XSIL: Java/XML for Scientific Data
Roy Williams

Cdlifornia Institute of Technology
6/27/00

Abstract: This paper describes the XSIL (Extensible Scientific Interchange Language)
system that connects scientific XML to a Java object model and powerful visualization.
There is an XML format for scientific data objects, and a corresponding Java object
model, so that XML files can be read, transformed, and visualized. We describe the Xlook
object browser, which reads XSIL files and allows them to be visualized in tree-like way,
with viewers including a chart widget and a sortabl e table. We describe how to customize
the XML format, and build custom viewing components that are dynamically loaded by
Xlook. All code is open-source, obtainable from http://www.cacr.caltech.edu/XSIL.

1. I ntroduction

A. What isthis?

1. XML is a “Language to make languages”, a simple, yet effective way to build structured documents that is
revolutionizing business practices on the Internet. An XML document is a hierarchy of “elements”, each of which has
a textual “tag”, some “attributes”, some text, and may also contain other elements.

2. XSIL is some basic syntactic structure for scientific data (Table, Array, Param, Time, etc), together with a
mechanism to extend both the XML side and the Java object side. XSIL also offers a modular, extensible viewing
platform called Xlook.

3. An XML document may refer to a DTD (document type definition) that expresses its structure. The DTD is
analogous to the Class of object-oriented software, and the XML document is an instance of that DTD in the same
way that the Object is an instance of a Class, or an Apple is an instance of Fruit.

4. For example:

<Book ISBN="0439139597">
<Author>D. Scarlatti</Author>
<Title>The Big Fight: Harpsichord vs. violin</Title>
<Author>A. Stradivarius
<Email>strad@violin.org</Email>
</Author>
</Book>

5. This is a record that expresses structured information about a book. The DTD for such an XML scheme defines
syntactic information, such as the idea that a book has one or more authors, but exactly one title; that an author may
have zero or more email addresses, but a title cannot have an email address. An exarafitéboteis the ISBN

attribute associated with the book element. When an XML file is parsed (by any XML application, not just XSIL), the
syntax is compared against the DTD, and non-compliant files detected. An XML editor is powerful because it
‘knows’ the document structure through the DTD: once a title has been entered for the book record, the editor will not
allow another title.

6. The XSIL DTD defines a few basic elements that form the core of scientific data. The Table is modelled on the
relational table and expresses a collection of records, all of similar structure; the Array is for low-dimensional data
cubes such a images, spectra, time-series, voxels, and so on. The Stream element provides a link to external and
encoded data through files, URL's, Big/Little-endian and Base64 encodings, as well as delimited text.

7. The ideais that XSIL can be fashioned to meet the needs of a particular scientific discipline by building
combinations of these base elements that have semantic meaning in that discipline, then extending XSIL
appropriately to handle these. Dynamic loading ensures flexibility without relinking code or struggling with
makefiles. The easiest way to extend XSIL does not entail DTD changes, but use of a special XML attribute
Type="MyStuff.Myobject”.

8. Such extensions can also be used to build viewing extensions for custom objects, extensions that can use all the

Page-1of 14

XSIL: Java/lXML for Scientific Data

power that comes with Java, including the Swing GUI components, advanced imaging, Java3D, the LiveTable
component with direct database access, and the JChart component for graphs.

9. XSIL isapure-Javaapplication, so that portability and programming efficiency have been emphasized over CPU
speed. However, it can deal effectively with very large quantities of data, using the following three strategies.

« First, the use of external files separates metadata (XML) from data (binary). Very large XML files are not efficient,
and most XML software cannot handle more than a few megabytes. However, if a user wishes to create very large
XML files, there is a utility with the XSIL distribution (Splitter) to break up such a file into a small metadata file, in
XML, and many external data files.

* Second, data is not fetched from external files until it is needed, so that an XSIL file can contain hundreds of links
to external data, but the parsing can still be fast.

 Third, XSIL stores data efficiently, so each 4-byte integer takes up only 4 bytes asymptotically. When data is
fetched from a link, efficient calls are available for bulk transfer.

B. Moreinformation on XML and XSIL can befound at:

» XSIL web sitethttp://www.cacr.caltech.edu/XSIL

* The World Wide Web Consortium standardization effort for XMtttp: //www.w3c.org/xmL
» Seybold publishing XML siteittp://www.xm1.com/

C. Reasonstouse XSIL

1. XSIL provides an XML model for data transfer which is being adopted in the gravitational-wave and
astronomical communities. Furthermore, it is XML, with an increasing range of transformation filters, making it a
very plastic language. There i:iamed, typed hierarchy through the collection object, and base objectJ alée,

Array, Param, Time, and others, and the arrays and tables may be in these primitive types: boolean, byte, short, int,
long, float, double, floatComplex, doubleComplex, and String. There is a Stream object to extract byte streams and
primitive streams from files, URLs, databases, and delimited text.

2. Anobject model with Java API. Users can provide a file name or URL to the XSIL library, which returns an
object which is the root of a tree. This generic container (class XSIL) may have been extended to form one of the
objects described below (eg. Time, Table, Array, Param, etc). The structure of an XSIL file is defined by its DTD,
saying, for example, that eashray must have at least onpém element to give its dimensions. This model may be
extended by adding domain-specific tags and the corresponding code to XSIL. New entries would be added to the
DTD to define the syntax of the new structure.

