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Big Graph / Massive Graph

e Some patterns emerges only in massive
networks Q

e Size: billions of vertices and trillions of ",
edges and growing < s

e Along with time efficiency, space
efficiency is also crucial

e Runtime: even 0(n?) time algorithm is
not useful
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Storing Graph in Main Memory

e Matrix is not acceptable: O(n?) space

— A graph with 1 million nodes may take 10-20 TB space.
e Adjacency list takes O(m) space
— Which we use

e Memory of single machine may not be large enough

to hold the entire network
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Dealing with Space

e Sparsification / sampling based approximation
algorithms

e Streaming algorithms
e External-memory algorithms

e Distributed memory parallel algorithms
- MPI
- MapReduce
- Pregel
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Shared Memory System

e Contention in reading/writing - difficult to achieve a

good speed up

e Notreadily available with large number of processors

and memory - costly system

e Distributed-memory cluster of nodes are more

commonly available
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Distributed-Memory Parallel System

P processors
Each processors have local memory
No shared memory

Processors communicate with each other by exchanging
messages

Shared disk space
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Desired Efficiency

e The graph does not fit in the memory of a single
computing node

— 0O(m) space is required for the entire network
e 0O(n) space (by each processor) can be acceptable
e Target space: O(m/P), which is best we can do

e Target speedup: P

- Speedup facor = Tsequential / Tparallel

e Number of processors: P <<n
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General Challenges

e Dependencies in computation
e Partitioning the data

e Distributing the computation task among the
processors

e Load balancing

e Communication cost and the issue of scaling to large
number of processors
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A Simple Example

Generate G(n, p) graph:
fori=1tondo
forj=i+1tondo
add edge (i, j) to the graph with prob. p

e 0O(n?) time

o Easy to parallelize - time O(n?/P)
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A Simple Example (cont.)

Generate G(n, p) graph
- a sequence of Bernoulli trials with success prob. p
- lengths of the streaks of failures are geometric random variables
- generate a geometric random variable x
- SKip x edges and add the next edge

e O(m) time
 Non-trivial to parallelize, but we can achieve a good speed up
- O(m/P + f(P)) time
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Our Parallel Algorithms

We developed parallel Algorithm for the following problems

e Generating random graphs using preferential attachment
model

e Generating random graphs using Chung-Lu model

e Counting/enumerating subgraphs
— MPI based
— Hadoop based

e Counting/enumerating triangles
e Switching end points of the edges
e Converting edge list to adjacency list
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Preferential Attachment (PA) Model

e Preferential Attachment A -
- A node connects with higher probability to ‘ i
a node which already has large number of _
connections. s
¢ WWW: New webpage add links to well DR f:._:,;t-;:::::-fi.:]i-,?'-*
known sites s \ (A
o (Citation: Well cited papers are highly likely *”‘ PO ~ @
to be cited more i R

 Follows power-law degree distribution
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Barabasi-Albert Model

® One of the first preferential attachment model
@ Start withmynodesattimet =0

@ Eachtime add a new node which creates x new edges with x existing nodes

® New node t connects to a node i with probability proportiaonal to its degree

4 N\
v—eo—v v W
i t
L 4 :
Pr(t—i) = Z—dJ d; = degree of j-th node

@ Does not lead to efficient parallelization
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Copy Model

® Another preferential attachment model
@ F; =the node to which a new node t connects (F; < t)
@ We say F; is the parent of node ¢

® Foranew nodet
@ Step 1 (Node Selection): anode k € [1,t — 1] is chosen uniformly

@ Step 2 (Edge Creation): Determine F, as follow:
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Copy Model

® Another preferential attachment model
@ F; =the node to which a new node t connects (F; < t)
@ We say F; is the parent of node ¢

@® Foranew node t
@ Step 1 (Node Selection): anode k € [1,t — 1] is chosen uniformly
@ Step 2 (Edge Creation): Determine F, as follow:

