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Big Graph / Massive Graph 

• Some patterns emerges only in massive 
networks  

• Size: billions of vertices and trillions of 
edges and growing 

• Along with time efficiency, space 
efficiency is also crucial 

• Runtime: even O(n2) time algorithm is 
not useful 
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Storing Graph in Main Memory 

• Matrix is not acceptable:  O(n2) space 
– A graph with 1 million nodes may take 10-20 TB space. 

• Adjacency list takes O(m) space  
– Which we use 

• Memory of single machine may not be large enough 
to hold the entire network 
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Dealing with Space 

• Sparsification / sampling based approximation 
algorithms 

• Streaming algorithms 
• External-memory algorithms 
• Distributed memory parallel algorithms 

– MPI 
– MapReduce 
– Pregel 
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Shared Memory System 

• Contention in reading/writing – difficult to achieve a 
good speed up 

• Not readily available with large number of processors 
and memory – costly system 

• Distributed-memory cluster of nodes are more 
commonly available 
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Distributed-Memory Parallel System  

• P processors 
• Each processors have local memory 
• No shared memory 
• Processors communicate with each other by exchanging 

messages  
• Shared disk space  
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Desired Efficiency 

• The graph does not fit in the memory of a single 
computing node 

– O(m) space is required for the entire network 

• O(n) space (by each processor) can be acceptable 

• Target space: O(m/P), which is best we can do  

• Target speedup: P 
– Speedup facor = Tsequential / Tparallel  

 

• Number of processors: P << n 
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General Challenges 

• Dependencies in computation  

• Partitioning the data 

• Distributing the computation task among the 
processors 

• Load balancing 

• Communication cost and the issue of scaling to large 
number of processors  
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A Simple Example 

Generate G(n, p) graph: 
      for i = 1 to n do 
 for j = i+1 to n do 
        add edge (i, j) to the graph with prob. p 
 
• O(n2) time  
• Easy to parallelize – time O(n2/P) 
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A Simple Example (cont.) 

Generate G(n, p) graph 
      - a sequence of Bernoulli trials with success prob. p 
      -  lengths of the streaks of failures are geometric random variables 
      - generate a geometric random variable x  
      - Skip x edges and add the next edge   
 
• O(m) time  
• Non-trivial to parallelize, but we can achieve a good speed up 

– O(m/P + f(P)) time 
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Our Parallel Algorithms  

We developed parallel Algorithm for the following problems 
• Generating random graphs using preferential attachment 

model 
• Generating random graphs using Chung-Lu model 
• Counting/enumerating subgraphs  

– MPI based 
– Hadoop based  

• Counting/enumerating triangles 
• Switching end points of the edges   
• Converting edge list to adjacency list 
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Preferential Attachment (PA) Model 

• Preferential Attachment 
– A node connects with higher probability to 

a node which already has large number of 
connections. 
•  WWW: New webpage add links to well 

known sites 
• Citation: Well cited papers are highly likely 

to be cited more 

• Follows power-law degree distribution 
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Barabasi-Albert Model 
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Copy Model 
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Copy Model 
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Direct Edge 
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Copy Model 
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Copy Edge 
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Parallel Copy Model (x=1) 

17 



Network Dynamics & Simulation Science Laboratory 

Dependency Chain 

• To make a connection a node need to know the previous network 
 
 
 

• Such dependency can form a chain 
 
 
 

• A node has to wait until all the nodes in the dependency chain is 
computed 

– Might led to inefficient algorithm if the length of such chain is very long 
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Length of Dependency Chain 
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• n=109, x=6 
• Linear speed-up using 768 processors 
• Able to generate 400 Billion edges within 5 minutes using 768 procs. 

Algorithm for PA Model: Strong Scaling 
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Comparison of Partitioning Algorithms 

• Computational Cost: 
– LCP and RRP shows good load balancing 
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Publications 

• Distributed-Memory Parallel Algorithms for Generating Massive Scale-
free Networks Using Preferential Attachment Model  
Maksudul Alam, Maleq Khan, and Madhav V. Marathe 
Intl. Conf. for High Performance Computing, Networking, Storage and 
Analysis(SuperComputing), Denver, Nov. 2013. 
 

http://staff.vbi.vt.edu/maleq/papers/ppa.pdf
http://staff.vbi.vt.edu/maleq/papers/ppa.pdf
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Edge List and Adjacency List 

• Edge list 
– In most cases, graphs are generated 

as list of edges 
– Edge denotes a link between a pair 

of entities 
• Adjacency list 

– Graph algorithms work efficiently if 
information of adjacent nodes for 
each node is readily available.  