3. The object model is extensible in a different, looser, sense: if the XML file has a tag sxsh as

Type="Banana”>, then the XSIL reader will seach for a class cadl@thna in the place where user extensions are

built, for c1ass Banana extends xsIL. In this way we establish a highly flexible connection between the XML file

and the code that handles it. If such code is not found, then the XML element is assumed to be a generic collection
object. This method of extension does not entail changing the DTD. Several extensions are in the XSIL distribution,
an example beingimeseries. This element consists of a one-dimensional array and a pair of parameters that define
the start time and the delta-time between samples. Because of the dynamic linking, object handlers (not just objects)
may be emailed to colleagues.

4. One major code written to the XSIL library is tgect browser (Xlook), that is intended as a way to view

XSIL files and their contents in the same way as a web browser can be used to view collections of files. There is a
tree-representation of the elements of the file, shown alongside the XML itself. When an object is “Viewed”, then its
specific viewer is displayed.

5. The object browsearan be extended with user-written code. An example of this is the Java3D extension to

XSIL: certain arrays are defined in XSIL, and an extension defined (as in (2) above). This extension treats these
arrays as coordinates, colors, etc, and can display them in a Java3D window. Similarly the TimeSeries can be
graphed.

D. Usesfor XSIL
1. As aflexible and general transport format between disparate applications in a distributed archiving and

Page O of 14

XSIL: Java/lXML for Scientific Data

computing system; atext-based object serialization that can be handled by common tools, or

2. Asadocumentation mechanism for collections of data resulting from experiments or simulations; with al the
parameters, structure, filenames and other information needed to keep a complete scientific record.

3. As an “ultra-light” data format: a user can, if he wants, simply read the markup, then delete all except the actual
data, or all except for the filenames where the data may be found.

4. All XML files including XSIL, can be created and edited with a large range of high-quality, customizable tools.

5. XML files can be stored in an XML database, such as eXcelon (www.exceloncorp.com). Such products provide
rich tools for storing, querying, presenting, and connecting to XML data.

E. FutureExtensions

1. Data access: In addition to local files, URL's, and XML-encoded data, we would like to work with databases
directly, using JDBC to view and edit database tables.

2. Output formats: In addition to the Matlab output mechanism, we would like to consider data output as IDL,
multichannel Photoshop, FITS, Ligo Frame files, and Microsoft Excel.

3. Viewers:a viewer for Ligo Frame files will be connected, and for astronomical applications, a FITS viewer also .

4. Service definitions: objects that tell a client application how to format and send requests to a remote service, and
the kinds of response that the service will provide. Such a definition could contain an XHTML form both to provide a
human input, but also to define the syntax of the request that the service is expecting.

2. XML Basics
A. Syntax

1. An XML file is a hierarchical structure of elements that may contain other elemerdgieent generally
consists of atart tag, abody, and arend tag, for examplexrruit>Banana</Fruit>, where start and end tags are
distinguished by the presence of a slash.

a) An element may bempty, meaning that there is only a single tag, with no body, for examppeyele-
ment/>; note the position of the slash.
b) Elements may contaattributes, for examplexFruit color="yellow”>. There can only be one instance of

a given attribute name in any tag.
2. XML is case-sensitive, so thatpple>, <apple> and<appLE> are all different tags.
3. Comments in XML are delimited like this:

<!-- This is a comment -->
4. An XML document can be handled by both human and computer. If a human sees the document, then the XML
is presented, usually by means of a style language file, or through a filter. If a computer sees the document, there is an
API to control a parser of the document.

3. XSIL files
A. Header

1. All XML files, which includes all XSIL files, have the following as their first line:

<?xml version="1.0"?>
2. The second line of an XML file may make a reference to an externally defined Document Type Definition
(DTD), which defines the syntax of XSIL files. Thus every XSIL file has the following as its second line one of these:

<!DOCTYPE XSIL SYSTEM "http://www.cacr.caltech.edu/projects/xsil/xsil.dtd">
<!DOCTYPE XSIL SYSTEM “XSIL.dtd">

The DTD can be referenced from a remote location via the URL syntax, or locally with the file name. This file is
presented in section 8.

3. There may follow other XML elements, but the XSIL parser will ignore these until it finds a XSIL element. Only
the first XSIL element is then considered, so there should never be more than one in a file. Thus, in general, the third
line is:

<XSIL>

Page 1 of 14

XSIL: Java/lXML for Scientific Data

and the last line of the file closes this element:

</XSIL>
4. When contained in thisfirst, plain container element, containers may be typed, leading to user-side code being
called. Currently,the Type of the outermost element is not handled properly.

B. Object Name and Type

1. Any of the XSIL elements may have a Name attribute, for example:

<Table Name="Bake_Out_Temperature”>
While the names may be useful in presentation of the X SIL, the major intended use isin navigating the object model,
through methods that find an object of a given name.

2. Any of the XSIL elements may have a Type attribute, which may also be used for navigating the object model.
However, we are most interested in this attribute to link this XML element to a Java object, thus extending the
container object:

<XSIL Type="MyStuff.Myobject” Name="3Jack”>
causes the linker to look for the file $X SIL_HOME/extensions/MyStuff/MyObject.class to act as a handler for the
object called Jack.