¢ Direct: F,=k with probability p

N\

ﬁ‘_w t Direct Edge
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Copy Model

® Another preferential attachment model
@ F; =the node to which a new node t connects (F; < t)
@ We say F; is the parent of node ¢

® Foranew nodet
@ Step 1 (Node Selection): anode k € [1,t — 1] is chosen uniformly

@ Step 2 (Edge Creation): Determine F, as follow:

¢ Direct: Fi=k with probability p
¢ Copy: F,=F, with probability1 — p
- :’ v Ot Copy Edge
Fr e
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Parallel Copy Model (x=1)

® Each node create x = 1 new edge
eV ={1,23,..,n}isthe set of n nodes

® Nodes are distributed into P disjoint sets: /3, V,, ..., Vp
®VinV,=0foranyi# jandy;V;=Vforl<i<P

® Processor P; computes F, for every node t € V;

@ P, independently compute Step 1 (Node Selection)
@ Direct edges are also determined independently

@ Only Copy edges are dependent on previous network and require inter-
processor communication
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Dependency Chain

 To make a connection a node need to know the previous network

A .
) | F; connects to Fj, hence we say t is
o =k v >j t dependenton k

b I

e Such dependency can form a chain

Fs Fe

N\V Y V\ 8 is dependent on 7, which is
Ww v v @ w W W U dependenton5andsoon.

e A node has to wait until all the nodes in the dependency chain is
computed

— Might led to inefficient algorithm if the length of such chain is very long
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Length of Dependency Chain

® Theorem: Let L; be the length of the dependency chain starting at
node t and L,,qx = max L:. Thenthe expected length E[L;] <

logn and L0 = O(logn) w.h.p., where n is the number of nodes.

® The maximum length of dependency chain is bound by O(log n)
@ The average length of dependency chain is%

@ | eads to efficient parallel algorithm, as there is less dependency

@ A processor hardly remains idle as it has other nodes to work with
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Algorithm for PA Model: Strong Scaling

250 -

150 7 —— UCP

- LCP
-~ RRP

0 200 400 600
Number of Processors
e n=10% x=6
e Linear speed-up using 768 processors
e Able to generate 400 Billion edges within 5 minutes using 768 procs.
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Comparison of Partitioning Algorithms

e Computational Cost:
— LCP and RRP shows good load balancing

Je+(7 5
E — UCP
5 — LCP
— RRP
2e+(07
| 1 1
a0 100 150
Processor Rank
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Publications

o Distributed-Memory Parallel Algorithms for Generating Massive Scale-
free Networks Using Preferential Attachment Model
Maksudul Alam, Maleq Khan, and Madhav V. Marathe
Intl. Conf. for High Performance Computing, Networking, Storage and
Analysis(SuperComputing), Denver, Nov. 2013.
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Edge List and Adjacency List

o Edgelist

- In most cases, graphs are generated
as list of edges

— Edge denotes a link between a pair
of entities

e Adjacency list

— Graph algorithms work efficiently if
information of adjacent nodes for
each node is readily available.

2

S

6

El,zi N,={2,3,4}
- - 1.2 N,={1,3}
e Scanning all neighbors of 1,4 N
de v- 2,3 e
node v: 4.5 N,={1,5,6}
- Edge list: O(m) time 4,6 N-={4,6}
- Adjacency list: O(d, )time 5,6 Ne={4,5}
Edge List Adjacency List
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Sequential Conversion

Conversion is trivial in a sequential setting

.

/foreach VEV, N « I

N, <« N u{u}
N, <N, u{v}

~

for each edge (u, v) e Edo

/
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How to Parallelize

e Phase 1- Local adjacency list:

- Setof edges E is partitioned into P initial partitions £, having almost
m/P edges in each partition

- Processor i works on E.and construct local adjacency lists
- Runtime and space complexity of Phase 1 is O(m/P).
— Computational loads are balanced.

