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Molecular Dynamics (MD) Simulations
U(r1, . . . , rN ) = Ubonded + Unonbonded

Fi = −∇iU(r1, . . . , ri, . . . , rN )

d2ri(t)

dt2
=

Fi

mi

ri(t+∆t) = 2ri(t)− ri(t−∆t) +
Fi

mi
∆t2

Fi = miai “force field”

Newton’s 2nd law

integrator

max (2015) typical (2015)
size N ~107 ~105

simulated time τ ~10 µs 0.1–1 µs
trajectory frames ~109 ~105

trajectory size < 10 TiB 150 GiB

trajectory
�
r1(t), . . . , rN(t)

�

0 ≤ t ≤ τ

3

(classical)

see also: T. Cheatham and D. Roe. Computing in Science Engineering, 17:30–39, 2015. 
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Code base:
• python 2.7
• cython
• C
• ~75k LOC
• ~37k lines 

comments

MDAnalysis

“core”

trajectory I/O

data structures 
(AtomGroup)

topology I/O

selections

Universe MDAnalysis.
analysis

MDAnalysis.
visualization

maths

utilities
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Runs on:
• Linux
• Mac OS X

Open source
• GPL v2
• github.com/MDAnalysis

Open and inclusive community:
• questions are answered (mailing list)
• pull requests welcome!
• community code review
• continuous integration with > 2,500 unit tests
• 36 contributing authors (Oct 2015)

7
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www.mdanalysis.org

github.com/MDAnalysis

Join us at

Naveen Michaud-Agrawal, Elizabeth J. Denning, Joshua Adelman, Jonathan 
Barnoud, Christian Beckstein (logo), Alejandro Bernardin, Sébastien 
Buchoux, David Caplan, Matthieu Chavent, David L. Dotson, Xavier 

Deupi, Jan Domański, Lennard van der Feltz, Philip Fowler, Joseph Goose, 
Richard J. Gowers, Lukas Grossar, Benjamin Hall, Joe Jordan, Max Linke, 

Jinju Lu, Robert McGibbon, Alex Nesterenko, Manuel Nuno Melo, Caio S. 
Souza, Danny Parton, Joshua L. Phillips, Tyler Reddy, Paul Rigor, Sean L. 
Seyler, Andy Somogyi, Lukas Stelzl, Gorman Stock, Isaac Virshup, Zhuyi 

Xue, Carlos Yáñez S, and Oliver Beckstein
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Abstract: MDAnalysis is an object-oriented library for structural and temporal analysis of molecular dynamics
(MD) simulation trajectories and individual protein structures. It is written in the Python language with some
performance-critical code in C. It uses the powerful NumPy package to expose trajectory data as fast and efficient
NumPy arrays. It has been tested on systems of millions of particles. Many common file formats of simulation
packages including CHARMM, Gromacs, Amber, and NAMD and the Protein Data Bank format can be read and
written. Atoms can be selected with a syntax similar to CHARMM’s powerful selection commands. MDAnalysis
enables both novice and experienced programmers to rapidly write their own analytical tools and access data stored
in trajectories in an easily accessible manner that facilitates interactive explorative analysis. MDAnalysis has been
tested on and works for most Unix-based platforms such as Linux and Mac OS X. It is freely available under the
GNU General Public License from http://mdanalysis.googlecode.com.

q 2011 Wiley Periodicals, Inc. J Comput Chem 32: 2319–2327, 2011

Key words: molecular dynamics simulations; analysis; proteins; object-oriented design; software; membrane systems;
Python programming language

Introduction

Molecular dynamics (MD) simulations generate a wealth of

data. Deducing meaningful conclusions from simulations

requires analysis of MD trajectories in terms of the individual

positions (and possibly velocities and forces) of all atoms or a

selected subset of atoms for each time frame of a trajectory.