C. TheContainer Object

1. XSIL

Thereisageneric <xsIL> element which is a container for other elements, including other <xs1L> elements, thus
inducing a hierarchy. Each of these may have a Nname attribute, to provide hierarchical naming that is visible from the
APl. When thefileis parsed, there is arepresentation of thefirst XSIL element that is found in the document. Hereis
aXSIL fragment that consists of a container hierarchy with an array at the second level and a parameter at the third
level:

<XSIL Name="Fruit”>
<XSIL Name="YellowFruit”>
<Array><Dim>7</Dim></Array>
<XSIL Name="Banana”>
<Param Name="Inductance”>1.34</Param>
</XSIL>
</XSIL>
</XSIL>

2. The XSIL object isthe only onethat can contain other XSIL objects. All the others (below) can only contain
only:

a) The elements explicitly defined in their description, or

b) Stream object from which data may be requested by the code handling the object.

D. XSIL Base Objects

1. Comment
A comment object in XSIL isnot meant to be interpreted or parsed. It appears only in the presentation of the

document. For example:
<Comment>The data that follows is probably wrong</Comment>

2. Param
A parameter in XSIL is an association between a name and a value. In addition, it may have a Unit attribute. For
example:

<Param Name="Fruit_Mass” Unit="kg”>0.387</Param>
The meaning here is "Fruit_mass = 0.387 kg", usually found in "parameter files" or “header files” in scientific
computing. If the element is empty, then the value is read from the corresponding stream. Note that the value of the
parameter is not typed as float, int, etc, but rather it is string-valued.

3. Time

In the LIGO observatory, as with many other experiments in physical science, it is critical that timing information be
not only accurate, but also easy to understand <ttme> element in XSIL can represent either “natural” time (ISO-
8601 standard, YYYY-MM-DD HH:MM:SS.mmmuuunnn), or GPS time, or “Unix time” (seconds since 1/1/1970).

The different formats are differentiated by thee attribute in the tag:

<Time Type="IS0-8601">1998-11-08 17:40:00.032</Time>
<Time Type="GPS”>594582000.032</Time>

Page 2 of 14

XSIL: Java/lXML for Scientific Data

<Time Type="Unix">910546800.032</Time>
The default for the type is |SO-8601.

4. Table

A tableis an unordered set of records, each of the same format, where arecord is an ordered list of values. The
contents of arecord are defined by column headings, each of which may have a unit and atype. This definition of a
table should be thought of as similar to the table object that isfound in arelational database; we should point out that
thisis not the complex and exotic typographical beast of TeX or HTML.

The only tag specific to the Table object is <coTumn>, which specifies the name, type, and possibly units associated
with one of the columns of thetable. It can be thought of as the heading of a column in atable. Shown below isan

exampl e table that includes a stream from which the table can be populated.
<Table>

<Column Name="ChannelName" Type="string"/>

<Column Name="Site" Type="float" unit="meter"/>

<Column Name="Clock" Type="float" unit="hour"/>

<Column Name="Description" Type="string"/>

<Stream Delimiter=",">
“History channel”, 405.0, 3.7, “Another Channel”
“Math channel”, 307.0, 2.1, “channel about Math”

</Stream>

</Table>
5. Array

An array is acollection of numbers (or other primitive type) referenced by subscripts, which isalist of integers
whose maximum values are given by the list of dimensions of the array. This definition is very close conceptually to
aFortran or C array, with the Type attribute of the <array> tag specifying which primitive typeis contained in the
array (float, int, etc.). The Dim element specifies the dimensions of the array, but it does not specify the subscript
ranges. For adimension of 5, a Fortran binding of the APl would label subscriptsfrom 1 to 5, but a Javaor C++
binding would have subscripts from 0 to 4.

Aswith other XSIL objects, the Array tag may have name and Type attributes. The Type attribute is interpreted as the
data-typefor the datain the aray. The only element specific to this classis <pim>, which may have a Name attribute to

specify the name of that dimension of the data for presentation purposes. For example:
<Array Type="1int”>
<Dim Name="X-axis”>5</Dim>
<Dim Name="Y-axis”>3</Dim>
</Array>

which specifies a5x3 array of integers, with the last dimension changing fastest. The presumption isthat 15 integers
may be read from the Stream associated with this Array.

6. Url

Thistag is quite similar to an HTML link:

<Url href="http://www.cacr.caltech.edu/XSIL">XSIL Home Page</Url>
<Url href="http://www.caltech.edu/">Caltech Home Page</url>

Thereisan href attribute, containing the URL, and the text part is a message associated with the link.

4, Sreams

A. Connecting Sreamsand XSIL Objects

1. Some of the objects from the previous section are self-contained, for example Param and Comment. Others
(XSIL, Table, Array) define the structure of adata object, without necessarily making available the dataitself. The
Stream object provides the input that allows these structures to be filled.

2. A XSIL document may define many streams and many X SIL objects (Table, Array etc.). In general a stream may
contain the data for many different objects. We use the collection mechanism induced by the X SIL tag to provide this
association.

3. For astream to be available to a XSIL object, either:
» The object contains the stream explicitly between its start and end tags, or

« the collection in which the object resides must contain exactly one Stream. The objects in the collection will then be
read sequentially from the Stream.

Page 3 of 14

XSIL: Java/lXML for Scientific Data

4. Delimited Text

<Stream Type="Local” Delimiter=",">
4.76,5.77,8.99,3.44,2.11,0.93
</Stream>

The delimiter string are additions to the default delimiter string, consisting of the newline character. Thus a string
read in thisway cannot contain a newline, and the String primitivein XSIL cannot contain a newline.