 
• Scanning all neighbors of 

node v:  
– Edge list:              time 
– Adjacency list:            time 
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Sequential Conversion 

Conversion is trivial in a sequential setting 
 

for each v ∊ V,      
for each edge (u, v) ∊ E do 
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How to Parallelize 
• Phase 1- Local adjacency list: 

– Set of edges E is partitioned into P initial partitions     , having almost 
m/P edges in each partition 

– Processor i works on     and construct local adjacency lists 
– Runtime and space complexity of Phase 1 is O(m/P). 
– Computational loads are balanced. 

each processor i executes in parallel:  
for each edge (u, v) ∊     do 

Local computation 
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How to Parallelize 

• Phase 2- Merging: 
– Dedicated merger: for each node v, runtime         . A total 

runtime of O(m) which is as good as sequential 
algorithm.  

– Requires parallel merging. 
 
 

– Load balancing is a non-trivial problem in this phase 
– Have each processor merge for different set of nodes 
– Require a new partitioning to have balanced load.    
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Conversion: Speedup 

• Our algorithm achieves a speedup factor of ~300 with 1024 
processors. 

• Almost linear speedup up to a large number of processors. 
• Load balancing improves performance significantly. 

Performance on  
Twitter  network 
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Conversion 

 
Publications 

• Fast Parallel Conversion of Edge List to Adjacency List for Large-
Scale Graphs 
Shaikh Arifuzzaman and Maleq Khan 
23rd High Performance Computing Symposium (HPC), Alexandria, 
VA, USA, April 2015. 

http://staff.vbi.vt.edu/maleq/papers/conversion.pdf
http://staff.vbi.vt.edu/maleq/papers/conversion.pdf
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Triangles in a Network 

Given a network G(V, E), 
        (u, v, w) is a triangle if (u, v), (v, w), (w, u) are edges in E.  

u 

v 

w 
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Triangles in a network 

Given a network G(V, E),     
(u, v, w) is a triangle if (u, v), (v, w), (w, u) are edges in E.  

u 

v 

w 

|)}(,|),{(| vNwuEwuTv ∈∈=

Set of neighbors of v 
Number of triangles incident on v 

Tv = 1 
Tw = 5 
Total, T = 7 
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Social Theory: Transitivity  

Friends of a friend tend to become friends 
themselves and form triangles!  [Wasserman Faust ‘94] 

 

P Erdös, R Graham, and F Chung 
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Applications 

• Analysis of complex networks: clustering coefficients 
and transitivity ratio [Watts,Strogatz’98] 

• Modeling  microscopic  evolution of social networks by triangle 
closing [Leskovec et.al., KDD ’08] 

• Solving systems of geometric constraints involves triangle 
counting [Fudos, Hoffman 1997] 

• Many other applications: Motif Detection/ Frequent Subgraph 
Mining (e.g., Protein-Protein Interaction Networks), 
Community Detection [Berry et al. ’09], Outlier Detection 
[Tsourakakis ’08] 
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Sequential Algorithm: NodeIterator++  
• NodeIterator++ (Latapy[2008], Shank[2007], Suri[2011]) uses a total 

order ≺ of nodes to avoid duplicate count of triangles.  
– A degree-based order reduces running time significantly. 

 

13 ≺ 16 ≺ 9  

for v ∊ V do 
 
       for u ∊ N(v)  and v ≺ u do 
                 for w ∊ N(v)  and u ≺ w do 
 
                           if (u,v) ∊ E  then 
                                   T  T + 1  
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Partitioning the Network 

Partitions of a network 

• V is partitioned into P disjoint subsets             (core nodes in proc. i)  
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Partitioning the Network 

Partitions of a network 

• V is partitioned into P disjoint subsets  
 
 
 
 

 

 
• Partition i is subgraph Gi(Vi, Ei), where 
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Partitioning the Network 

Partitions of a network 

• V is partitioned into P disjoint subsets  
 
 
 
 

 

 
• Partition i is subgraph Gi(Vi, Ei), where 

 
 
 
 
 

 Partitioning of V crucially affects load balancing 
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Load balancing schemes 

Define a cost function f(v) = cost to count triangles incident on node v 

Now partition V such that 

 Exact computation of f(v) may not be possible 

 We estimate f(v) with various functions 
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Estimating Computing Load 
How to estimate f(v)? 