Users can often rely on a single tool or package for most of

their analysis. For instance, the Gromacs1 package contains a

large number of individual programs (written in C) that each

performs a particular analysis task such as calculating a root

mean square deviation (RMSD) or a timeseries of some dihedral

angles. Similarly, ptraj,2 Wordom,3 MD-TRACKS,4 and Simu-

laid5 provide interfaces to predefined analysis tools. Some large,

monolithic programs such as CHARMM6 or VMD7 come with a

scripting language that allows the use of a powerful atom selec-

tion languages and built-in or scripted analysis modules. A

number of libraries such as MMTK,8 MMTSB,9 or pymacs10

also provide some analysis capabilities in addition to other func-

tions such as simulation setup or execution.

Implementing new analysis algorithms can be difficult within
the existing packages as it often requires an intimate knowledge
of the internals of the software. Object-oriented libraries such as
LOOS11 or MDAnalysis (described here) encapsulate essential
input/output (I/O) functionality to present a consistent interface
to the data in a trajectory. They both emphasize enabling the

Additional Supporting Information may be found in the online version of

this article.
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• make SPIDAL 
algorithms available 
inside MDAnalysis

• bring “BigData” 
approaches to the 
molecular simulation 
community (with low 
barrier to entry) 

Goal: MDAnalysis + SPIDAL

10

MDAnalysis+
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ç√

trajectory I/O

data structures 
(AtomGroup)

topology I/O

selections

Universe MDAnalysis.
analysis

MDAnaly
sis.

visuali
zation

maths

utilities

SPIDAL
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Challenges and Areas of Interest

• large systems (> 1 million particles)

• long trajectories (> 100,000 frames)

• only one frame in memory

• can be I/O limited

• multiple related trajectories (replica exchange, windowed 
free energy calculations)

• specific algorithms (distance search, clustering, ...)

11
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Ian Kenney (REU): Large system benchmark

• non-trivial biologically relevant 
system with adjustable number 
of particles

• lipid vesicles (molecular 
packages – drug delivery, 
neurotransmission, cancer)

• Dry Martini force field (implicit 
solvent, coarse-grained lipids)

• science: study vesicle 
interactions (e.g. fusion)

12

Report: SPIDAL webpage and http://dx.doi.org/10.6084/m9.figshare.1588804
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Benchmark: Vesicle Library

13

Table 1: Library of coarse-grained vesicles with dipalmitoylphosphatidylcholine (DPPC) lipids and two
example benchmark systems with 3 and 6 large 30-nm vesicles.

label vesicles radius (nm) atoms lipids

R10.0 1 10 84192 7016
R12.5 1 12.5 122208 10184
R15.0 1 15 167352 13946
R17.5 1 17.5 219000 18250
R20.0 1 20 277728 23144
R22.5 1 22.5 343500 28625
R25.0 1 25 416208 34684
R27.5 1 27.5 496044 41337
R30.0 1 30 582984 48582

3R30.0 3 30 1748952 145746
6R30.0 6 30 3497904 291492

HOOMD26; in addition, common formats such as the protein databank (PDB) format can be read
and written. Although many time-critical parts of MDAnalysis are written in C or Cython, not
all parts of the library are yet optimized to handle very large systems. Here we report on the
initial development of a set of non-trivial benchmarking systems of variable sizes that are to be
used to determine performance bottlenecks in MDAnalysis and pin-point areas on which future
improvement efforts should be focused. Instead of generating pure solvent systems that can
be easily scaled to any desired particle number we instead looked for less homogeneous and
scientifically more interesting systems. We focused on the question how biomolecular membranes
(lipid bilayers) fuse and form larger aggregates. In particular we are interested in the process by
which multiple vesicles—spheroidal bilayer-enclosed structures (Fig. 1)—aggregate. Understanding
the underlying physics is important for biological transport processes in the synapses27 and the
Golgi apparatus28,29 but might also be of interest for the development of drug delivery vehicles30.

Figure 1: Vesicle with 35 nm di-
ameter (17.5 nm radius) and rep-
resented with a coarse grained
representation. One half is omit-
ted to show the interior, which is
filled with solvent (not shown).

