(s
~/
exolab.org

CASTOR XML
SOURCE CODE GENERATOR

USER DOCUMENT

Author: Arnaud Blandin [blandin@intalio.com]

Contributions:

Keith Visco [kvisco@intalio.com]

Revision: February 15, 2001

Copyright © 2000, Intalio, Inc

mailto:blandin@intalio.com

(s
~
exolab’org

Abstract
1 Why a Source Code Generator?

1.1 XMLData BINAINGcooouriurerererrerrerrerrennenensenersensensensessens
1.2 The role of the source generator.........ccceceeveuvcueccurcnnnee

2 Usage, options & XML Schema support

21 USALE c.ceviiriiircririrniiicssenissssesessssssssssssssesesesssssssssess
2.2 Source Generator Options........cccceeeuveeueevecerevereerencureseennes
2.2.1 Command Line OPtions........ccccceeveuvereeverrereecusernescuseneenes
2.2.3 AAVANCEd OPLIONScueueeemencreieicieneeeieeaesereeaesseseesessesseaes
2.3 XML Schema SUPPOLLc.ccvvveureuricrreueeerrenerereseneseeaesesenns
2.3.1 BUIt-IN tYPES .ceeuecececrcccccectcccsenesenesesesenenaens
2.3.2 STIUCLUTE ...t
24 ReqQUITEMENLScecviieciicceceecee e
2.4.1 Castor packages.........cnencrnernencrnereiciseneeensenennes
2.4.2 External librariesnnenencneneencesecenennenee

3 Example

3.1 The schema file ...
3.2 The generated code..........ccoocvveverivenevincrnesincrneeicenennees

4 FAQ

5 OpenIssues: possible improvements
6 Glossary

7 References

Copyright © 2000, Intalio, Inc

2/15/2001

5
I b 2/15/2001
exolab’org

Abstract

As a complete XML! data binding framework, Castor XML offers
the ability to generate Java code from an XML Schema.

The aim of this document is to describe the Castor XML Source
Code Generator, including the main options and features, as well
as to illustrate the mechanism used to generate java classes with
a simple example. Open issues of the project are also discussed.

1: all bold names (except in section 2.3) are defined in the
glossary.

Copyright © 2000, Intalio, Inc 3

5
I b 2/15/2001
exolab’org

1 Why a Source Code Generator?

1.1XML Data Binding

Many current applications which manipulates XML documents
rely on XML Schemas which define the structure, the content
and even the meaning of these XML documents.

In order to deal with the XML ‘constraints’ defined in the
schema, applications need some tools to create and manipulate
XML documents that are instances of the given XML Schema.

Such tools might be written using the SAX API or the DOM API],
however these approaches are more focused on the structure of
an XML document than the data itself.

Moreover all data in these APIs are treated as strings and must
likely need to be cast to an appropriate data type.

It would be much easier if these applications could map directly
an XML document to its in-memory object representation which
contains all the information provided by the XML Schema, this is
what we call XML data binding.

Copyright © 2000, Intalio, Inc 4

5
I b 2/15/2001
exolab’org

1.2The role of the source generator

To represent the data model of an XML document in memory,
developers need to hard-code the description of the XML
document. They need to describe the structure and the data of
the document provided by the XML Schema.

Sometimes it could be easy when you only need to map a String
or a Boolean, you can find the exact mapping in any Object
Oriented language but when it is time to describe a more
complex structure with some inner XML Schema types it can
become very tedious and complex.

The aim of the source generator is to provide the necessary code
to describe XML instances of a specific XML Schema with the
proper fields and access methods.

To sum up, we can draw a parallel between the relations XML
Schema-XML and Class-Object: an XML document is an instance
of an XML Schema and an Object is an instance of a Class. Thus
to represent an XML document as an Object in memory, we need
to provide the Class that describes this object.

The Source Code Generator is merely generating the code for this
class.

The Castor XML Source Code Generator — from now on referred to
the Source Generator — is generating Java source code from a
W3C XML Schema. The generated source includes an object
model of the schema as well as the necessary Class Descriptors
used by the marshalling framework to obtain information
about the generated classes.

Copyright © 2000, Intalio, Inc 5

5
I b 2/15/2001
exolab’org

2 Usage, options & XML Schema support

2.1 Usage

The source generator can be used as a command-line tool that
can simply be invoked by calling :

java org. exol ab. cast or. bui | der. Sour ceGener at or —opti ons
or wusing the script files SourceGenerator.bat or
SourceGenerator.sh.

