0)== 0)

printf(printf(““pipi is approximately %.16f, Error is %.16fis approximately %.16f, Error is %.16f\\nn””,,pipi, fabs(, fabs(pipi--PI35DT); }PI35DT); }
MPI_FinalizeMPI_Finalize; }; }

4/13/2005 jsumpi05 gcf@indiana.edu 59

The manyThe many
Sending and ReceivingSending and Receiving

FunctionsFunctions

4/13/2005 jsumpi05 gcf@indiana.edu 60

Buffering IssuesBuffering Issues
Where does data go when you send it?Where does data go when you send it?
–– Multiple buffer copies,Multiple buffer copies, as in A)?as in A)?
–– Straight to the network,Straight to the network, as in B)?as in B)?

B) is more efficient than A), but not always safe as send B) is more efficient than A), but not always safe as send
waits for receive in blocking modewaits for receive in blocking mode

recv

send

buffer

buffer

The Network

Proc0

Proc1

recv

send

The Network

Proc0

Proc1

B)A)

4/13/2005 jsumpi05 gcf@indiana.edu 61

Avoiding Buffering CostsAvoiding Buffering Costs
Copies are not needed ifCopies are not needed if
–– Send does not returnSend does not return until the data is delivered, until the data is delivered, oror
–– The The data data is not touched after the is not touched after the sendsend

MPI provides modes to arrange thisMPI provides modes to arrange this
–– SynchronousSynchronous: Do not return until : Do not return until recvrecv is postedis posted
–– ReadyReady: Matching : Matching recvrecv is posted before is posted before sendsend
–– BufferedBuffered: If you really want buffering: If you really want buffering

When using asynchronous communication send When using asynchronous communication send
functions, use functions, use MPI_WaitMPI_Wait or or MPI_WaitAllMPI_WaitAll before before
reusing the buffer to ensure that all data has been safely reusing the buffer to ensure that all data has been safely
transferred on its way.transferred on its way.

4/13/2005 jsumpi05 gcf@indiana.edu 62

Combining Blocking and Send ModesCombining Blocking and Send Modes

All combinations are legal
– Red are fastest, Blue are slow

Blocking Nonblocking
Normal MPI_SEND MPI_ISEND

Buffering MPI_BSEND MPI_IBSEND

Ready MPI_RSEND MPI_IRSEND

Synchronous MPI_SSEND MPI_ISSEND

4/13/2005 jsumpi05 gcf@indiana.edu 63

More on Send/ReceiveMore on Send/Receive
Note modes are only for SEND Note modes are only for SEND –– not receive which not receive which only hasonly has
blocking MPI_RECV and non blocking MPI_IRECVblocking MPI_RECV and non blocking MPI_IRECV
Note that the sending and receiving of messages synchronizes theNote that the sending and receiving of messages synchronizes the
different nodes of a parallel computerdifferent nodes of a parallel computer
–– So waiting in an MPI_RECV for the sent data causes the So waiting in an MPI_RECV for the sent data causes the

sending and receiving nodes to synchronizesending and receiving nodes to synchronize
–– The full pattern of sending and receiving then propagates this The full pattern of sending and receiving then propagates this

synchronization to ensure all nodes are indeed synchronizedsynchronization to ensure all nodes are indeed synchronized
It is easy to write inconsistent codeIt is easy to write inconsistent code
–– In A: SEND to B: RECV from A;In A: SEND to B: RECV from A;
–– In B: SEND to A; RECV from B will hang in some MPI In B: SEND to A; RECV from B will hang in some MPI

implementations (Interchange SEND and RECV in one node to implementations (Interchange SEND and RECV in one node to
make it safe or better use make it safe or better use MPI_SENDRECVMPI_SENDRECV))

4/13/2005 jsumpi05 gcf@indiana.edu 64

TOPOLOGIESTOPOLOGIES

4/13/2005 jsumpi05 gcf@indiana.edu 65

Cartesian TopologiesCartesian Topologies
MPIMPI provides routines to provide structure to collections of provides routines to provide structure to collections of
processes. Although it also has processes. Although it also has graph topologiesgraph topologies, here we , here we
concentrate on concentrate on cartesiancartesian..
A A Cartesian Cartesian topology is a topology is a meshmesh
Example of a Example of a 3 x 4 mesh3 x 4 mesh with arrows pointing at the with arrows pointing at the rightright
neighbors:neighbors:

