
s
ch has

wing

is
same

efines
or may

), the

 will not

n the
 data
l and

se all the
XSIL: Java/XML for Scientific Data
Roy Williams

California Institute of Technology
6/27/00

Abstract: This paper describes the XSIL (Extensible Scientific Interchange Language)
system that connects scientific XML to a Java object model and powerful visualization.
There is an XML format for scientific data objects, and a corresponding Java object
model, so that XML files can be read, transformed, and visualized. We describe the Xlook
object browser, which reads XSIL files and allows them to be visualized in tree-like way,
with viewers including a chart widget and a sortable table. We describe how to customize
the XML format, and build custom viewing components that are dynamically loaded by
Xlook. All code is open-source, obtainable from KWWS���ZZZ�FDFU�FDOWHFK�HGX�;6,/.

1. Introduction

A. What is this?
1. XML is a “Language to make languages”, a simple, yet effective way to build structured documents that i
revolutionizing business practices on the Internet. An XML document is a hierarchy of “elements”, each of whi
a textual “tag”, some “attributes”, some text, and may also contain other elements.

2. XSIL is some basic syntactic structure for scientific data (Table, Array, Param, Time, etc), together with a
mechanism to extend both the XML side and the Java object side. XSIL also offers a modular, extensible vie
platform called Xlook.

3. An XML document may refer to a DTD (document type definition) that expresses its structure. The DTD
analogous to the Class of object-oriented software, and the XML document is an instance of that DTD in the
way that the Object is an instance of a Class, or an Apple is an instance of Fruit.

4. For example:
�%RRN�,6%1 µ����������µ!

�$XWKRU!'��6FDUODWWL��$XWKRU!
�7LWOH!7KH�%LJ�)LJKW��+DUSVLFKRUG�YV��9LROLQ��7LWOH!
�$XWKRU!$��6WUDGLYDULXV

�(PDLO!VWUDG#YLROLQ�RUJ��(PDLO!
��$XWKRU!

��%RRN!

5. This is a record that expresses structured information about a book. The DTD for such an XML scheme d
syntactic information, such as the idea that a book has one or more authors, but exactly one title; that an auth
have zero or more email addresses, but a title cannot have an email address. An example of an attribute is the ISBN
attribute associated with the book element. When an XML file is parsed (by any XML application, not just XSIL
syntax is compared against the DTD, and non-compliant files detected. An XML editor is powerful because it
‘knows’ the document structure through the DTD: once a title has been entered for the book record, the editor
allow another title.

6. The XSIL DTD defines a few basic elements that form the core of scientific data. The Table is modelled o
relational table and expresses a collection of records, all of similar structure; the Array is for low-dimensional
cubes such a images, spectra, time-series, voxels, and so on. The Stream element provides a link to externa
encoded data through files, URL’s, Big/Little-endian and Base64 encodings, as well as delimited text.

7. The idea is that XSIL can be fashioned to meet the needs of a particular scientific discipline by building
combinations of these base elements that have semantic meaning in that discipline, then extending XSIL
appropriately to handle these. Dynamic loading ensures flexibility without relinking code or struggling with
makefiles. The easiest way to extend XSIL does not entail DTD changes, but use of a special XML attribute
7\SH µ0\6WXII�0\2EMHFWµ.

8. Such extensions can also be used to build viewing extensions for custom objects, extensions that can u
Page -1 of 14

XSIL: Java/XML for Scientific Data

icient,
 large
, in

of links

is

it a

ort, int,
s and

n
f the
TD,

to the

ile
lection
bution,
define
objects)

e is a
en its

se
e
power that comes with Java, including the Swing GUI components, advanced imaging, Java3D, the LiveTable
component with direct database access, and the JChart component for graphs.

9. XSIL is a pure-Java application, so that portability and programming efficiency have been emphasized over CPU
speed. However, it can deal effectively with very large quantities of data, using the following three strategies.

• First, the use of external files separates metadata (XML) from data (binary). Very large XML files are not eff
and most XML software cannot handle more than a few megabytes. However, if a user wishes to create very
XML files, there is a utility with the XSIL distribution (Splitter) to break up such a file into a small metadata file
XML, and many external data files.

• Second, data is not fetched from external files until it is needed, so that an XSIL file can contain hundreds
to external data, but the parsing can still be fast.

• Third, XSIL stores data efficiently, so each 4-byte integer takes up only 4 bytes asymptotically. When data
fetched from a link, efficient calls are available for bulk transfer.

B. More information on XML and XSIL can be found at:

• XSIL web site: KWWS���ZZZ�FDFU�FDOWHFK�HGX�;6,/

• The World Wide Web Consortium standardization effort for XML: KWWS���ZZZ�Z�F�RUJ�;0/

• Seybold publishing XML site: KWWS���ZZZ�[PO�FRP�

C. Reasons to use XSIL
1. XSIL provides an XML model for data transfer which is being adopted in the gravitational-wave and
astronomical communities. Furthermore, it is XML, with an increasing range of transformation filters, making
very plastic language. There is a named, typed hierarchy through the collection object, and base objects are Table,
Array, Param, Time, and others, and the arrays and tables may be in these primitive types: boolean, byte, sh
long, float, double, floatComplex, doubleComplex, and String. There is a Stream object to extract byte stream
primitive streams from files, URLs, databases, and delimited text.

2. An object model with Java API. Users can provide a file name or URL to the XSIL library, which returns a
object which is the root of a tree. This generic container (class XSIL) may have been extended to form one o
objects described below (eg. Time, Table, Array, Param, etc). The structure of an XSIL file is defined by its D
saying, for example, that each $UUD\ must have at least one 'LP element to give its dimensions. This model may be
extended by adding domain-specific tags and the corresponding code to XSIL. New entries would be added
DTD to define the syntax of the new structure.