The API can also be used, for more information refer to the
Javadoc of the SourceGenerator class.

Note: the generated source files need to be compiled by hand.

2.2 Source Generator Options

The source code generator has a number of different options
which may be set. Some of these are done using the command
line, and others are done wusing a properties file
(cast orbui | der. properti es).

Copyright © 2000, Intalio, Inc 6

e

o

exolabii;rg

2.2.1 Command Line Options

2/15/2001

Option

Args

Description

Status

i

filename

The input XML Schema file

Required

package

package-
name

The package for the generated
source

Optional

dest

path

The destination in which to put the
generated source

Optional

line-
separator

unix [mac [
win

Sets the line separator style for the
desired platform. This is useful if
you are generating source on one
platform, but will be
compiling/modifying on another
platform.

Optional

types

type-factory

Sets which type factory to use. This
is useful if you want JDK 1.2
collections instead of IDK 1.1) (see
below)

Optional

Shows the help/usage screen

Optional

Forces the source generator to
supress all non-fatal errors, such as
overwriting of pre-existing files.

Optional

nodesc

Do not generate the class
descriptors

Optional

nomarshall

Do not generate the marshalling
framework methods (marshall,
unmarshall, validate).

Optional

Copyright © 2000, Intalio, Inc

5
I b 2/15/2001
exolab’org

Collection types:

The source code generator has the ability to use the following
types of collections when generating source code:

e Javal.1 (default) java.util.Vector.
 Java 1.2: if the option is types —j2, collection type will be
java.util.Collections implemented as ArrayList.

* ODMG 3.0: if the option is types —odmg, collection type will be

odmg.Darray.
2.2.3 Advanced options
These options are set up in the

or g/ exol ab/ cast or/ bui | der/ cast or bui | der. properti es file.

2.2.3.1 Bound Properties

Since version: 0.8.9

Bound properties are "properties” of a class, which when updated
will send out a java.beans.PropertyChangeEvent to all registered
java.beans.PropertyChangeListeners.

To enable bound properties, uncomment the appropriate line in
the "org/exolab/castor/builder/castorbuilder.properties" file:

To enabl e bound properties uncomment the

following Iine.

Pl ease note that currently *all* fields wll
be treated as bound properties

when enabled. This will change in the future
when we introduce fine grained control over

each class and its properties.

#
#or g. exol ab. castor. bui | der. boundpr operti es=true

Copyright © 2000, Intalio, Inc 8

5
I b 2/15/2001
exolab’org

When enabled, all properties will be treated as bound properties.
For each class that is generated a setPropertyChangeListener
method is created as follows:

/**
* Regi sters a PropertyChangelLi stener with this class.

* @aram pcl The PropertyChangeli stener to register.
*/

public void

addPr opert yChangeli st ener (j ava. beans. Propert yChangeli st ener pcl)
{

pr opert yChangeli st ener s. addEl enment (pcl) ;

} //-- void

addPr opert yChangelLi st ener (j ava. beans. Propert yChangeli st ener)

Whenever a property of the class 1is changed, a
PropertyChangeEvent will be sent to all registered listeners. The
property name, the old value, and the new value will be set in
the PropertyChangeEvent.

Note: To prevent unnecessary overhead, if the property is a
collection, the old value will be null.

2.2.3.2 Class Creation/Mapping
Since version: 0.8.9

The source generator can treat the XML Schema structures such
as complexType and element in two main ways.

The first, and currently default method is called the "element"
method. The other is called the "type" method.

Copyright © 2000, Intalio, Inc 9

o
I b 2/15/2001
exolab’org

In the following we will illustrate the class creation with the
following schema:

The 'element’' method

The "element" method creates classes for all elements whose
type is a complexType. Abstract classes are created for all top-
level complexTypes. Any elements whose type is a top-level type
will have a new class created that extends the abstract class
which was generated for that top-level complexType.

Classes are not created for elements whose type is a simpleType.

This approach tends to describe the structure of an XML
Document that is a particular instance of the XML Schema used
to generate the source code.

In this case the generated class will be:

Copyright © 2000, Intalio, Inc 10

{:nj
I b 2/15/2001
exolab’org

Copyright © 2000, Intalio, Inc 11

{:nj
I b 2/15/2001
exolab’org

The 'type' method

The "type" method creates classes for all top-level complexTypes,
or elements that contain an "anonymous" (in-lined)

complexType.