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

4/13/2005 jsumpi05 gcf@indiana.edu 66

Defining a Cartesian TopologyDefining a Cartesian Topology
The routine The routine MPI_Cart_createMPI_Cart_create creates a Cartesian creates a Cartesian
decomposition of the processes, with the number of dimensions decomposition of the processes, with the number of dimensions
given by the given by the ndimndim argument. It returns a new argument. It returns a new communicatorcommunicator
(in comm2d in example below) with the (in comm2d in example below) with the same processessame processes as in as in
the input the input communicatorcommunicator, but different topology., but different topology.
ndimndim = 2;= 2;
dimsdims[0] = 3; [0] = 3; dimsdims[1] = 4;[1] = 4;
periodsperiods[0] = 0; [0] = 0; periodsperiods[1] = 0; // periodic is false[1] = 0; // periodic is false
reorderreorder = 1; // reordering is true= 1; // reordering is true
ierrierr = = MPI_Cart_createMPI_Cart_create ((MPI_COMM_WORLDMPI_COMM_WORLD, , ndimndim, ,

dims, periodsdims, periods, , reorderreorder, , &comm2d&comm2d););
–– where where reorderreorder specifies that itspecifies that it’’s o.k. to reorder the default s o.k. to reorder the default

process rank in order to achieve a good embedding (with process rank in order to achieve a good embedding (with
good communication times between neighbors).good communication times between neighbors).

4/13/2005 jsumpi05 gcf@indiana.edu 67

MPI_Cart_coordsMPI_Cart_coords and MPI_Cart_rankand MPI_Cart_rank
Given the Given the rankrank of the process in of the process in
MPI_COMM_WORLD, this routine gives a two MPI_COMM_WORLD, this routine gives a two
element (for two dimensional topology) array (element (for two dimensional topology) array (coordscoords
in example below) with the in example below) with the (i, j)(i, j) coordinates of this coordinates of this
process in the new process in the new cartesiancartesian communicator.communicator.
–– ierrierr == MPI_Cart_coordsMPI_Cart_coords ((comm2d, rank, comm2d, rank, ndimndim, ,

coordscoords););
–– coordscoords[0] and [0] and coordscoords[1] will be the i and j [1] will be the i and j

coordinates.coordinates.
Given the Given the coordscoords of a process, this routine gives the of a process, this routine gives the
rank number in the communicator.rank number in the communicator.
–– ierrierr == MPI_Cart_rankMPI_Cart_rank (comm2d, (comm2d, coordscoords, &rank);, &rank);

4/13/2005 jsumpi05 gcf@indiana.edu 68

Who are my neighbors?Who are my neighbors?
The routine The routine MPI_Cart_shiftMPI_Cart_shift finds the neighbors in each finds the neighbors in each
direction of the new communicator.direction of the new communicator.
dirdir = 0= 0; // in C 0 for columns, 1 for rows; // in C 0 for columns, 1 for rows

// in Fortran, it// in Fortran, it’’s 1 and 2s 1 and 2
dispdisp = 1; // specifies first neighbor to the right and left= 1; // specifies first neighbor to the right and left
ierrierr = = MPI_Cart_shiftMPI_Cart_shift ((comm2dcomm2d, , dirdir, , dispdisp, &, &nbrbottomnbrbottom, ,

&&nbrtopnbrtop):):
This returns the process numbers (ranks) for a This returns the process numbers (ranks) for a
communication of the bottom and top neighbors.communication of the bottom and top neighbors.
Typically, the neighbors are used with send/Typically, the neighbors are used with send/recvrecv to exchange to exchange
data.data.
If a process in a nonIf a process in a non--periodic mesh is on the border and has periodic mesh is on the border and has
no neighbor, then the value no neighbor, then the value MPI_PROCNULLMPI_PROCNULL is returned. is returned.
This process value can be used in a send/This process value can be used in a send/recvrecv, but it will have , but it will have
no effect.no effect.

4/13/2005 jsumpi05 gcf@indiana.edu 69

Periodic meshesPeriodic meshes
In a periodic mesh, as shown below the processes at the In a periodic mesh, as shown below the processes at the
edge of the mesh wrap around in their dimension to find edge of the mesh wrap around in their dimension to find
their neighbors. The right neighbor is wrappedtheir neighbors. The right neighbor is wrapped

4/13/2005 jsumpi05 gcf@indiana.edu 70

Communication in SubCommunication in Sub--GridsGrids
Suppose that you have an algorithm, such as matrix multiply, Suppose that you have an algorithm, such as matrix multiply,
that requires you to communicate within one row or column that requires you to communicate within one row or column
of a 2D grid. of a 2D grid.
–– For example, broadcast a value to all processes in one row.For example, broadcast a value to all processes in one row.