3. The object model is extensible in a different, looser, sense: if the XML file has a tag such as �;6,/�

7\SH µ%DQDQDµ!� then the XSIL reader will seach for a class called %DQDQD in the place where user extensions are
built, for FODVV�%DQDQD�H[WHQGV�;6,/. In this way we establish a highly flexible connection between the XML f
and the code that handles it. If such code is not found, then the XML element is assumed to be a generic col
object. This method of extension does not entail changing the DTD. Several extensions are in the XSIL distri
an example being 7LPH6HULHV. This element consists of a one-dimensional array and a pair of parameters that
the start time and the delta-time between samples. Because of the dynamic linking, object handlers (not just
may be emailed to colleagues.

4. One major code written to the XSIL library is the object browser (Xlook), that is intended as a way to view
XSIL files and their contents in the same way as a web browser can be used to view collections of files. Ther
tree-representation of the elements of the file, shown alongside the XML itself. When an object is “Viewed”, th
specific viewer is displayed.

5. The object browser can be extended with user-written code. An example of this is the Java3D extension to
XSIL: certain arrays are defined in XSIL, and an extension defined (as in (2) above). This extension treats the
arrays as coordinates, colors, etc, and can display them in a Java3D window. Similarly the TimeSeries can b
graphed.

D. Uses for XSIL
1. As a flexible and general transport format between disparate applications in a distributed archiving and
Page 0 of 14

XSIL: Java/XML for Scientific Data

 actual

ools.

rovide

es

L,

 also .

ice, and
vide a

f

e XML
re is an

these:

 is

Only
the third
computing system; a text-based object serialization that can be handled by common tools, or

2. As a documentation mechanism for collections of data resulting from experiments or simulations; with all the
parameters, structure, filenames and other information needed to keep a complete scientific record.

3. As an “ultra-light” data format: a user can, if he wants, simply read the markup, then delete all except the
data, or all except for the filenames where the data may be found.

4. All XML files including XSIL, can be created and edited with a large range of high-quality, customizable t

5. XML files can be stored in an XML database, such as eXcelon (www.exceloncorp.com). Such products p
rich tools for storing, querying, presenting, and connecting to XML data.

E. Future Extensions
1. Data access: In addition to local files, URL’s, and XML-encoded data, we would like to work with databas
directly, using JDBC to view and edit database tables.

2. Output formats: In addition to the Matlab output mechanism, we would like to consider data output as ID
multichannel Photoshop, FITS, Ligo Frame files, and Microsoft Excel.

3. Viewers:a viewer for Ligo Frame files will be connected, and for astronomical applications, a FITS viewer

4. Service definitions: objects that tell a client application how to format and send requests to a remote serv
the kinds of response that the service will provide. Such a definition could contain an XHTML form both to pro
human input, but also to define the syntax of the request that the service is expecting.

2. XML Basics

A. Syntax
1. An XML file is a hierarchical structure of elements that may contain other elements. An element generally
consists of a start tag, a body, and an end tag, for example: �)UXLW!%DQDQD��)UXLW!, where start and end tags are
distinguished by the presence of a slash.

a) An element may be empty, meaning that there is only a single tag, with no body, for example �(PSW\(OH�

PHQW�!; note the position of the slash.

b) Elements may contain attributes, for example: �)UXLW�FRORU µ\HOORZµ>. There can only be one instance o
a given attribute name in any tag.

2. XML is case-sensitive, so that �$SSOH!, �DSSOH! and �$33/(! are all different tags.

3. Comments in XML are delimited like this:
�����7KLV�LV�D�FRPPHQW���!

4. An XML document can be handled by both human and computer. If a human sees the document, then th
is presented, usually by means of a style language file, or through a filter. If a computer sees the document, the
API to control a parser of the document.

3. XSIL files

A. Header
1. All XML files, which includes all XSIL files, have the following as their first line:

�"[PO�YHUVLRQ �����"!

2. The second line of an XML file may make a reference to an externally defined Document Type Definition
(DTD), which defines the syntax of XSIL files. Thus every XSIL file has the following as its second line one of

��'2&7<3(�;6,/�6<67(0��KWWS���ZZZ�FDFU�FDOWHFK�HGX�SURMHFWV�[VLO�[VLO�GWG�!
��'2&7<3(�;6,/�6<67(0�´;6,/�GWG�!

The DTD can be referenced from a remote location via the URL syntax, or locally with the file name. This file
presented in section 8.

3. There may follow other XML elements, but the XSIL parser will ignore these until it finds a XSIL element.
the first XSIL element is then considered, so there should never be more than one in a file. Thus, in general,
line is:

�;6,/!
Page 1 of 14

XSIL: Java/XML for Scientific Data

 of the

ion be
-

0).
and the last line of the file closes this element:
��;6,/!

4. When contained in this first, plain container element, containers may be typed, leading to user-side code being
called. Currently,the Type of the outermost element is not handled properly.

B. Object Name and Type
1. Any of the XSIL elements may have a Name attribute, for example:

�7DEOH�1DPH µ%DNHB2XWB7HPSHUDWXUHµ!

While the names may be useful in presentation of the XSIL, the major intended use is in navigating the object model,
through methods that find an object of a given name.

2. Any of the XSIL elements may have a Type attribute, which may also be used for navigating the object model.
However, we are most interested in this attribute to link this XML element to a Java object, thus extending the
container object:

�;6,/�7\SH µ0\6WXII�0\2EMHFWµ�1DPH µ-DFNµ!

causes the linker to look for the file $XSIL_HOME/extensions/MyStuff/MyObject.class to act as a handler for the
object called -DFN.