In typical simulations, a large fraction (> 50%) of the simulated
particles and interactions consists only of the solvent. Here we
utilize the recently published implicit solvent coarse-grained Dry
Martini force field31 to avoid simulation of solvent and focus on
the lipids alone. This approach enables us to simulate vesicles of
realistic sizes and to include a large number of lipids so that we
can test specific lipid analysis algorithms such as LeafletFinder 18

on large systems. Furthermore, by combining multiple vesicles of
varying sizes we can generate inhomogeneous benchmark systems
at arbitrary sizes.

2 Methods

2.1 Vesicle library and benchmark systems
We generated a library of lipid vesicles with the coarse-grained

Dry Martini force field and the martini vesicle builder.py

script31, ranging in size from 10 nm to 30 nm radius (Table 1).

2

6R30.0

Modular approach: combine vesicles into larger systems 

library on GitHub:  https://github.com/Becksteinlab/vesicle_library
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MDAnalysis: system load time

• Which parts need to be improved for handling large 
systems?

• Initial load: fixed cost (possibly important for parallel 
analysis of trajectories) 14
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Simple frame-based analysis: radius of gyration

• calculate time series (one 
calculation per frame)

15

(a) Initial loading time (b) Rg analysis (average time per frame)

Figure 4: Performance of the MDAnalysis library for a initial loading of a trajectory (Gromacs XTC file)

together with different options for a topology file and b average time to calculate the radius of gyration for

all atoms for one frame in the trajectory (averaged over all frames). All benchmarks were performed in

serial on a single Intel Xeon E5-2670 2.60 GHz core.

3.2 MDAnalysis trajectory processing performance
We benchmarked the performance of MDAnalysis to load and process large systems by loading

the simulations in the vesicle library. The first step in any MDAnalysis script is to load a topology

file (which contains a list of particles and possibly additional static data such as bonds or partial

charges) and a trajectory file. The trajectory contains the coordinates, which change for each time

step. In MDAnalysis, the Universe object ties the topology and the trajectory together and part of

the process of instantiating Universe(topology, trajectory ) is to parse these files. MDAnalysis

contains custom parsers for a wide range of topology and trajectory files. The benchmark of loading

a Universe with different topology files (and typically a Gromacs XTC trajectory) showed that the

load time increases linearly with the input size (Fig. 4a). Loading from a Gromacs binary run input

file (TPR) together with the XTC appears to be fastest (<1 s up to 5 s) for all problem sizes up to the

investigated maximum of about 600,000 particles. Although not immediately relevant for trajectory

processing, loading only from a PDB file (which contains topology information and coordinates)

was much worse (5 s up to 30 s) than any other method. This benchmark indicates the PDB reader

as a prime candidate for further performance improvements and provides a baseline for increasing

the reading speed of the TPR reader further to facilitate rapid reading of larger systems.

As a first simple case for benchmarking analysis we measured the time to calculate the radius of

gyration

Rg(t) =

���� 1
M

N

∑
i=1

mi(ri(t)− R(t)), (1)

where M is the total mass, R(t) the center of mass, and the sum runs over N particles with mass mi
and position ri(t) each at time frame t. The calculation of Rg included all particles in the simulation.

The average wall-clock time to analyze a single trajectory frame increased linearly with the number

of particles, starting with about 10 ms for ∼100,000 particles and increasing to ∼93 ms for 600,000

particles. For long trajectories (order of 1 million frames), analysis times of 100 ms per frame
5

• serial (1 core)

• 100 ms per frame

• … but for 1M frames 
would take 28h

• pleasingly parallel 
(work with Shantenu 
Jha on parallel 
approaches, e.g. 
RADICAL.pilot)
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the groups of atoms that make up the two leaflets of a bilayer.
Such information is required for the automated analysis of lipid-
protein interactions or lipid exchange between leaflets. For
small, planar bilayer patches (e.g., with the bilayer normal
assumed parallel to the z axis), it is not difficult to implement a
simple algorithm that (1) collects specific head group atoms (for
instance, phosphorous atoms for phospholipids), and then (2)
assigns them to a leaflet, depending on the atom’s z coordinate
being above or below the center of geometry of the bilayer.
Such an approach breaks down when the bilayer shows strong
undulations or if it is not planar, as is the case for vesicles. Leaf-
letFinder follows a different approach, first building a network
of neighbors and then using a graph-theoretic approach to ana-
lyze the network:

1. Build the network: Treat head group atoms as vertices of a
graph (Fig. 4A) and connect those that have a distance
smaller than a set cut-off (Fig. 4B).