MPI_Comm MPI_Comm rowcommrowcomm;;
freecoords[0] = 0; freecoords[1] = 1;freecoords[0] = 0; freecoords[1] = 1;
ierrierr == MPI_Cart_sub(comm2d, MPI_Cart_sub(comm2d, freecoordsfreecoords, &, &rowcommrowcomm))
Defines Defines nrownrow new communicators, each with the processes of new communicators, each with the processes of
that row. that row.
–– The array The array freecoordsfreecoords has has booleanboolean values specifying values specifying

whether the elements of that dimension whether the elements of that dimension ““belongbelong”” to the to the
communicator; in example communicator; in example ““1th1th”” dimension is in returned dimension is in returned
subsub--grid (note subgrid (note sub--grid can have >1 included dimension)grid can have >1 included dimension)

–– You You reurnreurn subsub--grid CONTAINING processor doing callgrid CONTAINING processor doing call
if if bcastrootbcastroot is defined as the root processor in each row, is defined as the root processor in each row,
broadcast a value along rows:broadcast a value along rows:
MPI_Bcast(valueMPI_Bcast(value, 1, MPI_FLOAT, , 1, MPI_FLOAT, bcastrootbcastroot, , rowcommrowcomm););

4/13/2005 jsumpi05 gcf@indiana.edu 71

Message BuffersMessage Buffers
and and DatatypesDatatypes

4/13/2005 jsumpi05 gcf@indiana.edu 72

What Gets Sent: The BufferWhat Gets Sent: The Buffer
First generation message passing systems only allowed First generation message passing systems only allowed
one to transmit information originating in a one to transmit information originating in a contiguous contiguous
array of bytesarray of bytes
–– Hid the real data structure from hardware and Hid the real data structure from hardware and

programmerprogrammer
»» Might make it Might make it hardhard to provide to provide efficient implementationsefficient implementations as as

implied a lot of expensive memory accessesimplied a lot of expensive memory accesses

–– Required preRequired pre--packing dispersed data, e.g.:packing dispersed data, e.g.:
»» RowsRows (in (in FortranFortran, columns in C) of a matrix must be , columns in C) of a matrix must be

transposed before transmissiontransposed before transmission

–– Prevented convenient communication between Prevented convenient communication between
machines with different data representationsmachines with different data representations

4/13/2005 jsumpi05 gcf@indiana.edu 73

Generalizing the Buffer in MPIGeneralizing the Buffer in MPI
MPI specifies the buffer by MPI specifies the buffer by starting addressstarting address, , datatypedatatype, ,
and and countcount
–– starting addressstarting address is obviousis obvious
–– datatypesdatatypes are constructed recursively fromare constructed recursively from

»» ElementaryElementary (all C and Fortran (all C and Fortran datatypesdatatypes))
»» Contiguous arrayContiguous array of of datatypesdatatypes
»» StridedStrided blocksblocks of of datatypesdatatypes
»» Indexed arrayIndexed array of of blocks blocks of of datatypesdatatypes
»» General structuresGeneral structures

–– countcount is number of is number of datatypedatatype elementselements

4/13/2005 jsumpi05 gcf@indiana.edu 74

Advantages of Advantages of DatatypesDatatypes
Combinations of Combinations of elementary elementary datatypesdatatypes into a derived user defined into a derived user defined
datatypedatatype allows clean communication of collections of disparate allows clean communication of collections of disparate
types in a single MPI call.types in a single MPI call.
Elimination of Elimination of lengthlength (in bytes) in favor of (in bytes) in favor of countcount (of items of a (of items of a
given type) is clearergiven type) is clearer
Specifying Specifying applicationapplication--oriented layoutsoriented layouts allows maximal use of allows maximal use of
special hardware and optimized memory usespecial hardware and optimized memory use
However this wonderful technology is problematical in However this wonderful technology is problematical in JavaJava
where layout of data structures in memory is not defined in mostwhere layout of data structures in memory is not defined in most
casescases
–– JavaJava’’s serializations serialization subsumes user defined subsumes user defined datatypesdatatypes as a as a

general way of packing a class of disparate types into a general way of packing a class of disparate types into a
message that can be sent between heterogeneous computersmessage that can be sent between heterogeneous computers

4/13/2005 jsumpi05 gcf@indiana.edu 75

Motivation for Derived Motivation for Derived DatatypesDatatypes in MPIin MPI
These are an elegant solution to a problem we struggled with a lThese are an elegant solution to a problem we struggled with a lot ot
in the early days in the early days ---- all message passing is naturally built on all message passing is naturally built on
buffers holding contiguous databuffers holding contiguous data
However However oftenoften (usually) the data is not stored contiguously. One (usually) the data is not stored contiguously. One
can address this with can address this with a seta set of of small MPI_SEND commandssmall MPI_SEND commands but but we we
want messages to be as big as possible as latency is so highwant messages to be as big as possible as latency is so high
One can copy all the data elements into a One can copy all the data elements into a single buffersingle buffer and and
transmit this but this is tedious for the user and not very effitransmit this but this is tedious for the user and not very efficientcient
–– It has It has extra memory to memory copiesextra memory to memory copies which are often quite slowwhich are often quite slow

So derived So derived datatypesdatatypes can be used to set up can be used to set up arbitaryarbitary memory memory
templatestemplates with with variable offsetsvariable offsets and and primitive primitive datatypesdatatypes. Derived . Derived
datatypesdatatypes can then be used in "ordinary" MPI calls in place of can then be used in "ordinary" MPI calls in place of
primitive primitive datatypesdatatypes MPI_REAL MPI_FLOATMPI_REAL MPI_FLOAT etc.etc.