C. The Container Object
1. XSIL
There is a generic �;6,/! element which is a container for other elements, including other �;6,/! elements, thus
inducing a hierarchy. Each of these may have a 1DPH attribute, to provide hierarchical naming that is visible from the
API. When the file is parsed, there is a representation of the first XSIL element that is found in the document. Here is
a XSIL fragment that consists of a container hierarchy with an array at the second level and a parameter at the third
level:

�;6,/�1DPH µ)UXLWµ!
�;6,/�1DPH µ<HOORZ)UXLWµ!

�$UUD\!�'LP!���'LP!��$UUD\!
�;6,/�1DPH µ%DQDQDµ!

�3DUDP�1DPH µ,QGXFWDQFHµ!������3DUDP!
��;6,/!

��;6,/!
��;6,/!

2. The XSIL object is the only one that can contain other XSIL objects. All the others (below) can only contain
only:

a) The elements explicitly defined in their description, or

b) Stream object from which data may be requested by the code handling the object.

D. XSIL Base Objects
1. Comment
A comment object in XSIL is not meant to be interpreted or parsed. It appears only in the presentation of the
document. For example:

�&RPPHQW!7KH�GDWD�WKDW�IROORZV�LV�SUREDEO\�ZURQJ��&RPPHQW!

2. Param
A parameter in XSIL is an association between a name and a value. In addition, it may have a Unit attribute. For
example:

�3DUDP�1DPH µ)UXLWB0DVVµ�8QLW µNJµ!�������3DUDP!

The meaning here is "Fruit_mass = 0.387 kg", usually found in "parameter files" or “header files” in scientific
computing. If the element is empty, then the value is read from the corresponding stream. Note that the value
parameter is not typed as float, int, etc, but rather it is string-valued.

3. Time
In the LIGO observatory, as with many other experiments in physical science, it is critical that timing informat
not only accurate, but also easy to understand. The �7LPH! element in XSIL can represent either “natural” time (ISO
8601 standard, YYYY-MM-DD HH:MM:SS.mmmuuunnn), or GPS time, or “Unix time” (seconds since 1/1/197
The different formats are differentiated by the 7\SH attribute in the tag:

�7LPH�7\SH µ,62�����µ!�������������������������7LPH!
�7LPH�7\SH µ*36µ!���������������7LPH!
Page 2 of 14

XSIL: Java/XML for Scientific Data

hen be
�7LPH�7\SH µ8QL[µ!���������������7LPH!

The default for the type is ISO-8601.

4. Table
A table is an unordered set of records, each of the same format, where a record is an ordered list of values. The
contents of a record are defined by column headings, each of which may have a unit and a type. This definition of a
table should be thought of as similar to the table object that is found in a relational database; we should point out that
this is not the complex and exotic typographical beast of TeX or HTML.

The only tag specific to the Table object is �&ROXPQ!, which specifies the name, type, and possibly units associated
with one of the columns of the table. It can be thought of as the heading of a column in a table. Shown below is an
example table that includes a stream from which the table can be populated.

�7DEOH!
�&ROXPQ�1DPH �&KDQQHO1DPH��7\SH �VWULQJ��!
�&ROXPQ�1DPH �6LWH���������7\SH �IORDW�����8QLW �PHWHU��!
�&ROXPQ�1DPH �&ORFN��������7\SH �IORDW�����8QLW �KRXU��!
�&ROXPQ�1DPH �'HVFULSWLRQ��7\SH �VWULQJ��!
�6WUHDP�'HOLPLWHU µ�µ!

´+LVWRU\�&KDQQHOµ��������������´$QRWKHU�&KDQQHOµ
´0DWK�&KDQQHOµ��������������´&KDQQHO�DERXW�0DWKµ

��6WUHDP!
��7DEOH!

5. Array
An array is a collection of numbers (or other primitive type) referenced by subscripts, which is a list of integers
whose maximum values are given by the list of dimensions of the array. This definition is very close conceptually to
a Fortran or C array, with the 7\SH�attribute of the �$UUD\! tag specifying which primitive type is contained in the
array (float, int, etc.). The Dim element specifies the dimensions of the array, but it does not specify the subscript
ranges. For a dimension of 5, a Fortran binding of the API would label subscripts from 1 to 5, but a Java or C++
binding would have subscripts from 0 to 4.

As with other XSIL objects, the Array tag may have 1DPH�and 7\SH attributes. The Type attribute is interpreted as the
data-type for the data in the aray. The only element specific to this class is �'LP!, which may have a Name attribute to
specify the name of that dimension of the data for presentation purposes. For example:

�$UUD\�7\SH µLQWµ!
�'LP�1DPH µ;�D[LVµ!���'LP!�
�'LP�1DPH µ<�D[LVµ!���'LP!

��$UUD\!

which specifies a 5x3 array of integers, with the last dimension changing fastest. The presumption is that 15 integers
may be read from the Stream associated with this Array.

6. Url

This tag is quite similar to an HTML link:
�8UO�KUHI �KWWS���ZZZ�FDFU�FDOWHFK�HGX�;6,/�!;6,/�+RPH�3DJH��8UO!
�8UO�KUHI �KWWS���ZZZ�FDOWHFK�HGX��!&DOWHFK�+RPH�3DJH��8UO!

There is an KUHI attribute, containing the URL, and the text part is a message associated with the link.

4. Streams

A. Connecting Streams and XSIL Objects
1. Some of the objects from the previous section are self-contained, for example Param and Comment. Others
(XSIL, Table, Array) define the structure of a data object, without necessarily making available the data itself. The
Stream object provides the input that allows these structures to be filled.

2. A XSIL document may define many streams and many XSIL objects (Table, Array etc.). In general a stream may
contain the data for many different objects. We use the collection mechanism induced by the XSIL tag to provide this
association.

3. For a stream to be available to a XSIL object, either:

• The object contains the stream explicitly between its start and end tags, or

• the collection in which the object resides must contain exactly one Stream. The objects in the collection will t
read sequentially from the Stream.
Page 3 of 14

XSIL: Java/XML for Scientific Data

e relative
ged

achines,
rmat as

d.

ection
e64

own.

ing

ber of
4. Delimited Text
�6WUHDP�7\SH µ/RFDOµ�'HOLPLWHU ���!