5. Remote data

<Stream Type="Remote'>
datafilel.dat
</Stream>

The stream may have Type Local — the data is contained in the XSIL file itself — or it mayrb@ote, as in this

case. Local is the default type for a stream. Data is read from the local file system. The name is assumed to be relative
to the XSIL filename, not relative to the current working directory. Thus XSIL files and their data can be packaged
and moved without renaming files.

If the file name is fully qualified, it can be either in UnjT{ah/b1ah) or Windows styled:\blah\b1ah).

6. Endian encoding

<Stream Type="Remote" Encoding="Littleendian”>
datafilel.dat
</Stream>

Java reads and writes bigendian binary, as this is the same byte-ordering as Sun computers have. Windows machines,
though have the opposite ordering, so binary files made by a PC will need to be converted from little-endian format as
above.

7. URL streams

<Stream Type="Remote">
http://www.cacr.caltech.edu/blahblah/datafilel.dat
</Stream>

"

If the stream has typeemote, and the text in this element contains the striny™, then it is interpreted as a URL-
type locator for the data that this stream represents. The file:// and the ftp:// and http:// protocols are supported.

8. Base64 streams

<Stream Encoding="Base64”>
AAAAAAAAAAEAAAACAAAAAWAAAAQAAAAFAAAABGAAAACAAAATAAAACQ==
</Stream>

The first ten integers have been encoded in Base64 and put directly into the XML document.

B. Sream Content

1. The XSIL data stream can be considered to be an arbitrary sequence of bytes. In the ImageList demo (section
7C), streams get the image data, to be delivered as gif. Some of the images are external files, others are base64
encoded as part of the XSIL file.

2. Inthe ImagelList code, a Jamgputstream is obtained from thestream> tag in the XML. The stream of bytes is
read in and converted tava.awt.image and displayed with a chooser. The metadata for each image is also shown.

3. In other cases, however, for example the Array and Table implementations, the Stream contains something
higher level than raw bytes: a sequence of primitive types.

4. The types that are available for Tables and Arrays are listed in the following (with the corresponding number of
bits), and some alternate spellings:

* boolean (1)

* byte (8)

e short (16) (int_2s)

e int (32) (int_4s)

* Tong (64) (int_8s)

e float (32) (real_4)

* double (64) (real_8)

* floatcomplex (64) (complex_8)

* doublecomplex (128) (complex_16)

Page 4 of 14

XSIL: Java/lXML for Scientific Data

* string (arbitrary length) (Istring, char, character)

5. Toread such a stream, there may be some filtering process. A base64 encoded stream is converted to binary byte
stream, available as a java.io.InputStream. If the stream is to be read as a sequence of primitives, it is converted to
java.io.DatalnputStream, and the byte swapping necessary for little-endian conversion may then be applied.

6. If the stream is text-based, either local or remote, the newline character is always a delimiter, plus any other
characters nominated in the Delimiter attribute of the Stream element. The text is read line by line from the source,
and primitives generated. If there is data that cannot be converted to the relevant type (eg. the number 3.56A7464),
then an exception isot thrown, but rather a default value is put in place.

7. The array of primitive objects contains strings, it cannot be read from a binary stream. Strings must be handled as
delimited text.

8. Any primitive type can be converted to any other: to convert from complex we take the real part, to convert to
boolean we ask if it is nonzero, to convert to String we use the toString() method.

C. Stream Encoding

1. Theencoding attribute specifies how the data is#&ream is encoded. It is a comma-separated list chosen from
the values:

* Text, Binary, base64, BigEndian, LittleEndian, Delimiter

2. The Text attribute is assumed by default for Local streams, the Binary attribute is the default for Remote streams.

3. When the stream is Base64, it is decoded by the XSIL library. When the stream specifies an Endian order, it is
converted to the Endian order appropriate to the current machine before being delivered to the application code.

4. The other attribute defined in this sectiond%imiter: It is only relevant in the case of a Text stream. The
characters in the attribute are appended to a delimiter string that already contains newline.

5. Extending XSIL

A. Object Model of XSIL

1. When a XML file is read by an application program through the XSIL API, the hierarchical structure of the file is
parsed to a hierarchiclbhse object, which is then made available to the application. The XSIL software layer then
extracts from the base object the fiegsb1L> element, which is returned to the application. Thus XSIL can be mixed
in a straightforward way with other kinds of XML or HTML, such as Math Markup Language, Chemistry Markup, or
other XML languages.

2. As well as the parser, the XSIL API provides a rich set of methods to extract objects of given element-type,
objects which have given attributes, given Name or Type, and so on.

3. Information can then be extracted from objects. For example once a Param object of given name has been found,
the string which is its value can then be extracted. In this way we have a dictionary of name-value pairs. Similarly the
rows and colums of a Table, or the start and end time of a TimeSeries object are available to the application.

4. We can extend XSIL in an informal, perhaps personal way, simply by creating a collection object with “well-
known” parameter names. In this case, we expect the application that is reading the file to understand the special
significance of the wordype="Timeseries”, and to know the names of the parameters that it expects to find.

B. Example: TimeSeries

1. The following example illustrates the collection of parameter names that would be appropriate for a time-series
object. To make a valid TimeSeries there must be (in addition to data), Start time (t0), and delta time between samples
(dt). Given these, and the number of samples (from the dimensionality of the array), the third parameter can be

computed.