4/13/2005 jsumpi05 gcf@indiana.edu 76

Derived Derived DatatypeDatatype BasicsBasics
Derived Derived DatatypesDatatypes should be declared should be declared integer integer in in Fortran Fortran and and
MPI_DatatypeMPI_Datatype in Cin C
Generally have form Generally have form { (type0,disp0), (type1,disp1) ... (type(n{ (type0,disp0), (type1,disp1) ... (type(n--
1),disp(n1),disp(n--1)) }1)) } with list of primitive data types with list of primitive data types typeitypei and and
displacementsdisplacements (from start of buffer) (from start of buffer) dispidispi
call call MPI_TYPE_CONTIGUOUSMPI_TYPE_CONTIGUOUS ((countcount, , oldtypeoldtype, , newtypenewtype, , ierrierr))
–– creates a new creates a new datatypedatatype newtypenewtype made up of made up of countcount repetitions repetitions

of old of old datatypedatatype oldtypeoldtype
one must use call one must use call MPI_TYPE_COMMITMPI_TYPE_COMMIT((derivedtypederivedtype, , ierrierr))
before one can use the type before one can use the type derivedtypederivedtype in a communication call in a communication call
call call MPI_TYPE_FREEMPI_TYPE_FREE((derivedtypederivedtype, , ierrierr) frees up space used by) frees up space used by
this derived typethis derived type

4/13/2005 jsumpi05 gcf@indiana.edu 77

Simple Example of Derived Simple Example of Derived DatatypeDatatype
integer integer derivedtypederivedtype, ..., ...
call call MPI_TYPE_CONTIGUOUSMPI_TYPE_CONTIGUOUS(10, (10, MPI_REALMPI_REAL, ,
derivedtypederivedtype, , ierrierr))
call call MPI_TYPE_COMMITMPI_TYPE_COMMIT((derivedtypederivedtype, , ierrierr))
call call MPI_SENDMPI_SEND((datadata, 1, , 1, derivedtypederivedtype, , destdest, , tagtag, ,
MPI_COMM_WORLDMPI_COMM_WORLD, , ierrierr))
call call MPI_TYPE_FREEMPI_TYPE_FREE((derivedtypederivedtype, , ierrierr))
is equivalent to simpler single callis equivalent to simpler single call
call call MPI_SENDMPI_SEND((datadata, 10, , 10, MPI_REALMPI_REAL, , destdest, , tagtag, ,
MPI_COMM_WORLDMPI_COMM_WORLD, , ierrierr))
and each sends 10 contiguous real values at location and each sends 10 contiguous real values at location datadata to to
process process destdest

4/13/2005 jsumpi05 gcf@indiana.edu 78

Derived Derived DatatypesDatatypes: Vectors: Vectors
MPI_TYPE_VECTORMPI_TYPE_VECTOR ((countcount, , blocklenblocklen, , stridestride, , oldtypeoldtype, ,
newtypenewtype, , ierrierr))
–– IN IN count count Number of blocks to be addedNumber of blocks to be added
–– IN IN blocklenblocklen Number of elements in blockNumber of elements in block
–– IN IN stridestride Number of elements (NOT bytes) between Number of elements (NOT bytes) between

start of each blockstart of each block
–– IN IN oldtypeoldtype DatatypeDatatype of each elementof each element
–– OUT OUT newtypenewtype Handle(pointer) for new derived typeHandle(pointer) for new derived type

4/13/2005 jsumpi05 gcf@indiana.edu 79

Example of Vector typeExample of Vector type
Suppose in C, we have an arraySuppose in C, we have an array
–– phi [ypoints+2] [xpoints+2]phi [ypoints+2] [xpoints+2]
–– where we want to send rows and columns of elements from where we want to send rows and columns of elements from 1 : 1 :

nxblocknxblock and and 1 : 1 : nyblocknyblock
–– in C, arrays are stored row major order (Fortran is column in C, arrays are stored row major order (Fortran is column

major)major)
Contiguous elements

MPI_Type_vector
(xpoints, 1, ypoints+2,

MPI_DOUBLE, &strided);

defines a type called strided
which refers to the column of
elements

0 xpoints+1

ypoints+1

0

4/13/2005 jsumpi05 gcf@indiana.edu 80

Why is this interesting?Why is this interesting?
In In JacobiJacobi like like algoritmsalgoritms, each processor stores its own , each processor stores its own xpointsxpoints
by by ypointsypoints array of variables as well as guard rings array of variables as well as guard rings
containing the rows and columns from containing the rows and columns from neighboursneighbours. One loads . One loads
these guard rings at start of computation iteration and only these guard rings at start of computation iteration and only
updates updates
points internal to arraypoints internal to array