�����������������������������
��6WUHDP!

The delimiter string are additions to the default delimiter string, consisting of the newline character. Thus a string
read in this way cannot contain a newline, and the String primitive in XSIL cannot contain a newline.

5. Remote data
�6WUHDP�7\SH �5HPRWH�!

GDWDILOH��GDW
��6WUHDP!

The stream may have Type /RFDO — the data is contained in the XSIL file itself — or it may be 5HPRWH, as in this
case. Local is the default type for a stream. Data is read from the local file system. The name is assumed to b
to the XSIL filename, not relative to the current working directory. Thus XSIL files and their data can be packa
and moved without renaming files.

If the file name is fully qualified, it can be either in Unix (�EODK�EODK) or Windows style (&�?EODK?EODK).

6. Endian encoding
�6WUHDP�7\SH �5HPRWH��(QFRGLQJ µ/LWWOHHQGLDQµ!

GDWDILOH��GDW
��6WUHDP!

Java reads and writes bigendian binary, as this is the same byte-ordering as Sun computers have. Windows m
though have the opposite ordering, so binary files made by a PC will need to be converted from little-endian fo
above.

7. URL streams

�6WUHDP�7\SH �5HPRWH�!
KWWS���ZZZ�FDFU�FDOWHFK�HGX�EODKEODK�GDWDILOH��GDW

��6WUHDP!

If the stream has type 5HPRWH, and the text in this element contains the string “���”, then it is interpreted as a URL-
type locator for the data that this stream represents. The file:// and the ftp:// and http:// protocols are supporte

8. Base64 streams

�6WUHDP�(QFRGLQJ µ%DVH��µ!
$$$$$$$$$$($$$$&$$$$$Z$$$$4$$$$)$$$$%J$$$$F$$$$,$$$$&4

��6WUHDP!

The first ten integers have been encoded in Base64 and put directly into the XML document.

B. Stream Content
1. The XSIL data stream can be considered to be an arbitrary sequence of bytes. In the ImageList demo (s
7C), streams get the image data, to be delivered as gif. Some of the images are external files, others are bas
encoded as part of the XSIL file.

2. In the ImageList code, a Java ,QSXW6WUHDP is obtained from the �6WUHDP! tag in the XML. The stream of bytes is
read in and converted to MDYD�DZW�LPDJH and displayed with a chooser. The metadata for each image is also sh

3. In other cases, however, for example the Array and Table implementations, the Stream contains someth
higher level than raw bytes: a sequence of primitive types.

4. The types that are available for Tables and Arrays are listed in the following (with the corresponding num
bits), and some alternate spellings:
• ERROHDQ�(1)
• E\WH�(8)
• VKRUW�(16) (int_2s)
• LQW�(32) (int_4s)
• ORQJ�(64) (int_8s)
• IORDW�(32) (real_4)
• GRXEOH�(64) (real_8)
• IORDW&RPSOH[�(64) (complex_8)
• GRXEOH&RPSOH[�(128) (complex_16)
Page 4 of 14

XSIL: Java/XML for Scientific Data

inary byte
rted to

her
urce,
7464),

dled as

rt to

m

treams.

r, it is
de.

file is
n
ed

p, or

e,

n found,
arly the

ll-
ecial

series
samples
be
• 6WULQJ�(arbitrary length) (lstring, char, character)

5. To read such a stream, there may be some filtering process. A base64 encoded stream is converted to b
stream, available as a java.io.InputStream. If the stream is to be read as a sequence of primitives, it is conve
java.io.DataInputStream, and the byte swapping necessary for little-endian conversion may then be applied.

6. If the stream is text-based, either local or remote, the newline character is always a delimiter, plus any ot
characters nominated in the Delimiter attribute of the Stream element. The text is read line by line from the so
and primitives generated. If there is data that cannot be converted to the relevant type (eg. the number 3.56A
then an exception is not thrown, but rather a default value is put in place.

7. The array of primitive objects contains strings, it cannot be read from a binary stream. Strings must be han
delimited text.

8. Any primitive type can be converted to any other: to convert from complex we take the real part, to conve
boolean we ask if it is nonzero, to convert to String we use the toString() method.

C. Stream Encoding
1. The (QFRGLQJ�attribute specifies how the data in a 6WUHDP is encoded. It is a comma-separated list chosen fro
the values:

• 7H[W��%LQDU\��EDVH����%LJ(QGLDQ��/LWWOH(QGLDQ��'HOLPLWHU

2. The Text attribute is assumed by default for Local streams, the Binary attribute is the default for Remote s

3. When the stream is Base64, it is decoded by the XSIL library. When the stream specifies an Endian orde
converted to the Endian order appropriate to the current machine before being delivered to the application co

4. The other attribute defined in this section is 'HOLPLWHU: It is only relevant in the case of a Text stream. The
characters in the attribute are appended to a delimiter string that already contains newline.

5. Extending XSIL

A. Object Model of XSIL
1. When a XML file is read by an application program through the XSIL API, the hierarchical structure of the
parsed to a hierarchical base object, which is then made available to the application. The XSIL software layer the
extracts from the base object the first �;6,/! element, which is returned to the application. Thus XSIL can be mix
in a straightforward way with other kinds of XML or HTML, such as Math Markup Language, Chemistry Marku
other XML languages.

2. As well as the parser, the XSIL API provides a rich set of methods to extract objects of given element-typ
objects which have given attributes, given Name or Type, and so on.

3. Information can then be extracted from objects. For example once a Param object of given name has bee
the string which is its value can then be extracted. In this way we have a dictionary of name-value pairs. Simil
rows and colums of a Table, or the start and end time of a TimeSeries object are available to the application.