2. Identify the connected subgraphs in the graph (Fig. 4C).
3. Sort the subgraphs by decreasing size; the first and second

subgraph are the leaflets.

Figure 4D shows the algorithm applied to a large coarse-
grained bilayer system with 24,056 lipids and a total system size
of over 1.5 million particles. Here, membrane undulations have
amplitudes larger than the bilayer thickness, thus rendering the
simple approach useless whereas LeafletFinder reliably distin-
guishes the two leaflets as shown in the closeup in Figure 4E.

The implementation in MDAnalysis starts with a selection of
lipid head group atoms, e.g.,

headgroup_atoms = universe.selectAtoms(\
"name P*")

coord 5 headgroup_atoms.coordinates()

Step 1 of the algorithm takes the coordinates of the selected
head group atoms and builds the adjacency matrix, which
contains True for any distance smaller than the cutoff and False
otherwise; this only requires a single line of code because dis-
tance_array() returns a NumPy array that can be directly trans-
formed using NumPy’s powerful Boolean array constructors:

from MDAnalysis.analysis.distances import\
distance_array

adj 5 (distance_array(coord,coord)\ cutoff)

Step 2 and 3 make use of the NetworkX12 package. The net-
workx.Graph class can directly build a graph from an adjacency
matrix and the networkx.connected_components() function
returns the connected components of a graph, sorted by size.
Thus only a single line of code is required to analyze the net-
work of neighbors of all lipids:

import networkx as NX
leaflets = NX.connected_components(\

NX.Graph(adj))

leaflets[0] and leaflets[1] contain the indices of the two leaflets
that can be mapped back to the atoms by indexing the selection;

Figure 4. Defining membrane leaflets (MDAnalysis.analysis.leaflets.LeafletFinder). A–C: LeafletFinder
algorithm (A) A graph is constructed that connects particles within a fixed cutoff (circles) such as lipid
head group particles. (B) An algorithm implemented in the NetworkX package detects all disconnected
subgraphs. (C) Typically, only two graphs are found that describe the two topologically disjoint leaflets.
(D) View of a coarse grained bilayer with strong deformations. The bilayer contains !24,000 lipids and
the total simulation system size was !1.5 million particles (J. Goose, personal communication). The
phosphate particles in the head groups are shown and are colored black or white according to the Leaflet-
Finder algorithm. (E) Close-up view of a deformation that is larger than the bilayer thickness itself.
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• LeafletFinder (and other “interaction network” 
approaches): slow on big systems

• need to use sparse distance matrix (full matrix ~2 TiB 
RAM)

• 4 min per frame (!)

• need to improve the nearest neighbor step (SPIDAL!)

• work with Shantenu Jha to explore different algorithms for 
the network analysis
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the groups of atoms that make up the two leaflets of a bilayer.
Such information is required for the automated analysis of lipid-
protein interactions or lipid exchange between leaflets. For
small, planar bilayer patches (e.g., with the bilayer normal
assumed parallel to the z axis), it is not difficult to implement a
simple algorithm that (1) collects specific head group atoms (for
instance, phosphorous atoms for phospholipids), and then (2)
assigns them to a leaflet, depending on the atom’s z coordinate
being above or below the center of geometry of the bilayer.
Such an approach breaks down when the bilayer shows strong
undulations or if it is not planar, as is the case for vesicles. Leaf-
letFinder follows a different approach, first building a network
of neighbors and then using a graph-theoretic approach to ana-
lyze the network:

1. Build the network: Treat head group atoms as vertices of a
graph (Fig. 4A) and connect those that have a distance
smaller than a set cut-off (Fig. 4B).

2. Identify the connected subgraphs in the graph (Fig. 4C).
3. Sort the subgraphs by decreasing size; the first and second

subgraph are the leaflets.