<XSIL Type="TimeSeries.TimeSeries” Name="My Time Series”>
<Comment>A sample time series</Comment>
<Param Name="t0">6.0</Param>
<Param Name="dt”>0.001</Param>
<Array>
<Dim>1000</Dim>
<Stream Type="Remote” Encoding="LittleEndian”>
mydata.dat

Page 5 of 14

XSIL: Java/lXML for Scientific Data

</Stream>
</Array>
</XSIL>
The XSIL parser looks from its current classpath to find code to handle this object. In this case, the codeisin a

classfile called TimeSeries in adirectory called TimeSeries.

2. The code to handle the extension type could |ook something like this:

package extensions.TimeSeries;
import org.escience.XSIL.*;
import java.util.*;

public class TimeSeries extends XSIL {

double t0 = 0.0;
double dt = 0.01,
int ndata = 0;
Array a;

public void construct(){
for(int ichild=0; ichild < getchildcount(); ichild++){
XSIL X = getch11d(1ch11d)
if(x instanceof Param) {
Param p = (Param)x;
if(p.getName() .equals("t0")){
t0 = new Double(p.getText()).doublevalue();

}
if(p.getName() .equals("dt")){
dt = new Double(p.getText()).doublevalue();

}
if(x instanceof Array && ((Array)x).getNdim() == 1){
= (Array)x;
ndata = a.getNdata(Q);

}
if(ndata == 0){
System.out.printIn("ERROR: improper TimeSeries");

}

public double gett0() {return t0;}
public double getdt() {return dt;}
public int getNdata() {return ndata;}

public double getData(int i) {
return a.getPrimArray().getbouble(i);

3. The constructor for the new object is handled by XSIL, and initalization of the new object is handled by
overloading the construct(xsiL x) method. The vector of child objectsis examined, looking for the data we need
to make the TimeSeries, being some parameters, and an array. If the parameters have the right names, it is assumed
that numbers can be read from the corresponding text, and if the array is one-dimensional, it is assumed that it is the
TimeSeries data. Note that the TimeSeries may contain other XSIL objects, which are ignored by this piece of code.

4. The other methods provide access to the TimeSeriesitself, the last being the data. Associated with each Array or
Table object isaPrimArray object, which holds a sequence of any of the ten primitive types (boolean, byte, short, int,
etc.) from which any desired type can be extracted.

5. Thedatamaking up the time seriesis not read at the initialization of the object, but rather at the first call to the
getData method. Files are read or URL's resolved, or delimited text is parsed. If the number of objects in that data
stream is not sufficient, default values are substituted instead.

6. Thegetpata call in the TimeSeries implementation fetches one number at a time. Another call is available from
XSIL to get large quantities of data, it is of the fafeable[] getboubleArray(int start, int end), which

creates an array of doubles wéid-start elements (subscripts frogart to end-1). Othe calls are available for all

ten primitive types.

7. Parent objects are constructed after their children. If a user-created object is a child of another user-created
object, then theonstruct() method of the child has been called beforecthigtruct () of the parent.

Page 6 of 14

XSIL: Java/lXML for Scientific Data

C. Coding an XML transformation

1. Thefollowing code reads and processes an XSIL file without any reference to graphics or browsing. From afile
name, the XSIL root element is created, and arecursive function is called over all the child objects. All the objects

whihc are Param objects are then printed.
package extensions.ReadXML;

import org.escience.XSIL.*;

import java.io.*;

public class TlistParam extends XSIL {
public static void main(String args[]) throws IOException {
if (args.length != 1) {
System.err.print("Usage: java extensions.ReadxML.listParam file.xm1\n");
System.exit(l);

XSIL root = new XSIL(args[0]);
recurse(root);

public static void recurse(XSIL x) {
for(int ichild=0; ichild < x.getChildcount(); ichild++){
XSIL child = x.getChild(ichild);
if(child instanceof Param){
String Name = ((Param)child).getName();
String Text = ((Param)child).getText();

System.out.printin("Name: " + Name + ", Text:

+ Text);
recurse(child);

}
}

This program prints information about al of the <param> elementsthat it findsin the XSIL file.
2. A similar scheme could be used for arbitrary reprocessing of XSIL data. In addition to metadata, the data streams

are also available, either through the getl nputStream method of Stream, or through higher-level constructions such as
Tablesand Arrays.

6. Xlook

A. TheMain Window
1. The browser can be initiated from a command line with the “Xlook” command. The GUI is shown in Figure 1.

Eg_;gXIooker: samples\all_ xml Hi=lE Figure 1

File | \fi Shortcut: : :
bo IR shortcwts : The Xlook main window,
Trei Wiew Selection i|rSource View showing XML source (top-
B F AT MANTE= UATABASE TYHE= ST arml vezmion="l.0"7s - I'Igé]?, m&wag? (b?ggm%h

_n ! TETar— \ [T i %= and tree view (1op- . e
P Param Name="EQUINOX" Type="String IDOCTYPE XEIL FYSTEM "x=il. dedn: \

XEIL> Table object has been

" Param Mame="SKYAREA' Type="String"[;

highlighted, causing its
B Faram Mame="S0L" Type="String" [/HE" toString() method to be called
¥ Param Name="SaL" Type="String" [SEL|

ASIL Wane=tIFAC Table!s in the message window. The
© EH Table Name="2MASS PSC Query Resul

:‘“’“ :"“f:“‘f“""f:*’ j;"’” View/Selection method has
amam Hame =P imary IO Pazans been chosen to bring up the
Tables’s view component.