4. We can extend XSIL in an informal, perhaps personal way, simply by creating a collection object with “we
known” parameter names. In this case, we expect the application that is reading the file to understand the sp
significance of the word 7\SH µ7LPH6HULHVµ, and to know the names of the parameters that it expects to find.

B. Example: TimeSeries
1. The following example illustrates the collection of parameter names that would be appropriate for a time-
object. To make a valid TimeSeries there must be (in addition to data), Start time (t0), and delta time between
(dt). Given these, and the number of samples (from the dimensionality of the array), the third parameter can
computed.

�;6,/�7\SH µ7LPH6HULHV�7LPH6HULHVµ�1DPH µ0\�7LPH�6HULHVµ!
�&RPPHQW!$�VDPSOH�WLPH�VHULHV��&RPPHQW!
�3DUDP�1DPH µW�µ!�����3DUDP!
�3DUDP�1DPH µGWµ!�������3DUDP!
�$UUD\!

�'LP!������'LP!
�6WUHDP�7\SH µ5HPRWHµ�(QFRGLQJ µ/LWWOH(QGLDQµ!

P\GDWD�GDW
Page 5 of 14

XSIL: Java/XML for Scientific Data

 data

 from

ted
��6WUHDP!
��$UUD\!

��;6,/!

The XSIL parser looks from its current classpath to find code to handle this object. In this case, the code is in a
classfile called TimeSeries in a directory called TimeSeries.

2. The code to handle the extension type could look something like this:
SDFNDJH�H[WHQVLRQV�7LPH6HULHV�
LPSRUW�RUJ�HVFLHQFH�;6,/�
�
LPSRUW�MDYD�XWLO�
�

SXEOLF�FODVV�7LPH6HULHV�H[WHQGV�;6,/�^
GRXEOH�W�� �����
GRXEOH�GW� ������
LQW�QGDWD� ���
$UUD\�D�

SXEOLF�YRLG�FRQVWUXFW��^
IRU�LQW�LFKLOG ���LFKLOG���JHW&KLOG&RXQW����LFKLOG���^

������������;6,/�[� �JHW&KLOG�LFKLOG��
�����������LI�[�LQVWDQFHRI�3DUDP�^

3DUDP�S� ��3DUDP�[�
LI�S�JHW1DPH���HTXDOV��W����^�

W�� �QHZ�'RXEOH�S�JHW7H[W����GRXEOH9DOXH���
`
LI�S�JHW1DPH���HTXDOV��GW���^

GW� �QHZ�'RXEOH�S�JHW7H[W����GRXEOH9DOXH���
`

`
�����������LI�[�LQVWDQFHRI�$UUD\�		���$UUD\�[��JHW1GLP��� ���^

D� ��$UUD\�[�
QGDWD� �D�JHW1GDWD���

`
`
LI�QGDWD� ���^

6\VWHP�RXW�SULQWOQ��(5525��LPSURSHU�7LPH6HULHV���
`

`

SXEOLF�GRXEOH�JHWW����^UHWXUQ�W��`

SXEOLF�GRXEOH�JHWGW���^UHWXUQ�GW�`

SXEOLF�LQW�JHW1GDWD���^UHWXUQ�QGDWD�`

SXEOLF�GRXEOH�JHW'DWD�LQW�L��^
UHWXUQ�D�JHW3ULP$UUD\���JHW'RXEOH�L��

`

3. The constructor for the new object is handled by XSIL, and initalization of the new object is handled by
overloading the FRQVWUXFW�;6,/�[��method. The vector of child objects is examined, looking for the data we need
to make the TimeSeries, being some parameters, and an array. If the parameters have the right names, it is assumed
that numbers can be read from the corresponding text, and if the array is one-dimensional, it is assumed that it is the
TimeSeries data. Note that the TimeSeries may contain other XSIL objects, which are ignored by this piece of code.

4. The other methods provide access to the TimeSeries itself, the last being the data. Associated with each Array or
Table object is a PrimArray object, which holds a sequence of any of the ten primitive types (boolean, byte, short, int,
etc.) from which any desired type can be extracted.

5. The data making up the time series is not read at the initialization of the object, but rather at the first call to the
getData method. Files are read or URL’s resolved, or delimited text is parsed. If the number of objects in that
stream is not sufficient, default values are substituted instead.

6. The JHW'DWD call in the TimeSeries implementation fetches one number at a time. Another call is available
XSIL to get large quantities of data, it is of the form GRXEOH>@�JHW'RXEOH$UUD\�LQW�VWDUW��LQW�HQG�, which
creates an array of doubles with HQG�VWDUW elements (subscripts from VWDUW to HQG��). Othe calls are available for all
ten primitive types.

7. Parent objects are constructed after their children. If a user-created object is a child of another user-crea
object, then the FRQVWUXFW�� method of the child has been called before the FRQVWUXFW�� of the parent.
Page 6 of 14

XSIL: Java/XML for Scientific Data

e 1.
C. Coding an XML transformation
1. The following code reads and processes an XSIL file without any reference to graphics or browsing. From a file
name, the XSIL root element is created, and a recursive function is called over all the child objects. All the objects
whihc are Param objects are then printed.
SDFNDJH�H[WHQVLRQV�5HDG;0/�
LPSRUW�RUJ�HVFLHQFH�;6,/�
�
LPSRUW�MDYD�LR�
�

SXEOLF�FODVV�OLVW3DUDP�H[WHQGV�;6,/�^
SXEOLF�VWDWLF�YRLG�PDLQ�6WULQJ�DUJV>@��WKURZV�,2([FHSWLRQ�^

LI��DUJV�OHQJWK�� ����^
6\VWHP�HUU�SULQW��8VDJH��MDYD�H[WHQVLRQV�5HDG;0/�OLVW3DUDP�ILOH�[PO?Q���
6\VWHP�H[LW����

`
;6,/�URRW� �QHZ�;6,/�DUJV>�@��
UHFXUVH�URRW��

`

SXEOLF�VWDWLF�YRLG�UHFXUVH�;6,/�[��^
IRU�LQW�LFKLOG ���LFKLOG���[�JHW&KLOG&RXQW����LFKLOG���^

;6,/�FKLOG� �[�JHW&KLOG�LFKLOG��
LI�FKLOG�LQVWDQFHRI�3DUDP�^

6WULQJ�1DPH� ���3DUDP�FKLOG��JHW1DPH���
6WULQJ�7H[W� ���3DUDP�FKLOG��JHW7H[W���
6\VWHP�RXW�SULQWOQ��1DPH������1DPH������7H[W������7H[W��

`
UHFXUVH�FKLOG��

`
`

`

This program prints information about all of the �3DUDP! elements that it finds in the XSIL file.

2. A similar scheme could be used for arbitrary reprocessing of XSIL data. In addition to metadata, the data streams
are also available, either through the getInputStream method of Stream, or through higher-level constructions such as
Tables and Arrays.

6. Xlook

A. The Main Window
1. The browser can be initiated from a command line with the “Xlook” command. The GUI is shown in Figur

Figure 1

The Xlook main window,
showing XML source (top-
right), messages (bottom),
and tree view (top-left). The
Table object has been
highlighted, causing its
toString() method to be called
in the message window. The
View/Selection method has
been chosen to bring up the
Tables’s view component.
Page 7 of 14

XSIL: Java/XML for Scientific Data

 look of

rsions

f the
very

hree-
 The left
fines the
2. This batch file expects an argument with is the XSIL file to be viewed:
;ORRN�VDPSOHV?DOO�[PO

3. The main window comes up, with three panes. The lower section is a message window, although many relevant
messages are still coming out in the command-line window instead. The top-right window shows the XML code, and
the top-left (tree-view) window shows a hierarchical representation of the file.

4. Clicking on the nodes of the tree (little magnifying glasses) expands and contracts the tree branches in the usual
way. The basic XSIL types have icons. When an XSIL object is selected with the mouse, it is highlighted in a blue
box, and a short text description appears in the message window.

5. The description of the object in the tree-view window is the result of the WR6WULQJ���method of the object,
which can be overloaded in extension code. The description in the message window is supposedy a little more
complete, and is the result of the WR/RQJ6WULQJ�� method, which can also be overloaded

B. View Components
1. The view component for the Table object is shown in Figure 2.

2. The TimeSeries extension that comes with the XSIL distribution has a view component constructed from the KL
Group’s JChart component, as shown in Figure 3. There is a customization panel giving great control over the
the chart, though this has not yet been switched on.

3. These light-weight versions of the components are freely usable and distributable, but the full-strength ve
are not free. The light-weight versions are included in the XSIL distribution.

4. The view component for the �8UO! tag is to spawn a web browser. Once the browser reads the MIME type o
associated data object, it may bring up a specialized application. In this way, XSIL can contain references to
complex data objects, such as Excel spreadsheets or astronomical FITS files.

5. As another example of a view component, we show a Java3D display. In this window, the shape is fully t
dimensional, and the graphics can take advantage of any OpenGLaccelerator that may be in the workstation.
mouse button rotates the shape, the middle button scales it, and the right button translates. The XML that de
icosahedron shape is as follows:
�;6,/�7\SH �-DYD�'�!

�;6,/�7\SH �-DYD�'*HRPHWU\�!

Figure 2

The Table view component, using the
LiveTable component from klgroup.com. The
table can be sorted with a shift-click on any of
the gray column headers. In this case, it is
sorted on the second column.
Page 8 of 14

XSIL: Java/XML for Scientific Data
Figure 3

The view component for the TimeSeries
extension. The name and type of the
object are at the top, as with every view
component. This microphone channel
from Ligo engineering tests is shown in
the time domain (below), and is perhaps
more understandable in the frequency
domain (above).

Figure 4

The view component for the Java3D extension.
The three mouse buttons can be used for 3D
rotation, scale, and translation of the image. This
object consists of a TriangleArray (the colored
triangles), and three LineArrays (the white
rectangles). It illustrates how an icosahedron can
be constructed from three golden rectangles.

The TriangleArray and LineArray objects are
based on objects from Java3D API, but
implemented with XSIL through Arrays and
Params expressing what is coordinates and what
is colors, what is triangles and what is lines.
Page 9 of 14

XSIL: Java/XML for Scientific Data

ype of

he
n receive
puted.

ject

essage
�3DUDP�1DPH �-DYD�'*HRPHWU\7\SH�!7ULDQJOH$UUD\��3DUDP!
�$UUD\�1DPH �&RRUGLQDWHV��7\SH �IORDW�!

�'LP!����'LP!
�'LP!���'LP!
�6WUHDP�(QFRGLQJ �7H[W��7\SH �5HPRWH��'HOLPLWHU ����!LFRFRRUG�GDW��6WUHDP!

��$UUD\!
�$UUD\�1DPH �&RORUV��7\SH �IORDW�!

�'LP!����'LP!
�'LP!���'LP!
�6WUHDP�(QFRGLQJ �7H[W��7\SH �5HPRWH��'HOLPLWHU ���!LFRFRORU�GDW��6WUHDP!

��$UUD\!
��;6,/!

�;6,/�7\SH �-DYD�'*HRPHWU\�!
�3DUDP�1DPH �-DYD�'*HRPHWU\7\SH�!/LQH6WULS$UUD\��3DUDP!
�$UUD\�1DPH �&RRUGLQDWHV��7\SH �IORDW�!�'LP!���'LP!�'LP!���'LP!