Classes will not be generated for elements whose type is a top-
level type.

This second approach tries to produce a class hierarchy that
represents the XML Schema itself more than an instance of this
XML Schema.

In this case the generated class will be:

Copyright © 2000, Intalio, Inc 12

5
I b 2/15/2001
exolab’org

To change the "method" of class creation simply edit the
castorbuil der. properti es file:

Java cl ass mappi ng of <xsd:el enent>'s and <xsd: conpl exType>'s
#
#or g. exol ab. cast or. bui | der . j avacl assmappi ng=el enent

2.2.3.3 Setting a super class

The source generator enables the user to set a super class to all
the generated classes (of course class descriptors are not
concerned by this option).

To set the super class, edit the cast or bui | der. properties file:
This property allows one to specify the super class of *all*
generated cl asses

#
#or g. exol ab. cast or. bui | der. supercl ass=com xyz. BaseObj ect

Copyright © 2000, Intalio, Inc 13

5
I b 2/15/2001
exolab’org

2.3 XML Schema support

The source generator supports the W3C XML Schema Candidate
Recommendation document (10/24/2000).

Roughly speaking the source generator maps a XML Schema type
to a corresponding Java type.

It happens that a Schema type does not have its corresponding
one in Java. Thus the Source Generator uses Castor
implementation of these specific types (located in the package
or g. exol ab. cast or. t ypes). For instance the TimeDuration
type is implemented directly in Castor.

Many built-in types are supported but not all of them. You will
find below a detailed list of supported built-in types and then
some comments about the support.

Remember that the representation of XML Schema datatypes
does not try to fit exactly the W3C XML Schema specifications,
the aim is to map an XML Schema type to the java type that fit
the most to the XML Schema type.

For instance this can explain why you won't find the support for
the ‘scale’ facet in the Integer support.

2.3.1 Built-in types

2.3.1.1 Primitive Datatypes

The bold names refer to features supported by the Source
Generator.

Copyright © 2000, Intalio, Inc 14

5
I b 2/15/2001
exolab’org

XML Schema Facets Java corresponding types
Datatypes

string length java.lang.String
minLength
maxLength
pattern
enumeration
whiteSpace

boolean pattern primitive boolean type
whiteSpace

float pattern primitive float type
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

double pattern primitive double type
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

decimal scale java.math.BigDecimal
precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

timeDuration pattern org.exolab.castor.types.timeDuration
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

recurringDuration pattern org.exolab.castor.types.recurringDuration
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

Copyright © 2000, Intalio, Inc 15

(s
~
exolab’org

2/15/2001

XML Schema
Datatypes

Facets

Java corresponding types

binary

encoding

length
max/min length
pattern
enumeration
whiteSpace

primitive byte array

uriReference

length
max/min length
pattern
whiteSpace
enumeration

java.lang.String

ID

length

max/min length
pattern
whitespace
enumeration
max/min Exclusive
max/min Inclusive

java.lang.String

IDREF

length

max/min length
pattern
whitespace
enumeration
max/min Exclusive
max/min Inclusive

java.lang.Object

Entity

length

max/min length
pattern
whitespace
enumeration
max/min Exclusive
max/min Inclusive

QOname

length

max/min length
pattern
whiteSpace
enumeration
max/min Exclusive
max/min Inclusive

Copyright © 2000, Intalio, Inc

16

(s
~
exolab’org

2.3.1.2 Derived datatypes

The bold names refer to features supported by the Source

Generator.

2/15/2001

XML Schema
Datatypes

Facets

Java corresponding types

CDATA

length

max/min Length
pattern
enumeration
whiteSpace

Java.lang.String

token

length

max/min Length
pattern
enumeration
whiteSpace

language

length

max/min Length
pattern
enumeration
whiteSpace

IDREFS

length

max/min Length
enumeration
whiteSpace

java.util.Vector of XSIdRef

ENTITIES

length

max/min Length
pattern
enumeration
whiteSpace

NMTOKEN

length

max/min Length
pattern
enumeration
whiteSpace

java.lang.String

NMTOKENS

length

max/min Length
pattern
enumeration
whiteSpace

java.util.Vector of XSNMToken

Copyright © 2000, Intalio, Inc

17

(s
~
exolab’org

2/15/2001

XML Schema
Datatypes

Facets

Java corresponding types

Name

length

max/min Length
pattern
enumeration
whiteSpace

NCName

length

max/min Length
pattern
enumeration
whiteSpace

java.lang.String

NOTATION

length

max/min Length
pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

integer

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

primitive int type.