Local computation

-

each processor i executes in parallel:

~

for each edge (u, v) €£, do
N« N u{u}
\_ N« N, U {v} .

BIOINFORMATICS Network Dynamics & Simulation Science Laboratory V@iﬁTech
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How to Parallelize

e Phase 2- Merging:

Dedicated merger: for each node v, runtimeO(d,). A total
runtime of O(m) which is as good as sequential
algorithm.

Requires parallel merging.
N, =N/
j

Load balancing is a non-trivial problem in this phase
Have each processor merge for different set of nodes
Require a new partitioning to have balanced load.
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Conversion: Speedup

350 ‘ : ‘ : ‘ . |
Without Load Balancing ——
With Load Balancing ----- PR
300 - ERLOAGDAERGHE e L .
L 250 | e
8 o
S -
& 200 )
o, o
5
g 150 ¢ L
100 -

0

Number of Processors

0 100 200 300 400 500 600 700 800 900 10001100

Performance on
Twitter network

Our algorithm achieves a speedup factor of ~300 with 1024

processors.

Almost linear speedup up to a large number of processors.
Load balancing improves performance significantly.

VIRGINIA
BIOINFORMATICS
INSTITUTE

Network Dynamics & Simulation Science Laboratory

VB i rech
&



Conversion

Publications

» Fast Parallel Conversion of Edge List to Adjacency List for Large-
Scale Graphs

Shaikh Arifuzzaman and Maleq Khan

23rd High Performance Computing Symposium (HPC), Alexandria,
VA, USA, April 2015.
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Triangles in a Network

Given a network G(V, E),
(u, v, w) is a triangle if (u, v), (v, w), (w, u) are edges in E.
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Triangles in a network

Given a network G(V, E),
(u, v, w) is a triangle if (u, v), (v, w), (w, u) are edges in E.

Set of neighbors of v

Number of triangles incident on v
T, =[{(u,w)e Efu,we N(v{ ;i15
Tgtal, T=7
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Social Theory: Transitivity

Friends of a friend tend to become friends
themselves and form triangles! [wasserman Faust ‘94]

P Erdds, R Graham, and F Chung

INSTITUTE
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Applications

Analysis of complex networks:
and transitivity ratio [Watts,Strogatz'98]

Modeling microscopic evolution of social networks by triangle
closing [Leskovec et.al.,, KDD "08]

Solving systems of geometric constraints involves triangle
counting [Fudos, Hoffman 1997]

Many other applications: Motif Detection/ Frequent Subgraph

Mining (e.g., Protein-Protein Interaction Networks),
Detection [Berry et al. 09, Detection

| Tsourakakis '08]
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Sequential Algorithm: Nodelterator++

e Nodelterator++ (Latapy[2008], Shank[2007], Suri[2011]) uses a total
order < of nodes to avoid duplicate count of triangles.

— A degree-based order reduces running time significantly.

/forve Vdo \

forue N(v) and do
forwe N(v) andu < wdo

if (u,v) € E then
Te€T+1

> N /

13<16<9
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Partitioning the Network

e Vis partitioned into P disjoint subsets KC (core nodes in proc. i)

ViCﬂVjc=@, fori=j

v =V

Partitions of a network
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Partitioning the Network

e Vis partitioned into P disjoint subsets KC

ViCﬂVjc=@, fori=j

v =V

e Partitioniis subgraph G,(V, E;), where

V,=VeulJn,

VeV,

E = {(u,v) lu,y €V, and (u,v) € E}

Partitions of a network
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Partitioning the Network

e Vis partitioned into P disjoint subsets KC

ViCﬂVjc=@, fori=j

v =V

e Partitioniis subgraph G,(V, E;), where

V,=VeulJn,

VeV,

E = {(u,v) lu,y €V, and (u,v) € E}

Partitions of a network

Partitioning of V crucially affects load balancing

B.O.NFéfﬁgﬁg?ml Network Dynamics & Simulation Science Laboratory Virgiﬁl}ﬂﬁTech
@

ViRGINIA TECH



Load balancing schemes

Define a cost function f(v) = cost to count triangles incident on node v

Now partition V such that

X /()= 2 f)

velV? veV

> Exact computation of f{v) may not be possible

> We estimate f{v) with various functions
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Estimating Computing Load

How to estimate f(v)?