Guard Rings

4/13/2005 jsumpi05 gcf@indiana.edu 81

Derived Derived DatatypesDatatypes: Indexed: Indexed
Array of indices, useful for gather/scatterArray of indices, useful for gather/scatter
MPI_TYPE_INDEXEDMPI_TYPE_INDEXED ((countcount, , blocklensblocklens, , indicesindices, , oldtypeoldtype, ,
newtypenewtype, , ierrierr))
–– IN IN countcount Number of blocks to be addedNumber of blocks to be added
–– IN IN blocklensblocklens Number of elements in each block Number of elements in each block ---- an array of an array of

length length countcount
–– IN IN indices indices Displacements (an array of length Displacements (an array of length countcount) for each) for each

blockblock
–– IN IN oldtypeoldtype DatatypeDatatype of each elementof each element
–– OUT OUT newtypenewtype Handle(pointer) for new derived typeHandle(pointer) for new derived type

4/13/2005 jsumpi05 gcf@indiana.edu 82

JacobiJacobi IterationIteration
an examplean example

4/13/2005 jsumpi05 gcf@indiana.edu 83

Designing MPI ProgramsDesigning MPI Programs

PartitioningPartitioning
–– Before tackling MPIBefore tackling MPI

CommunicationCommunication
–– Many point to collective Many point to collective

operationsoperations

AgglomerationAgglomeration
–– Needed to produce MPI Needed to produce MPI

processesprocesses

MappingMapping
–– Handled by MPI

The
Problem

Initial tasks

Communication

Combined Tasks

Final Program

Handled by MPI

4/13/2005 jsumpi05 gcf@indiana.edu 84

JacobiJacobi Iteration: The ProblemIteration: The Problem
Used to numerically solve a Partial Differential Used to numerically solve a Partial Differential
Equation (PDE) on a square mesh Equation (PDE) on a square mesh ---- below is below is PoissonPoisson’’s s
EquationEquation
Method: Method:
–– Update each mesh point by the average of its neighborsUpdate each mesh point by the average of its neighbors
–– Repeat until convergedRepeat until converged

∂ 2u
∂x 2 + ∂ 2u

∂y 2 = −2x 2 + 2x − 2y 2 + 2y

u = 0 if x = 0,x = 1,y = 0, or y = 1 x

y

x

0

0.5

1

y

x

y

-0.08
-0.06

-0.04
-0.02

0

u

x

y
x

u

y

This is right hand side
f(x,y)

4/13/2005 jsumpi05 gcf@indiana.edu 85

JacobiJacobi Iteration: MPI Program DesignIteration: MPI Program Design
PartitioningPartitioning is simpleis simple
–– Every Every pointpoint is a microis a micro--tasktask

CommunicationCommunication is simpleis simple
–– 4 nearest neighbors4 nearest neighbors in in Cartesian meshCartesian mesh
–– Reduction for convergence testReduction for convergence test

AgglomerationAgglomeration works along dimensionsworks along dimensions
–– 11--D packingD packing for highfor high--latency machines (as minimizes latency machines (as minimizes

number of messages)number of messages)
–– 22--D packingD packing for others (most general as minimizes for others (most general as minimizes

information sent)information sent)
–– One process per processorOne process per processor practically requiredpractically required

4/13/2005 jsumpi05 gcf@indiana.edu 86

JacobiJacobi Iteration: MPI Program DesignIteration: MPI Program Design
Mapping: Cartesian grid supported by Mapping: Cartesian grid supported by MPI virtual topologiesMPI virtual topologies
For generality, write as the 2For generality, write as the 2--D versionD version
–– Create a Create a 11××PP (or (or PP××11) grid for 1) grid for 1--D versionD version

Adjust array bounds, iterate over local arrayAdjust array bounds, iterate over local array
–– For convenience, include shadow region to hold communicated For convenience, include shadow region to hold communicated

values (not iterated over)values (not iterated over)
0 xpoints+2

ypoints+2

nx by ny points in a
npx by npy decomposition,
boundary values define problem

4/13/2005 jsumpi05 gcf@indiana.edu 87

JacobiJacobi Iteration: C MPI Program SketchIteration: C MPI Program Sketch
/* sizes of data and data files *//* sizes of data and data files */
intint NDIM = 2;NDIM = 2;
intint xpointsxpoints = = nx/npxnx/npx; ; intint ypointsypoints = = ny/npyny/npy;;
double phi[ypoints+2][xpoints+2], double phi[ypoints+2][xpoints+2],
oldphi[ypoints+2][xpoints+2];oldphi[ypoints+2][xpoints+2];