nonPositivelnteger

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

primitive int type

Copyright © 2000, Intalio, Inc

18

(s
~
exolab’org

2/15/2001

XML Schema
Datatypes

Facets

Java corresponding types

negativelnteger

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

primitive int type.

long

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

primitive long type

int

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

primitive int type

short

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

primitive short type

Copyright © 2000, Intalio, Inc

19

(s
~
exolab’org

2/15/2001

XML Schema
Datatypes

Facets

Java corresponding types

byte

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

nonNegativelnteger

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

primitive int type

unsignedLong

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

unsignedInt

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

Copyright © 2000, Intalio, Inc

20

(s
~
exolab’org

2/15/2001

XML Schema
Datatypes

Facets

Java corresponding types

unsignedShort

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

unsignedByte

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

positivelnteger

scale

precision

pattern
enumeration
whiteSpace
max/min Exclusive
max/min Inclusive

primitive int type

timelnstant

duration

period

pattern
whiteSpace
max/min Exclusive
max/min Inclusive

java.util.Date

time

duration

period

pattern
whiteSpace
max/min Exclusive
max/min Inclusive

org.exolab.castor.types.time

timePeriod

duration

period

pattern
whiteSpace
max/min Exclusive
max/min Inclusive

org.exolab.castor.types.TimePeriod

Copyright © 2000, Intalio, Inc

21

(s
~
exolab’org

2/15/2001

XML Schema
Datatypes

Facets

Java corresponding types

date

duration

period

pattern
whiteSpace
max/min Exclusive
max/min Inclusive

org.exolab.castor.types.Date

month

duration

period

pattern
whiteSpace
max/min Exclusive
max/min Inclusive

org.exolab.castor.types.Month

year

duration

period

pattern
whiteSpace
max/min Exclusive
max/min Inclusive

org.exolab.castor.types.Year

century

duration

period

pattern
whiteSpace
max/min Exclusive
max/min Inclusive

org.exolab.castor.Century

recurringDate

duration

period

pattern
whiteSpace
max/min Exclusive
max/min Inclusive

recurringDay

duration

period

pattern
whiteSpace
max/min Exclusive
max/min Inclusive

Copyright © 2000, Intalio, Inc

22

5
I b 2/15/2001
exolab’org

2.3.1.3 Conclusion — Comments

Primitive datatypes
The Source Generator supports 12 of the 13 W3C XML Schema

primitive datatypes.

However this support is not complete and sometimes full
support is not required.

» decimal [section 3.2.5 XML Schema Part 2 :datatypes, W3C CR]

Castor maps an XML Schema decimal to a j ava. mat h. Bi gDeci nmal . This
mapping does not allow the full support. Although it is possible to validate
a decimal towards the constraining facet precision [section 2.4.2.11, XML
Schema Part 2 :datatypes] it is not possible to create a default
j ava. mat h. Bi gDeci mal with the correct precision since this feature is
not implemented in Java.

* Dbinary [section 3.2.8 XML Schema Part 2 :datatypes, W3C CR]

The encoding constraint [section 2.4.2.13 XML Schema Part 2 :datatypes]
is not yet supported. The current encoding of binary data is base64.

» uriReference [section 3.2.9 XML Schema Part 2 :datatypes, W3C CR]

A uriReference is currently represented as a string. No specific validation is
done.

» ENTITY [section 3.2.12 XML Schema Part 2 :datatypes, W3C CR]
Not Supported

The type is inherited from the DTD model which tends to be replaced by
XML Schema. Moreover the use of this type is not widespread enough for
requiring support in the Source Generator.

* Qname [section 3.2.13 XML Schema Part 2 :datatypes, W3C CR]

This type is only represented as a String. A full representation of it requires
a full representation of uriReference.

Derived datatypes

The Source Generator is supporting 20 of the 32 XML Schema
derived datatypes

Copyright © 2000, Intalio, Inc 23

5
I b 2/15/2001
exolab’org

» token [section 3.3.2 XML Schema Part 2:datatypes, W3C CR]
Not Supported

The use of token is not widespread, its derived type (NMToken, Name) are
more important.