Time complexity: O[Z Z (c}v +6§u)J = O[Z dvc}v]

veV ueN, velV

Cost Functions Notations
F(v)=1 N
f (v) =d, D «—
f(v)=4, DH
f(v)=dd, DDH
1(9)=4; DH?
f(v)= Zuem (c?v + QL) DPD <

||||||| " : : : : Virginia
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Counting Triangles: Speedup

70 T T T T T T T T T 60
N [
D
60 f oo / 50 |
550 ot / : 5
§ DH % 40
— 40 =
(oF e 30 r
5 5
g 3
20
& 20t )
10 10
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Number of Processors Number of Processors
Miami Network LiveJournal Network

[ Good speedup factor and scales to large number of processors
[ 16 minutes for a network with 10 billions edges
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Publications

PATRIC: A Parallel Algorithm for Counting Triangles in Massive Networks
Shaikh Arifuzzaman, Maleq Khan, and Madhav V. Marathe

ACM Conference on Information and Knowledge Management (CIKM), San
Francisco, Oct. 2013.
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Edge Switching Operation

Switching operations

o
u, V2

Replace edges (u,, v4) and (u,, v,)
with (u,, v,) and (u,, v,)

1. Randomly pick two edges of the graph
and switch their end nodes

2. Repeat the above step until the desired
number of edges are switched

@ Preserves degree distribution

€ Allow us to study the space of networks with the same degree distribution

Virginia
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Edge Switching Problem

e Input:
- A simple graph
e No loops and parallel edges

— The number of edge switches, t

e Sequential Processing:

— Select pair of edge uniformly at random

- Edge switching is performed only if the graph remains simple

— This process is repeated until ¢t number of edge switches are done
e QOutput:

- A simple graph
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Constraints of Edge Switch

e The output remains simple graph after switching

- No Loop U, v
s O—0O Before
2 i switch
U,
Conditions: 1
* Uy F v,
Uz # _ @ vy After
U =0 /O switch
O
U
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Constraints of Edge Switch

 The output remains simple graph after switching

— No Parallel Edge U@ —Ovy Before
sy switch
uz H Uz

Conditions: lv

* u, € N(v,) U Q. . OV1  After
* u, € N(v,) switch

— N(v) is the set of neighbors of v
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Parallel Edge Switching

e Partitioning:
— Nodes are sorted according to their node ids
— Each processor P, contains a disjoint set of edges E/;

.y ‘ Sequential Parallel
— Each partition contains k
almost equal number of edges 240 | Eo€Po
— Ensure that one node’s
#Edges
adjacency list belongs =) B 1P
1000
to only one processor
245 E,€EP,
260 E3EP;
Set of Edges Partitions
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Parallel Edge Switching

* An edge getting replaced after edge switch may
belong to a different processor Py

— Because of keeping only one copy of each edge (u, v) such
thatu < v

P

70 @—O > >

(4.30) (70, 80)

B.O.NFéfﬁgﬁg?ml Network Dynamics & Simulation Science Laboratory 46 Virgiﬁl}ﬂﬁTech
AT VimGINIA TECH L ° 7



Parallel Edge Switching

e Challenges

— Same new edge can be created by different pairs of
processors at the same time

 Example:

Consider the following switch

(U, v1), (U, v2) mm)y (U, v2), (U, vy)

The edge (u,, v,) can be created by following ways
- (U, ), (L v2)
- (wy), (v, )

The edge (u,, v,) can be created by following ways
— (uy, ), (L vy)
- (Lup), (vq, )

m.wék“ﬁr.-ﬂ'&MI Network Dynamics & Simulation Science Laboratory Virgiﬁﬂﬁrrech
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Picking Edges Uniformly at Random

Serial Parallel

Question:

How do we know the
number of first edges
that will be picked
from P; in advance
without actually
picking the edges?