Time complexity: 

Cost Functions Notations 
N 
D 

DH 
DDH 
DH2 

DPD 

Equal # of nodes/proc. 

Equal # edges / proc. 

Best load balancing, 
but costly to compute 
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 Counting Triangles: Speedup 

Miami Network    LiveJournal Network 

 Good speedup factor and scales to large number of processors 
 16 minutes for a network with 10 billions edges  
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Publications 

PATRIC: A Parallel Algorithm for Counting Triangles in Massive Networks  
Shaikh Arifuzzaman, Maleq Khan, and Madhav V. Marathe 
ACM Conference on Information and Knowledge Management (CIKM), San 
Francisco, Oct. 2013. 

http://staff.vbi.vt.edu/maleq/papers/patric.pdf
http://staff.vbi.vt.edu/maleq/papers/patric.pdf
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Edge Switching Operation 

Switching operations 

 Preserves degree distribution 

 Allow us to study the space of networks with the same degree distribution  

Replace edges (u1, v1) and (u2, v2) 
with (u1, v2) and (u2, v1) 
 u1 v1 

v2 u2 

v1 u1 

u2 
v2 

1. Randomly pick two edges of the graph 
and switch their end nodes 

2. Repeat the above step until the desired 
number of edges are switched 
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Edge Switching Problem 
• Input: 

– A simple graph 
• No loops and parallel edges 

– The number of edge switches, t 

• Sequential Processing: 
– Select pair of edge uniformly at random 
– Edge switching is performed only if the graph remains simple 
– This process is repeated until t number of edge switches are done 

• Output: 
– A simple graph 

42 



Network Dynamics & Simulation Science Laboratory 

Constraints of Edge Switch 

• The output remains simple graph after switching 
– No Loop 
– No Parallel Edge 

 

43 

Before 
switch 

After 
switch 
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Constraints of Edge Switch 
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Before 
switch 

After 
switch 
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Parallel Edge Switching 
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46 

Parallel Edge Switching 
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Parallel Edge Switching 
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Picking Edges Uniformly at Random 
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– Speedup of 85 using 1024 processors 
– Can switch more than 115B edge switches on a Pref. 

Attachment graph with 10B edges in less than 3 hours 

49 

Parallel Edge Switching: Performance 



Network Dynamics & Simulation Science Laboratory 

Publications 

Fast Parallel Algorithms for Edge-Switching to Achieve a Target Visit Rate 
in Heterogeneous Graphs  
Hasanuzzaman Bhuiyan, Jiangzhuo Chen, Maleq Khan, and Madhav V. 
Marathe  
International Conference on Parallel Processing (ICPP), Minneapolis, Sep. 
2014. 

http://staff.vbi.vt.edu/maleq/papers/ParallelEdgeSwitch.pdf
http://staff.vbi.vt.edu/maleq/papers/ParallelEdgeSwitch.pdf


Chung-Lu Model 

1 
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Chung-Lu Model: Strong Scaling 

52 
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Subgraph Enumeration 

Given a large graph G(V, E) and a smaller template T(VT, ET), 
find the number of subgrahs H(VH, EH) of G such that H is 
isomorphic to T. 

 
H is isomorphic to T if there is a one-to-one  
mapping f: VH → VT  such that  
(u, v) ∈ VH  if  and only if  (f(u), f(v)) ∈ VT  
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Subgraph	
  Enumeration	
  (cont.)	
  

H1	
  is	
  an	
  induced	
  and	
  H2	
  is	
  a	
  non-­‐induced	
  subgraphs	
  

G(V,E)	
  

Template	
  T	
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Subgraph Enumeration - Publications 

SAHAD: Subgraph Analysis in Massive Networks Using Hadoop  
Zhao Zhao, Guanying Wang, Ali Butt, Maleq Khan, V.S. Anil Kumar, and 
Madhav Marathe. 
26th IEEE International Parallel & Distributed Processing 
Symposium (IPDPS), Shanghai, China, May 2012. 
 
Subgraph Enumeration in Large Social Contact Networks using Parallel 
Color Coding and Streaming 
Zhao Zhao, Maleq Khan, V.S. Anil Kumar and Madhav  Marathe. 
39th International Conference on Parallel Processing (ICPP), San Diego, 
California, Sep. 2010. 
 

http://staff.vbi.vt.edu/maleq/papers/ipdps12.pdf
http://staff.vbi.vt.edu/maleq/papers/parallel_subgraph.pdf
http://staff.vbi.vt.edu/maleq/papers/parallel_subgraph.pdf
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