» language [section 3.3.3 XML Schema Part 2:datatypes, W3C CR]
Not Supported

This type is rarely used.

» ENTITIES [section 3.3.5 XML Schema Part 2:datatypes, W3C CR]
Not Supported

c.f. comments on ENTITY primitive type

» NOTATION [section 3.3.10 XML Schema Part 2:datatypes, W3C CR]
Not Supported

The reasons are the same as ENTITY non-support.

* unsignedLong, unsignedInt, unsignedShort, unsignedByte [section
3.3.19, 3.3.20,3.3.21, 3.3.22 XML Schema Part 2: datatypes, W3C CR]

Not Supported

In Java, all numeric types are signed, it is not possible to deal properly with
unsigned numeric types.

Copyright © 2000, Intalio, Inc 24

(s’
~
exolab.org

2.3.2 Structure

2/15/2001

The following section is based on the XML Schema Part 1:

structure, W3C CR.
Each paragraph number refers to the W3C document
Schema Component: Schema
* § 3.1 Schema details
Supported:
- {type definitions}
- {attribute declarations}
- {attribute group definitions}
- {model group definitions]
- {annotations}
Unsupported:
- {notation declarations}
* §4.1 XML Representations of Schemas

Unsupported features appear in italics

<schema
attributeFormDefault = (qualified | unqualified) : unqualified
blockDefault = (#all | List of (substitution [extension | restriction))
elementFormDefault = (qualified | unqualified) : unqualified
id=1D
targetNamespace = uriReference
version = string
{any attributes with non-schema namespace... }>

</schema>

Content: ((include | import | redefine | annotation)*, ((attribute|attributeGroup |
complexType | element | group | notation | simpleType), annotation*)*)

Copyright © 2000, Intalio, Inc

25

5
I b 2/15/2001
exolab’org

Schema Component: Attribute Declaration

* § 3.2 Attribute Declaration details
Supported:
- {name}
- {target namespace}
- {type definition}
- {scope}
- {value constraint}
- {annotation}

* § 431 XML Representations of Attribute Declaration Schema
Components

Unsupported features appear in italics

<attribute
form = (qualified [unqualified)
id=1ID
name = NCName
ref = OName
type = QName
use = (prohibitied | optional | required | default | fixed) : optional
value = string
{any attributes with non-schema namespace... }>
Content: (annotation?, (simpleType?))
</attribute>

Copyright © 2000, Intalio, Inc 26

5
I b 2/15/2001
exolab’org

Schema Component: Element Declaration

* § 3.3 Element Declaration details
Supported:
- {name}
- {target namespace}
- {type definition}
- {scope}
- {annotation}
Unsupported:
- {abstract}
- {value constraint}
- {nullable}
- {identity-constraintdefinitions}
- {substitution group affilitaion}
- {substitution group exclusions}

- {disallowed substitutions}

Copyright © 2000, Intalio, Inc 27

5
x I b 2/15/2001
exolab’org

* § 4.3.2 XML Representation of Element Declaration Schema
Components

Unsupported features appear in italics :

<element

abstract = boolean : false

block = (#all [List of (substitution | extension [restriction))

default = string

final = (#all | List of (extension | restriction))

fixed = string

form = (qualified | unqualified) : unqualified

id=ID

maxOccurs = (nonNegativelnteger | unbounded) : 1

minOccurs = nonNegativelnteger : 1

name = NCName

nullable = boolean : false

ref = QName

substituionGroup = OName

type = QName

{any attributes with non-schema namespace... }>

Content: (annotation?, ((simpleType | complexType)?, (key | keyref | unique)*))
</element>

Copyright © 2000, Intalio, Inc 28

(a-.

exolabii;rg

Schema Component: Complex Type Definition

§ 3.4 Complex Type Definition Details
Supported:
- {name}
- {target namespace}
- {base type definition}
- {derivation method} - extension
- {abstract}
- {attribute use pairs}
- {content type}
- {annotations}
Unsupported:
- {derivation method} - restriction
- {final}
- {attribute wildcard}

- {prohibited substitutions}

§ 4.3.3 XML Representation of Complex Type Definition Schema

Components.