Figure 4D shows the algorithm applied to a large coarse-
grained bilayer system with 24,056 lipids and a total system size
of over 1.5 million particles. Here, membrane undulations have
amplitudes larger than the bilayer thickness, thus rendering the
simple approach useless whereas LeafletFinder reliably distin-
guishes the two leaflets as shown in the closeup in Figure 4E.

The implementation in MDAnalysis starts with a selection of
lipid head group atoms, e.g.,

headgroup_atoms = universe.selectAtoms(\
"name P*")

coord 5 headgroup_atoms.coordinates()

Step 1 of the algorithm takes the coordinates of the selected
head group atoms and builds the adjacency matrix, which
contains True for any distance smaller than the cutoff and False
otherwise; this only requires a single line of code because dis-
tance_array() returns a NumPy array that can be directly trans-
formed using NumPy’s powerful Boolean array constructors:

from MDAnalysis.analysis.distances import\
distance_array

adj 5 (distance_array(coord,coord)\ cutoff)

Step 2 and 3 make use of the NetworkX12 package. The net-
workx.Graph class can directly build a graph from an adjacency
matrix and the networkx.connected_components() function
returns the connected components of a graph, sorted by size.
Thus only a single line of code is required to analyze the net-
work of neighbors of all lipids:

import networkx as NX
leaflets = NX.connected_components(\

NX.Graph(adj))

leaflets[0] and leaflets[1] contain the indices of the two leaflets
that can be mapped back to the atoms by indexing the selection;

Figure 4. Defining membrane leaflets (MDAnalysis.analysis.leaflets.LeafletFinder). A–C: LeafletFinder
algorithm (A) A graph is constructed that connects particles within a fixed cutoff (circles) such as lipid
head group particles. (B) An algorithm implemented in the NetworkX package detects all disconnected
subgraphs. (C) Typically, only two graphs are found that describe the two topologically disjoint leaflets.
(D) View of a coarse grained bilayer with strong deformations. The bilayer contains !24,000 lipids and
the total simulation system size was !1.5 million particles (J. Goose, personal communication). The
phosphate particles in the head groups are shown and are colored black or white according to the Leaflet-
Finder algorithm. (E) Close-up view of a deformation that is larger than the bilayer thickness itself.
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Other areas of interest

• fast histogramming of coordinates in 3D space to calculate 
densities

• nearest neighbor / distance matrices

• fast RMSD calculations after optimum rigid body 
superposition

20

di j(t) = |ri(t)− r j(t)|

*S. L. Seyler, A. Kumar, M. F. Thorpe, and O. Beckstein. Path similarity analysis: A method for quantifying macromolecular 
pathways. PLoS Comput Biol, 11(10):e1004568, 10 2015. doi: 10.1371/journal.pcbi. 1004568..

P

Q
p*

q*

• clustering (e.g. for Markov 
State Models)

• Path Similarity Analysis* 
(with Shantenu Jha)
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• simulation with Gromacs 5.0.5 on local workstation (16 
core Intel Sandy Bridge 2.6 GHz, NVIDIA GTX 690)

Benchmark: Gromacs Performance on Desktop

23

3R30.0 (1.7 M particles) 6R30.0 (3.4 M particles)
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Benchmark: Gromacs Performance on stampede

• 16 cores per node, one NVIDIA K20 GPU per node
24

Code Scaling and Performance
Oliver Beckstein, Center for Biological Physics, Department of Physics, Arizona State University

(a) Performance for varying node numbers. (b) Performance for varying particle numbers

(c) SU cost to run a 100 ns MD simulation for varying

node numbers

(d) SU cost to run a 100 ns MD simulation for varying

particle numbers

Figure 5: Benchmark of coarse grained lipid vesicle systems on the hybrid nodes of Stampede. Each run used the K20

GPU on a node and an optimum number of OpenMP threads per node. Three system sizes were tested with 122,208,

1,748,952 and 3,497,904 particles. The logarithmic scaling was necessary to present data over such a wide range of

system sizes consistently.

4

particles

particles

nodes

nodes
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