/* communication variables *//* communication variables */
intint rank; rank; intint rankxrankx, , rankyranky; ;
intint coords[NDIMcoords[NDIM];];
intint reorder = 0; reorder = 0;
intint dims[NDIM], periods[NDIM];dims[NDIM], periods[NDIM];
MPI_Comm comm2d;MPI_Comm comm2d;
MPI_DatatypeMPI_Datatype contigcontig, , stridedstrided;;

4/13/2005 jsumpi05 gcf@indiana.edu 88

JacobiJacobi Iteration: create topologyIteration: create topology
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

periods[0] = 0; periods[1] = 0;
dims[0] = npy; dims[1] = npx;

MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods,
reorder, &comm2d);

MPI_Cart_coords(comm2d, rank, 2, coords);
ranky = coords[0];
rankx = coords[1];

MPI_Cart_shift(comm2d, 0, 1, &bottomneighbor, &topneighbor);
MPI_Cart_shift(comm2d, 1, 1, &leftneighbor, &rightneighbor);

4/13/2005 jsumpi05 gcf@indiana.edu 89

JacobiJacobi iteration: data structuresiteration: data structures

/* message types */
MPI_Type_contiguous (ypoints, MPI_DOUBLE, &contig);
MPI_Type_vector (xpoints, 1, ypoints+2, MPI_DOUBLE, &strided);
MPI_Type_commit (&contig);
MPI_Type_commit (&strided);

/* define mask array to be true on boundary and false elsewhere in
each processor.
Define boundary values in phi array in each processor.

*/

4/13/2005 jsumpi05 gcf@indiana.edu 90

JacobiJacobi Iteration: send guard valuesIteration: send guard values
while (err > while (err > toltol) { /* copy phi array to) { /* copy phi array to oldphioldphi */*/
/* communicate edge rows and columns to neighboring processor t/* communicate edge rows and columns to neighboring processor to o

put in their guard rings */put in their guard rings */
/* Send right boundary to right neighbor/* Send right boundary to right neighbor

and receive left ghost vector in return from left neighboand receive left ghost vector in return from left neighbor*/r*/
MPI_SendrecvMPI_Sendrecv (&(oldphi[1][xpoints]), 1, (&(oldphi[1][xpoints]), 1, stridedstrided, ,

rightneighborrightneighbor, 31, &(oldphi[1][0]), 1, , 31, &(oldphi[1][0]), 1, stridedstrided, ,
leftneighborleftneighbor, 31, comm2d, &status);, 31, comm2d, &status);

4/13/2005 jsumpi05 gcf@indiana.edu 91

Remaining communicationRemaining communication

/* Send left boundary in each processor to left neighbor */ /* Send left boundary in each processor to left neighbor */
MPI_SendrecvMPI_Sendrecv (&(oldphi[1][1]), 1, (&(oldphi[1][1]), 1, stridedstrided, , leftneighborleftneighbor, 30,, 30,

&(oldphi[1][xpoints+1]), 1, &(oldphi[1][xpoints+1]), 1, stridedstrided, , rightneighborrightneighbor, 30,, 30,
comm2d, &status); comm2d, &status);

/* Send top boundary to top neighbor *//* Send top boundary to top neighbor */
MPI_SendrecvMPI_Sendrecv (&(oldphi[1][1]), 1, (&(oldphi[1][1]), 1, contigcontig, , topneighbortopneighbor, 40, , 40,

&(oldphi[ypoints+1][1]), 1, &(oldphi[ypoints+1][1]), 1, contigcontig, , bottomneighborbottomneighbor, 40, , 40,
comm2d, &status);comm2d, &status);

/* Send bottom boundary to bottom neighbor *//* Send bottom boundary to bottom neighbor */
MPI_SendrecvMPI_Sendrecv (&(oldphi[ypoints][1]), 1, (&(oldphi[ypoints][1]), 1, contigcontig, ,

bottomneighborbottomneighbor, 41, &(oldphi[0][1]), 1, , 41, &(oldphi[0][1]), 1, contigcontig, ,
topneighbortopneighbor, 41, comm2d, &status);, 41, comm2d, &status);

4/13/2005 jsumpi05 gcf@indiana.edu 92

JacobiJacobi Iteration: update and errorIteration: update and error
for (j = 1; j <= xpoints; j++)