Unsupported features appear in italics:

2/15/2001

<complexType
abstract=boolean : false
block = (#all [List of (extension | restriction))
final = (#all | List of (extension [restriction))
id=1ID
mixed = boolean : false
name = NCName

Copyright © 2000, Intalio, Inc

29

5
I b 2/15/2001
exolab’org

{any attributes with non-schema namespace...}>
Content: (annotation? , (simpleContent | complexContent | ((group | all |
choice | sequence)?, ((attribute | attributeGroup)*, anyAttribute?))))

</complexType>

Schema Component: Attribute Group Definition

* § 3.5 Attribute Group Definition Details
Supported:
- {name}
- {target namespace}
- {attribute use pairs}
- {annotation}
Unsupported:

- {attribute wildcard}

* § 4.3.4 XML Representation of Attribute Group Definition Schema
Components.

Unsupported features appear in italics:

<attributeGroup

id=1ID

name = NCName

ref = OName

{any attributes with non-schema namespace....}>

Content: (annotation?, ((attribute | attributeGroup)*, anyAttribute?))
</attributeGroup>

Copyright © 2000, Intalio, Inc 30

5
I b 2/15/2001
exolab’org

Schema Component: Model Group Definition

* § 3.6 Model Group Definition Details
Supported:
- {name}
- {target namespace}
- {model group}
- {annotation}

* § 4.3.5 XML Representation of Model Group Definition Schema
Components.

Unsupported features appear in italics:

<group
id=1ID
maxOccurs = (nonNegativeInteger | unbounded) : 1
minOccurs = nonNegativelnteger : 1
name = NCName
ref = OName
{any attributes with non-schema namespace.. . .}>
Content: (annotation?, (all | choice | sequence)?)
</group>

Copyright © 2000, Intalio, Inc 31

(s
~
exolab’org

2/15/2001
Schema Component: Model Group
* § 3.7 Model Group Details
Supported:
- {compositor}
- {particles}
- {annotation}
* §4.3.6 XML Representation of Model Group Schema Components.
Unsupported features appear in italics:

<al |
id =1D
maxQOccurs =1 : 1
m nCccurs =1 : 1
{any attributes with non-schema nanespace . L3>
Content: (annotation? , elenent*)

</all>

<choi ce
id =1D
maxQccurs = (nonNegati vel nteger | unbounded) 1
m nCccurs = nonNegativelnteger : 1
{any attributes with non-schema nanespace . L3>
Content: (annotation? , (elenment | group | choice

| sequence | any)*)
</ choi ce>

<sequence
id =1D

m nCccur s

nonNegativel nteger : 1

| sequence | any)*)
</ sequence>

{any attributes with non-schema nanespace .
Content: (annotation? , (elenment | group

maxQOccurs = (nonNegativel nteger | unbounded)

1

1>

choi ce

Copyright © 2000, Intalio, Inc

32

(s’
~
exolab.org

Schema Component: Particle

» § 3.8 Particle Details

Supported:
- {min occurs}
- {max occurs}

- {term}

Copyright © 2000, Intalio, Inc

2/15/2001

33

(s
~
exolab’org

Schema Component: Wildcard

Wildcards are currently not supported.

* § 3.9 Wildcard Details
Unsupported:
- {namespace constraint}
- {process contents}

- {annotation}

Schema Component: Identity-constraint Definition

Identity-constraints are currently not supported.

* §3.10 Identity-constraint Definition Details
Unsupported:
- {name}
- {target namespace}
- {identity-constraint category}
- {selector}
- {fields}
- {referenced key}

- {annotation}

Copyright © 2000, Intalio, Inc

34

2/15/2001

(s
~
exolab’org

Schema Component: Notation Declaration

Notations are currently not supported.

* §3.11 Notation Declaration Details
Unsupported:
- {name}
- {target namespace}
- {system identifier}
- {public identifier}

- {annotation}

Schema Component: Annotation

e §3.12 Annotation Details
Supported:
- {application information}

- {user information}

Copyright © 2000, Intalio, Inc

35

2/15/2001

5
I b 2/15/2001
exolab’org

Schema Component: Simple Type Definition

* §3.13 Simple Type Definition Details

Supported:

- {name}

- {target namespace}

- {base type definition}

- {facets}

- {variety}

- {atomic}

- {annotation}
Unsupported:

- {variety}

- {list}

- {union}

* § 43.11 (non-normative) XML Representation of Simple Type
Definition Schema Components.