�6WUHDP�(QFRGLQJ �7H[W��7\SH �/RFDO��'HOLPLWHU ����!
���������������������������
���������������������������
���������������������������
���������������������������
��������������������������

��6WUHDP!
��$UUD\!

��;6,/!
������WZR�PRUH�UHFWDQJOHV�OLNH�WKH�RQH�DERYH������

��;6,/!

There is an outer enclosing element of type Java3D.Java3D, which contains a number of objects of type
Java3D.Java3DGeometry, which are the Triangle Arrays, Line Arrays, and so on which can be used to create 3D
objects in the view window. Of course, other types of data can be encoded in the XML, then rendered in a different
way by modifying the rendering code (in the extensions/Java3D directory).

7. Extending Xlook

A. Object Model
1. An Xlook view component is an extension of a class XSILView, which extends javax.swing.JComponent, which
is a generic graphics object in Swing.

2. The class implementing the viewing must have the same name as the object which it views, but with the suffix
“View” added. In the code below, for example, the Label object is viewed by a LabelView object.

3. When an Xlook user requests a view component, an outer frame is made by Xlook, with the Name and T
the object, and a scrollable panel (javax.swing.JScrollPane) is created to hold the client-supplied viewer.

4. The instantiate() method of the viewing object is called, with the argument guaranteed to be castable to t
expected object, and the completed frame rendered. This code may create buttons and other widgets that ca
events, as in the TimeSeries viewer shown above, where a checkbox can cause a power-spectrum to be com

B. Complete Example
1. In this section we present a very simple, but complete example of the XSIL system, with the XML, the Ob
code, and the Viewer code. The Label is defined in XML like this:

�"[PO�YHUVLRQ �����"!
��'2&7<3(�;6,/�6<67(0��[VLO�GWG�!
�;6,/!
�;6,/�7\SH �6LPSOH�/DEHO��1DPH �([DPSOH�!

�3DUDP�1DPH �0HVVDJH�!+HOOR�$XQWLH�-RDQ��3DUDP!
�3DUDP�1DPH �)RQW6L]H�!����3DUDP!

��;6,/!
��;6,/!

So the label object is just a piece of text (Message) and an integer (FontSize).

2. Code to read this object looks like this. The children are examined to find parameters that can supply the m
and fontsize fields.
SDFNDJH�H[WHQVLRQV�6LPSOH�
LPSRUW�RUJ�HVFLHQFH�;6,/�
�

SXEOLF�FODVV�/DEHO�H[WHQGV�;6,/�^
SXEOLF�6WULQJ�PHVVDJH� ��1R�PHVVDJH��
SXEOLF�LQW�IRQWVL]H� ����
Page 10 of 14

XSIL: Java/XML for Scientific Data
SXEOLF�YRLG�FRQVWUXFW��^
IRU�LQW�LFKLOG ���LFKLOG���JHW&KLOG&RXQW����LFKLOG���^

������������;6,/�[� �JHW&KLOG�LFKLOG��
�����������LI�[�LQVWDQFHRI�3DUDP�^

3DUDP�S� ��3DUDP�[�
LI�S�JHW1DPH���HTXDOV��0HVVDJH���^

WKLV�PHVVDJH� �S�JHW7H[W���
`
LI�S�JHW1DPH���HTXDOV��)RQW6L]H���^

WKLV�IRQWVL]H� ��QHZ�,QWHJHU�S�JHW7H[W�����LQW9DOXH���
`

`
`

`
`

3. Once the label is complete, the view component may be called from Xlook. In this case a -/DEHO is created to
show the message in the chosen pointsize.

SDFNDJH�H[WHQVLRQV�6LPSOH�

LPSRUW�RUJ�HVFLHQFH�;6,/�
�
LPSRUW�RUJ�HVFLHQFH�;ORRN�
�
LPSRUW�MDYD�DZW�
�
LPSRUW�MDYD[�VZLQJ�
�

SXEOLF�FODVV�/DEHO9LHZ�H[WHQGV�;6,/9LHZ�^
/DEHO�V�

SXEOLF�YRLG�LQVWDQWLDWH�;6,/�[��^
WKLV�V� ��/DEHO�[�
WKLV�VHW/D\RXW�QHZ�)ORZ/D\RXW����
)RQW�I� �QHZ�)RQW��+HOYHWLFD���)RQW�%2/'��V�IRQWVL]H��
-/DEHO�ODEHO� �QHZ�-/DEHO�V�PHVVDJH��
ODEHO�VHW)RQW�I��
WKLV�DGG�ODEHO��

`
`

C. Image List extension
1. Another extension of the Xlook browser is illustrated by the ,PDJH/LVW code. An XSIL file contains a collection
of images,each with metadata that is defined by parameters with specific names. The images themselves are
sometimes external files, sometimes in the XSIL document itself as base64 encoded binary.

2. Here is a section of the XSIL file:
�;6,/�7\SH �0\,PDJH�,PDJH/LVW��1DPH �0\�)DYRXULWH�0HVVLHUV�!

Figure 5

The view component defined by the
above code, together with the Xlook
window showing the XML that
drives it.
Page 11 of 14

XSIL: Java/XML for Scientific Data
�;6,/�1DPH �0����7\SH �0\,PDJH�0\,PDJH�!
�3DUDP�1DPH �3L[HO0LQ�!���������3DUDP!
�3DUDP�1DPH �3L[HO0D[�!����������3DUDP!
�3DUDP�1DPH �5HJLRQ:LGWK�!������������3DUDP!
�3DUDP�1DPH �,PDJH:LGWK�!�����3DUDP!
�3DUDP�1DPH �5LJKW$VFHQVLRQ�!������������3DUDP!
�3DUDP�1DPH �'HFOLQDWLRQ�!���������������3DUDP!
�6WUHDP�7\SH �5HPRWH�!P���JLI��6WUHDP!
��;6,/!