{
for (i = 1; i <= ypoints; i++)
{
if (mask[i][j]) {
phi[i][j] = 0.25 * (oldphi[i-1][j] +

oldphi[i+1][j]
+ oldphi[i][j-1] +
oldphi[i][j+1]);

diff = max(diff, abs(phi[i][j] - oldphi[i][j]));
} }}

/* maximum difference over all processors */
MPI_Allreduce(&diff, &err, 1, MPI_DOUBLE, MPI_MAX,
comm2d);
if (err < ((double)TOLERANCE)) done = 1;
}

4/13/2005 jsumpi05 gcf@indiana.edu 93

The MPI TimerThe MPI Timer
The elapsed (wallThe elapsed (wall--clock) time between two points in an MPI clock) time between two points in an MPI
program can be computed using program can be computed using MPI_WtimeMPI_Wtime::
–– double t1, t2;double t1, t2;
–– t1 = t1 = MPI_WtimeMPI_Wtime ();();
––
–– t2 = t2 = MPI_WtimeMPI_Wtime ();();
–– printfprintf ((““Elapsed time is %f Elapsed time is %f \\nn””, t2, t2--t1);t1);

The times are local; the attribute The times are local; the attribute
MPI_WTIME_IS_GLOBALMPI_WTIME_IS_GLOBAL may be used to determine if may be used to determine if
the times are also synchronized with each other for all the times are also synchronized with each other for all
processes in processes in MPI_COMM_WORLDMPI_COMM_WORLD..

4/13/2005 jsumpi05 gcf@indiana.edu 94

MPIMPI--22
The MPI Forum produced a new standard which The MPI Forum produced a new standard which

include MPI 1.2 clarifications and corrections to MPI include MPI 1.2 clarifications and corrections to MPI
1.11.1
MPIMPI--2 new topics2 new topics are:are:
–– process creation and management, including client/server process creation and management, including client/server

routinesroutines
–– oneone--sided communications (put/get, active messages)sided communications (put/get, active messages)
–– extended collective operationsextended collective operations
–– external interfacesexternal interfaces
–– I/OI/O

additional language bindings for additional language bindings for C++C++ and and FortranFortran--9090

4/13/2005 jsumpi05 gcf@indiana.edu 95

I/O included in MPII/O included in MPI--22
Goal is to provide model for portable file system allowing for Goal is to provide model for portable file system allowing for
optimization of parallel I/Ooptimization of parallel I/O
–– portable I/O interface portable I/O interface POSIXPOSIX judged not possible to allow judged not possible to allow

enough optimizationenough optimization
Parallel I/O systemParallel I/O system provides provides highhigh--level interfacelevel interface supporting supporting
transfers of global data structures between process memories andtransfers of global data structures between process memories and
files.files.
Significant optimizations required include:Significant optimizations required include:
–– grouping, collective buffering, and diskgrouping, collective buffering, and disk--directed I/Odirected I/O

Other optimizations also achieved byOther optimizations also achieved by
–– asynchronous I/O, asynchronous I/O, stridedstrided accesses and control over physical accesses and control over physical

file layout on disks.file layout on disks.
I/O access modesI/O access modes defined by data partitioning expressed with defined by data partitioning expressed with
derived derived datatypesdatatypes

4/13/2005 jsumpi05 gcf@indiana.edu 96

Comments on Parallel Input/Output Comments on Parallel Input/Output -- II
Parallel I/OParallel I/O has has technicaltechnical issues issues ---- how best to optimize access to how best to optimize access to
a file whose contents may be stored on N different disks which a file whose contents may be stored on N different disks which
can deliver data in parallel andcan deliver data in parallel and
SemanticSemantic issues issues ---- what does what does printfprintf in C (and PRINT in Fortran) in C (and PRINT in Fortran)
mean?mean?
The meaning of The meaning of printfprintf/PRINT/PRINT is both undefined and changingis both undefined and changing
–– In my old Caltech days, In my old Caltech days, printfprintf on a node of a parallel on a node of a parallel

machine was a modification of UNIX which automatically machine was a modification of UNIX which automatically
transferred data from nodes to "host e.g. node 0" and transferred data from nodes to "host e.g. node 0" and
produced a produced a single streamsingle stream

–– In those days, In those days, full UNIXfull UNIX did did not runnot run on every node of on every node of
machinemachine

–– We introduced new UNIX I/O modes (singular and multiple) We introduced new UNIX I/O modes (singular and multiple)
to define meaning of parallel I/O and I thought this was a to define meaning of parallel I/O and I thought this was a
great idea but it didn't catch on!!great idea but it didn't catch on!!