Faram Name="RowsBetreived">249 </Far
Fazram Hame="QuecyTim=">00:03:33. 63005
Faram Hame="0RIGIN">IPAC Infrared 3ci
Faram Wame="DATETIME">Fri 3ep & 11:4
Fararm Mame="DATAEASE">-ZMa3E Spring?d
Faram Wame="EQUINOX"=JE000-C/Faram:-

Pazan Name="SKYAREA":Within 26000 az |

[+

L column Mame="ra" Type="dauble" |
ﬁE Column Name="dec" Type="douhle"

T column Marme="er_rmaj" Type="dou

L column Mame="er_min" Type="doU~|
| [*]

Messages

Column Mame="dist_opt' Type="double" [Unit: arcsec]
Column Mame="phi_opt' Type="int" [Unit: deg]
Column Mame="nopt_mchs" Type="int" [Unit: |

| »

[5]

Page 7 of 14

XSIL: Java/lXML for Scientific Data

2. Thisbatch file expects an argument with isthe XSIL file to be viewed:
X1ook samples\all.xml

3. Themain window comes up, with three panes. The lower section is a message window, although many relevant
messages are still coming out in the command-line window instead. The top-right window shows the XML code, and
the top-left (tree-view) window shows a hierarchical representation of thefile.

4. Clicking on the nodes of the tree (little magnifying glasses) expands and contracts the tree branches in the usual
way. The basic XSIL types have icons. When an XSIL object is selected with the mouse, it is highlighted in a blue
box, and a short text description appears in the message window.

5. Thedescription of the object in the tree-view window is the result of the tostring() method of the object,
which can be overloaded in extension code. The description in the message window is supposedy alittle more
complete, and is the result of the toLongstring() method, which can also be overloaded

B. View Components

1. Theview component for the Table object is shown in Figure 2.

gaXSIL Component Yiewer M= E=E Figure 2
Qu | The Table view component, using the
Tabl LiveTable component from kigroup.com. The
able table can be sorted with a shift-click on any of
Name =2MASS PSC Query Result the gray column headers. In this casg, it is

sorted on the second column.
Type =IPAC-2MASS

ra |dec |err_maj|err_min|err_angldesignatinn i_m
|66.899|11.855 0.22 016 3 0427356+115118 15.6292
BB.917 [11.872|0.24 018 5 0427399+115221 |16.446
B6.912(11.882|0.38 0.35 130 0427389+115255 16.731
B6.922|11.887 017 0.1 0 D427412+115312 139441
B6.928 |11.896 | 0.24 0.z 2 D427426+115345 |16.685
BB.862(11.893|0.28 0.23 0 D427269+115355|16.929
BB.967 [11.912/0.27 0.23 162 0427519+115443 |16.863
BB.933(11.92 (017 0.1 0 0427451+115511 |14.908
B6.953 |11.936|0.25 0.23 171 0427499+11561016.72
BB.896 (11.949 /0,24 0.21 178 0427349+115657 1!3.?'32T
‘I.M 7”|, e ,.|'|_

2. The TimeSeries extension that comes with the XSIL distribution has aview component constructed from the KL
Group’s JChart component, as shown in Figure 3. There is a customization panel giving great control over the look of
the chart, though this has not yet been switched on.

3. These light-weight versions of the components are freely usable and distributable, but the full-strength versions
are not free. The light-weight versions are included in the XSIL distribution.

4. The view component for thar1> tag is to spawn a web browser. Once the browser reads the MIME type of the
associated data object, it may bring up a specialized application. In this way, XSIL can contain references to very
complex data objects, such as Excel spreadsheets or astronomical FITS files.

5. As another example of a view component, we show a Java3D display. In this window, the shape is fully three-
dimensional, and the graphics can take advantage of any OpenGLaccelerator that may be in the workstation. The left
mouse button rotates the shape, the middle button scales it, and the right button translates. The XML that defines the
icosahedron shape is as follows:

<XSIL Type="Java3D">
<XSIL Type="3Java3DGeometry">

Page 8 of 14

XSIL: Java/lXML for Scientific Data

EE3%SIL Component Viewer = O] =] ‘ Figure 3
— - ' Theview component for the TimeSeries
N i <511 Component Viewar H[=l | extension. The name and type of the
3 3 Quit object are at the top, as with every view
TimeSeries component. This microphone channel

Name =HO:PEM TimeSeries.TimeSeries from Ligo engineering testsis shown in
T —TimeS thetimedomain (below), and is perhaps
¥pe = lmeser Nagme =HO:PEM-HAM7 MIC[0][0] more understandable in the frequency

Type =TimeSeries. TimeSeries domain (above).
LTI HO:PEN-HAMT_MIC
4DUU| 10000
2000
gl 1000
-2000}
-4000 e
BODD I
10
-8000]
10000 1
-12000
0.1
0 20 40 B0 80 100 120 140
[+ Power Spectrum

E‘E’%XSIL Component Yiewer M=l EE Figure 4
Quit | The view component for the Java3D extension.

The three mouse buttons can be used for 3D
rotation, scale, and trandation of the image. This

J avaS DJ ava3 D object consists of a TriangleArray (the colored
triangles), and three LineArrays (the white

Name =Icosahedron '1”'3‘_'5,r rectangles). It illustrates how an icosahedron can

T}ch —Tava3D.Java3D be constructed from three golden rectangles.

The TriangleArray and LineArray objects are
based on objects from Java3D API, but
implemented with XSIL through Arrays and
Params expressing what is coordinates and what
is colors, what istriangles and what is lines.