300

Answer:
Multinomial
Distribution

uvvu
RGINIA N . . . . Virginia
B,O,Nfommm etwork Dynamics & Simulation Science Laboratory M Tech
INSTITUTE

48



Parallel Edge Switching: Performance

— Speedup of 85 using 1024 processors

— Can switch more than 115B edge switches on a Pref.
Attachment graph with 10B edges in less than 3 hours

25

80 Fized graph size +
— o | Increased graph size
Ej - = "?-.Ie-v;'“&'o-rl: E 15T
B 40 | - S LosAngeles =
b Bbiami - = 1ot P
P PA-100M = e
0+ _,:""-- . Fhickr :";._ 5 ...a*
- A LiveJournal T
3 SmallWorld ~------
i ErdosEenyi Q . . . . L . ,
0 - - _ - 80 240 400 3560 720 880 1040
¢ 236 I12 768 1024 Number of processors
Number of processors
Strong scaling
t .
x = 1,stepsize = m Weak Scallng
using Pref. Attch. Graph
t = p X 1I0M,stepsize = /1000
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Publications

Fast Parallel Algorithms for Edge-Switching to Achieve a Target Visit Rate
in Heterogeneous Graphs

Hasanuzzaman Bhuiyan, Jiangzhuo Chen, Maleq Khan, and Madhav V.
Marathe

International Conference on Parallel Processing (ICPP), Minneapolis, Sep.
2014.
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Chung-Lu Model

® Generate a Random Graph from a given degree sequence
® asetof mnodesV ={0,1,2,...,n — 1}
@ A set of weightsw = {wy, wy,wy, ..., w,_1}

@ Weight w; defines the expected degree of node i

® Probability of an edge between nodes i and j is defined as:

WiWj
Pi,j = vn—-1
k=0 Wk
® If no self-loop is allowed (i # j), expected degree of node i is:
deg (i) W;W; w?
eg(i) = =w; —
8 ; 2k Wi b X W

I3 VirginiaTech :
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Chung-Lu Model: Strong Scaling

@® Twitter Network

®n=4165x%x10%m =137 x 10°
® Avg.degree = 33

Scheme

—e— UCP

—— RRP

0 - - - - = | —®— Naive

| | | 1
0 250 500 750 1000
Number of Processors
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Subgraph Enumeration

Given a large graph G(V, E) and a smaller template T(V, E;),
find the number of subgrahs H(Vy, E;) of G such that H is

isomorphic to T.

H is isomorphic to T if there is a one-to-one
mapping f: V, — V; such that
(u,v) € Vy if and only if (f(u), f(v)) € V;

VIRGINIA : : : : Vlrglnla
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Subgraph Enumeration (cont.)

H, is an induced and H, is a non-induced subgraphs

Virginia
Network Dynamics & Simulation Science Laboratory mTech




Subgraph Enumeration - Publications

SAHAD: Subgraph Analysis in Massive Networks Using Hadoop

Zhao Zhao, Guanying Wang, Ali Butt, Maleq Khan, V.S. Anil Kumar, and
Madhav Marathe.

26th IEEE International Parallel & Distributed Processing

Symposium (IPDPS), Shanghai, China, May 2012.

Subgraph Enumeration in Large Social Contact Networks using Parallel
Color Coding and Streaming

Zhao Zhao, Maleq Khan, V.S. Anil Kumar and Madhav Marathe.

39th International Conference on Parallel Processing (ICPP), San Diego,
California, Sep. 2010.
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http://staff.vbi.vt.edu/maleq/papers/ipdps12.pdf
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