4/13/2005 jsumpi05 gcf@indiana.edu 97

Comments on Parallel Input/Output Comments on Parallel Input/Output -- IIII
Today, Today, memory costs have declinedmemory costs have declined and ALL mainstream MIMD and ALL mainstream MIMD
distributed memory machines whether clusters of distributed memory machines whether clusters of
workstations/PCworkstations/PC’’s or integrated systems such as T3D/ Paragon/ s or integrated systems such as T3D/ Paragon/
SPSP--2 have 2 have enough memory on each nodeenough memory on each node to run UNIX or Windows to run UNIX or Windows
NT NT
Thus Thus printfprintf today means typically that the node on which it runs today means typically that the node on which it runs
will stick it out on "standard output" file for that nodewill stick it out on "standard output" file for that node
–– However this is implementation dependentHowever this is implementation dependent

If on other hand you want a stream of output with information inIf on other hand you want a stream of output with information in orderorder
»» Starting with that from Starting with that from node 0node 0, then node 1, then , then node 1, then node 2node 2 etc.etc.
»» This was default on old Caltech machines butThis was default on old Caltech machines but

–– Then in general you need to communicate information from nodes 1Then in general you need to communicate information from nodes 1 to Nto N--
1 to node 0 and let node 0 sort it and output in required order1 to node 0 and let node 0 sort it and output in required order

MPIMPI--IOIO standard links standard links I/OI/O to to MPIMPI in a standard fashionin a standard fashion

	Message Passing InterfaceMPI
	Abstract of MPI Presentation
	Why and What is Message Passing I
	Why and What is Message Passing II
	SPMD Programming
	Some Key Features of MPI
	What is MPI?
	History of MPI
	Some Difficulties with MPI
	Sending/Receiving Messages: Issues
	Key MPI Concepts in a Nutshell
	MPI Communicators
	MPI Conventions
	Standard Constants in MPI
	The Six Fundamental MPI routines
	MPI_Init -- Environment Management
	MPI_Comm_rank -- Environment Inquiry
	MPI_Comm_size -- Environment Inquiry
	MPI_Finalize -- Environment Management
	Hello World in C plus MPI
	Hello World with only rank and size.
	Blocking Send: MPI_Send(C) or MPI_SEND(Fortran)
	Example MPI_SEND in Fortran
	Blocking Receive: MPI_RECV(Fortran)
	Blocking Receive: MPI_Recv(C)
	Fortran example: Receive
	Hello World:C Example of Send and Receive
	HelloWorld, continued
	Hello World with send and receive.
	Sending and Receiving Arrays
	Now we go back to MPI fundamentals and cover in more detail
	Interpretation of Returned Message Status
	Process GroupsTags andCommunicators
	To Whom It Gets Sent: Process Identifiers
	Generalizing the Process Identifier in MPI
	Why use Process Groups?
	How Message Is Identified: Message Tags
	Sample Program using Library
	Correct Library Execution
	Incorrect Library Execution
	What Happened?
	Solution to the Tag Problem
	The manyCollectiveCommunicationFunctions
	Collective Communication
	Some Collective Communication Operations
	Hello World:C Example of Broadcast
	Hello World with broadcast.
	Collective Computation
	Examples of Collective Communication/Computation
	Collective Computation Patterns
	More Examples of Collective Communication/Computation
	Data Movement (1)
	Examples of MPI_ALLTOALL
	Data Movement (2)
	List of Collective Routines
	Example Fortran: Performing a Sum
	Example C: Computing Pi
	Pi Example continued
	The manySending and ReceivingFunctions
	Buffering Issues
	Avoiding Buffering Costs
	Combining Blocking and Send Modes
	More on Send/Receive
	TOPOLOGIES
	Cartesian Topologies
	Defining a Cartesian Topology
	MPI_Cart_coords and MPI_Cart_rank
	Who are my neighbors?
	Periodic meshes
	Communication in Sub-Grids
	Message Buffersand Datatypes
	What Gets Sent: The Buffer
	Generalizing the Buffer in MPI
	Advantages of Datatypes
	Motivation for Derived Datatypes in MPI
	Derived Datatype Basics
	Simple Example of Derived Datatype
	Derived Datatypes: Vectors
	Example of Vector type
	Why is this interesting?
	Derived Datatypes: Indexed
	Jacobi Iterationan example
	Designing MPI Programs
	Jacobi Iteration: The Problem
	Jacobi Iteration: MPI Program Design
	Jacobi Iteration: MPI Program Design
	Jacobi Iteration: C MPI Program Sketch
	Jacobi Iteration: create topology
	Jacobi iteration: data structures
	Jacobi Iteration: send guard values
	Remaining communication
	Jacobi Iteration: update and error
	The MPI Timer
	MPI-2
	I/O included in MPI-2
	Comments on Parallel Input/Output - I
	Comments on Parallel Input/Output - II