Page 9 of 14

XSIL: Java/lXML for Scientific Data

<Param Name="Java3DGeometryType">TriangleArray</Param>
<Array Name="Coordinates" Type="float">

<Dim>60</Dim>

<Dim>3</Dim>

<Stream Encoding="Text" Type="Remote"™ Delimiter=", ">icocoord.dat</Stream>
</Array>
<Array Name="Colors" Type="float">

<Dim>60</Dim>

<Dim>3</Dim>

<Stream Encoding="Text" Type="Remote" Delimiter=",">icocolor.dat</Stream>
</Array>

</XSIL>

<XSIL Type="3Java3DGeometry">
<Param Name="Java3DGeometryType">LineStripArray</Param>
<Array Name="Coordinates" Type="float"><Dim>5</Dim><Dim>3</Dim>
<Stream Encoding="Text" Type="Local" Delimiter=", ">
-1.0, 0.0, -1.61803399,
-1.0, 0.0, 1.61803399,

1.0, 0.0, 1.61803399,
1.0, 0.0, -1.61803399,
-1.0, 0.0, -1.61803399,
</Stream>
</Array>

</XSIL>

.... (two more rectangles like the one above)
</XSIL>
Thereis an outer enclosing element of type Java3D.Java3D, which contains a number of objects of type
Java3D.Java3DGeometry, which are the Triangle Arrays, Line Arrays, and so on which can be used to create 3D
objects in the view window. Of course, other types of data can be encoded in the XML, then rendered in a different
way by modifying the rendering code (in the extensions/Java3D directory).

7. Extending Xlook
A. Object Model

1. AnXlook view component is an extension of a class X SILView, which extends javax.swing.JComponent, which
isageneric graphics object in Swing.

2. The classimplementing the viewing must have the same name as the object which it views, but with the suffix
“View" added. In the code below, for example, the Label object is viewed by a LabelView object.

3. When an Xlook user requests a view component, an outer frame is made by Xlook, with the Name and Type of
the object, and a scrollable panel (javax.swing.JScrollPane) is created to hold the client-supplied viewer.

4. The instantiate() method of the viewing object is called, with the argument guaranteed to be castable to the
expected object, and the completed frame rendered. This code may create buttons and other widgets that can receive
events, as in the TimeSeries viewer shown above, where a checkbox can cause a power-spectrum to be computed.

B. Complete Example

1. In this section we present a very simple, but complete example of the XSIL system, with the XML, the Object

code, and the Viewer code. The Label is defined in XML like this:

<?xml version="1.0"7>

<!DOCTYPE XSIL SYSTEM "xsil.dtd">

<XSIL>

<XSIL Type="Simple.Label" Name="Example">
<Param Name="Message">Hello Auntie Joan</Param>
<Param Name="FontSize">96</Param>

</XSIL>

</XSIL>

So the label object is just a piece of text (Message) and an integer (FontSize).

2. Code to read this object looks like this. The children are examined to find parameters that can supply the message
and fontsize fields.

package extensions.Simple;

import org.escience.XSIL. * H

public class Label extends XSIL {
public string message = "No message";
public int fontsize = 12;

Page 10 of 14

XSIL: Java/lXML for Scientific Data

public void construct(){
for(int ichild=0; ichild < getChildCount(); ichild++){
XSIL x = getchild(ichild);
if(x instanceof Param){
Param p = (Param)x;
if(p.getName() .equals("Message™)){
this.message = p.getText();

if(p.getName() .equals("FontSize")){
this.fontsize = (new Integer(p.getText())).intvalue();

}
}
}

3. Oncethelabel is complete, the view component may be called from Xlook. In this case a sLabel is created to
show the message in the chosen pointsize.

package extensions.Simple;

import org.escience.XSIL.¥;
import org.escience.Xlook.*;
import java.awt.¥;

import javax.swing.*;

public class Labelview extends XSILView {
Label s;

public void instantiate(XSIL x) {
this.s = (Label)x;
this.setLayout(new FlowLayout());
Font f = new Font("Helvetica", Font.BOLD, s.fontsize);
JLabel Tabel = new JLabel(s.message);
Tlabel.setFont(f);
this.add(label);

}
}
I e e 10U/

Yt e Shedlcaba The view component defined by the
T waz Wi [— above code, together with the Xlook
e F—E——— window showing the XML that

- = CACTYFE J1E INTTEA “smil .dwil™s drivesit.
T Sina i Leid Mamis Bl I Tvgi="d g Laier LT
I Fararn Harmemma o™ e s s dnaf | 11700 TR O
P Fadan Heivk="TanEer Tvai="Sng [15) oF aram B n Fern 0 g ol e
i1)
Gai

Simple.Label

Mame =Example
Type =Simple. Label

Hello Auntie

L

==

C. ImageList extension

1. Another extension of the Xlook browser isillustrated by the 1mageList code. An XSIL file contains a collection
of images,each with metadata that is defined by parameters with specific names. The images themselves are
sometimes external files, sometimesin the X SIL document itself as base64 encoded binary.

2. Hereisasection of the XSIL file:
<XSIL Type="MyImage.ImageList" Name="My Favourite Messiers">

Page 11 of 14

XSIL: Java/lXML for Scientific Data

<XSIL Name="M54" Type="MyImage.MyImage">

<Param Name="PixelMin">4552.00</Param>

<Param Name="PixelMax">23423.0 </Param>

<Param Name="Regionwidth">0.14166667</Param>
<Param Name="Imagewidth">300</Param>

<Param Name="RightAscension">18 55 3.28</Param>
<Param Name="Declination">-30 28 42.58 </Param>
<Stream Type="Remote">m54.gif</Stream>

</XSIL>

Here we see the description of the first image, which isthe galaxy M54. There are two objects defined here,
MyImage.MyImage iSasingleimage with metadata, and myImage.ImageList isalist of such.