Here we see the description of the first image, which is the galaxy M54. There are two objects defined here,
0\,PDJH�0\,PDJH is a single image with metadata, and 0\,PDJH�,PDJH/LVW is a list of such.

3. The corresponding view component looks like this:

Figure 6

Viewing the ImageList
component. The image can
be selected from a pulldown
choice, and the image
metadata appears below. The
code for this is about 100
lines, and it is included in the
XSIL distribution.
Page 12 of 14

XSIL: Java/XML for Scientific Data
8. The DTD for XSIL
1. An XML file may be associated with a Document Type Definition (DTD) which defines the allowed tag names
in the document, and how these fit together: which elements may contain which other elements, and how many of
each element there may be.

��(/(0(17�;6,/���;6,/_&RPPHQW_8UO_3DUDP_7DEOH_$UUD_6WUHDP�
�!
��$77/,67�;6,/�1DPH�&'$7$����7\SH�&'$7$���!

��(/(0(17�&RPPHQW���3&'7�!

��(/(0(17�3DUDP���3&'7�!
��$77/,67�3DUDP�1DPH�&'$7$����7\SH�&'$7$����8QLW����&'$7$����!

��(/(0(17�8UO���3&'7�!
��$77/,67�8UO�1DPH�&'$7$����7\SH�&'$7$����KUHI����&'$7$����!

��(/(0(17�$UUD\��'LP
���6WUHDP"�!
��$77/,67�$UUD\�1DPH�&'7����7\SH�&'7����8QLW�&'7���!
��(/(0(17�'LP���3&'7�!
��$77/,67�'LP�1DPH�&'$7$����7\SH���!

��(/(0(17�7DEOH��&ROXPQ
���6WUHDP"�!
��$77/,67�7DEOH�1DPH�&'$7$����7\SH�&'$7$���!
��(/(0(17�&ROXPQ�(037<!
��$77/,67�&ROXPQ�1DPH�&'$7$����7\SH�&'$7$����8QLW�&'$7$���!

��(/(0(17�6WUHDP��3&'7�!
��$77/,67�6WUHDP�1DPH�&'$7$����7\SH�&'$7$����!
��$77/,67�6WUHDP�&RQWHQW�&'$7$���(QFRGLQJ�&'$7$����'HOLPLWHU�&'$7$���!
Page 13 of 14

XSIL: Java/XML for Scientific Data

ere it

 install

rd.

nd

e

ewing.

and

ing

t
9. Installation and Use
1. The installation is available as a zip file from

• KWWS���ZZZ�FDFU�FDOWHFK�HGX�;6,/�

by following the link “available software”.

2. Javadoc documentation comes with the distribution, or else from

• KWWS���ZZZ�FDFU�FDOWHFK�HGX�;6,/�MDYDGRF�

3. The XSIL environment has been tested on Solaris and Windows 98 and NT.

4. To run the XSIL environment, you will need:

• A computer with Java Development Environment (JDK) 1.2 or later. You will need to know the directory wh
is installed, meaning the directory which has the /bin and /lib subdirectories. For more information and free
download, see

KWWS���MDYD�VXQ�FRP�SURGXFWV�MGN�����

• One of the demonstration codes utilizes the Java3D package. If you wish to run this demo, you will need to
Java3D, which is available free from:

KWWS���MDYD�VXQ�FRP�SURGXFWV�MDYD�PHGLD��'�LQGH[�KWPO

The Java3D is implemented with OpenGL, so it will probably find your fast graphics card. NOTE: Installation is
much more difficult if you choose to put Java3D in a different directory from that suggested by the install wiza

• You must also have an unzip or untar facility.

5. Unpack the distribution, and go to the XSIL root directory, which is the one that contains com, org, doc, a
extensions directories. There should also be some scripts here, labelled �EDW for Windows, �VK�and �VRXUFH for
Unix.

6. Make sure the�-9B+20(and :(%B%52:6(5�locations are correct in the setup.bat (Windows) or setup.sourc
(Unix) script.

• The web browser is not necessary unless you intend to use the <URL> tag, which spawns a browser for vi

7. Start a command window and run the setup script. Type VHWXS (for Windows) or VRXUFH�VHWXS�VRXUFH (for
Unix). Make sure the Java interpreter is in your path: type MDYD, it should give a usage message rather than comm
not found.

8. For Unix users,
��VRXUFH�VHWXS�VRXUFH�
��;ORRN�VK�VDPSOHV�DOO�[PO

9. For Windows users,
F��VHWXS
F��[ORRN�VDPSOHV?DOO�[PO

10. The browser should now come up, and there are a number of sample in the samples directory.

11. NOTE to DEVELOPERS. The key to the Java package system, how it finds classes, how it compiles, mak
life easy, requires you to follow one rule: always run your compile (MDYDF) and applications (MDYD) from the XSIL
home directory, the one with demo scripts.

12. You can also examine and modify the code in the H[WHQVLRQV directory. To make a custom viewer, a good star
might be a copy of the H[WHQVLRQV�6LPSOH directory.
Page 14 of 14

	1. Introduction
	A. What is this?
	B. More information on XML and XSIL can be found at:
	C. Reasons to use XSIL
	D. Uses for XSIL
	E. Future Extensions

	2. XML Basics
	A. Syntax

	3. XSIL files
	A. Header
	B. Object Name and Type
	C. The Container Object
	D. XSIL Base Objects

	4. Streams
	A. Connecting Streams and XSIL Objects
	B. Stream Content
	C. Stream Encoding

	5. Extending XSIL
	A. Object Model of XSIL
	B. Example: TimeSeries
	C. Coding an XML transformation

	6. Xlook
	A. The Main Window
	B. View Components

	7. Extending Xlook
	A. Object Model
	B. Complete Example
	C. Image List extension

	8. The DTD for XSIL
	9. Installation and Use