3. The corresponding view component looks like this:

E%_,%XSIL Component Yiewer

Quit

MyImage.ImageList

Name =My Favourite Messiers
Type =MyIlmage.ImageList

51

ight Ascension, Declination: 13 29 56.02, 47 14 4.42
Pixel min, ma=: 2376.00, 13980.0
dth {degrees, pixels): 0.14166667, 300

Page 12 of 14

Figure 6

Viewing the ImagelL.ist
component. The image can
be selected from a pulldown
choice, and the image
metadata appears below. The
code for thisis about 100
lines, anditisincluded inthe
XSIL distribution.

XSIL: Java/lXML for Scientific Data

8. TheDTD for XSIL

1. An XML file may be associated with a Document Type Definition (DTD) which defines the allowed tag names
in the document, and how these fit together: which elements may contain which other elements, and how many of
each element there may be.

<!ELEMENT XSIL ((XSIL|Comment|Url|Param|Table|Array|Stream)*)>
<!ATTLIST XSIL Name CDATA "" Type CDATA "">

<!ELEMENT Comment (#PCDATA)>

<!ELEMENT Param (#PCDATA)>
<!ATTLIST Param Name CDATA

Type CDATA unit CDATA "" >

<!ELEMENT Url (#PCDATA)>
<!ATTLIST Url Name CDATA

Type CDATA "" href CDATA "" >

<!ELEMENT Array (Dim* , Stream?)>

<!ATTLIST Array Name CDATA Type CDATA unit CDATA "">
<!ELEMENT Dim (#PCDATA)>
<!ATTLIST Dim Name CDATA "" Type "">

<!ELEMENT Table (Column* , Stream?)>
<!ATTLIST Table Name CDATA ""
<!ELEMENT Column EMPTY>

<!ATTLIST Column Name CDATA

Type CDATA "">

Type CDATA Unit CDATA "">
<!ELEMENT Stream(#PCDATA)>

<!ATTLIST Stream Name CDATA Type CDATA "" >
<!ATTLIST Stream Content CDATA ""Encoding CDATA

Delimiter CDATA "">

Page 13 of 14

XSIL: Java/lXML for Scientific Data

0. Installation and Use

1. Theingtalationisavailable asazip file from
. http://www.cacr.caltech.edu/XsSIL/

by following the link “available software”.
2. Javadoc documentation comes with the distribution, or else from

. http://www.cacr.caltech.edu/XSIL/javadoc/

3. The XSIL environment has been tested on Solaris and Windows 98 and NT.
4. To run the XSIL environment, you will need:

« A computer with Java Development Environment (JDK) 1.2 or later. You will need to know the directory where it
is installed, meaning the directory which has the /bin and /lib subdirectories. For more information and free
download, see

http://java.sun.com/products/jdk/1.2/

* One of the demonstration codes utilizes the Java3D package. If you wish to run this demo, you will need to install
Java3D, which is available free from:
http://java.sun.com/products/java-media/3D/index.html
The Java3D is implemented with OpenGL, so it will probably find your fast graphicdN&aFdE: Installation is
much more difficult if you choose to put Java3D in a different directory from that suggested by the install wizard.

« You must also have an unzip or untar facility.

5. Unpack the distribution, and go to the XSIL root directory, which is the one that contains com, org, doc, and
extensions directories. There should also be some scripts here, labeliédr Windows,.sh and.source for
Unix.

6. Make sure thesava_HoME andweEB_BROWSER locations are correct in the setup.bat (Windows) or setup.source
(Unix) script.

» The web browser is not necessary unless you intend to use the <URL> tag, which spawns a browser for viewing.

7. Start a command window and run the setup script. $yp& (for Windows) orsource setup.source (for
Unix). Make sure the Java interpreter is in your path: jgpe, it should give a usage message rather than command
not found.

8. For Unix users,

% source setup.source
% Xlook.sh samples/all.xml

9. For Windows users,

c: setup
c: xlook samples\all.xml

10. The browser should now come up, and there are a number of sample in the samples directory.
11. NOTE to DEVELOPERS. The key to the Java package system, how it finds classes, how it compiles, making

life easy, requires you to follow one rule: always run your compieag) and applicationsjava) from the XSIL
home directory, the one with demo scripts.

12. You can also examine and modify the code ire#tensions directory. To make a custom viewer, a good start
might be a copy of thextensions/simple directory.

Page 14 of 14

	1. Introduction
	A. What is this?
	B. More information on XML and XSIL can be found at:
	C. Reasons to use XSIL
	D. Uses for XSIL
	E. Future Extensions

	2. XML Basics
	A. Syntax

	3. XSIL files
	A. Header
	B. Object Name and Type
	C. The Container Object
	D. XSIL Base Objects

	4. Streams
	A. Connecting Streams and XSIL Objects
	B. Stream Content
	C. Stream Encoding

	5. Extending XSIL
	A. Object Model of XSIL
	B. Example: TimeSeries
	C. Coding an XML transformation

	6. Xlook
	A. The Main Window
	B. View Components

	7. Extending Xlook
	A. Object Model
	B. Complete Example
	C. Image List extension

	8. The DTD for XSIL
	9. Installation and Use