Unsupported features appear in italics:

<simpleType
id=1ID
name = NCName
{any attributes with non-schema namespace. . .}>
Content: (annotation?, ((/ist | restriction | union)))
</simpleType>

Copyright © 2000, Intalio, Inc 36

5
I b 2/15/2001
exolab’org

2.4 Requirements

Castor XML is compliant with all JDK1.1 and above.

In order to run the Source Generator you'll need to set the
following libraries in your classpath.

2.4.1 Castor packages

e org.exol ab. castor. buil der

e org.exol ab.castor. buil der.types
e org.exol ab. castor. builder.util

* org.exol ab. cast or. mappi ng

e org.exol ab.castor.types

e org.exol ab. castor. xnl

2.4.2 External libraries

e org.exol ab. j avasour ce : this package contains a full description of
a java object

» Xerces-Java parser: the Apache XML parser and serializer is the parser
used by Castor.

» Jakarta regular expression.

These external libraries are included in the Castor distribution.

Copyright © 2000, Intalio, Inc 37

5
I b 2/15/2001
exolab’org

3 Example

In this section we illustrate the use of the Source Generator by
explaining the generated classes from a given schema.

The Source Generator is going to be used with the “java class
mapping” property (cf section 2.2.3.2) set to ‘element’ (default
value).

3.1 The schema file

The input file is the schema file given with the Source Generator
example in the distribution of Castor (under
/ src/ exanpl es/ Sour ceGener at or/i nvoi ce. xsd)

Copyright © 2000, Intalio, Inc 38

o
x I b 2/15/2001
exolab’org

Copyright © 2000, Intalio, Inc

o
x I b 2/15/2001
exolab’org

Copyright © 2000, Intalio, Inc

o
x I b 2/15/2001
exolab’org

Copyright © 2000, Intalio, Inc

@j
I b 2/15/2001
exolab’org

The structure of this schema is simple: it is composed of a top-
level element which is a complexType with references to other
elements inside.

This schema represents a simple invoice: an invoice is a customer
(‘ship-to’ element), an article (‘item’ element), a shipping method
(‘shipping-method’ element) and a shipping date (‘shipping-date’
element).

Notice that the ‘ship-to’ element uses a reference to an ‘address’
element. This ‘address’ element is a top-level element which
contains a reference to a non-top-level element (the ‘zip-code’
element).

At the end of the schema we have two simpleTypes for
representing a telephone number and a price.

The Source Generator is used with the ‘element’ property set for
class creation (c.f.section 2.2.3.2) so a class is going to be
generated for all top-level elements. No classes are going to be
generated for complexTypes and simpleTypes since the
simpleType is not an enumeration.

To summarize, we can expect 6 classes : Invoice, Address, Item,
ShipTo, ShippingMethod and ShippingDate and the 6
corresponding class descriptors.

To run the source generator and create the source from the
invoice.xsd file in a package test, we just call in the command
line:

java -cp Y%CP% or g. exol ab. castor. bui | der. Sour ceGenerator -i
i nvoi ce. xsd -package test

Copyright © 2000, Intalio, Inc 42

o
I b 2/15/2001
exolab’org

3.2 The generated code

To simplify this example we now focus on the item element.

To represent an Item object, we need to know its ‘Id’, the
‘Quantity’ ordered and the ‘Price’ for one item.

So we can expect to find a least three private variables:astri ng
for the ‘Id’ element, an i nt for the ‘quantity’ element (see the
section on XML Schema support if you want to see the mapping
between a W3C XML Schema type and a java type) but what type
for the ‘Price’ element?

While processing the ‘Price’ element, Castor is going to process
the type of ‘Price’ i.e. the simpleType ‘PriceType’ which base is
‘decimal’. Since derived types are automatically mapped to
parent types and W3C XML Schema ‘decimal’ type is mapped to a
java. mat h. Bi gDeci mal, the price element will be a
j ava. mat h. Bi gDeci nal .

Another private variable is created for ‘quantity’: quantity is
mapped to a primitive java type so a bool ean
“has_quantity’ is created for monitoring the state of the
quantity variable.

Copyright © 2000, Intalio, Inc 43

)
QXOIab.Org 2/15/2001

The rest of the code is the ‘getter-setter’ methods and the
Marshalling framework specific methods.

Here the whole Item class:

Copyright © 2000, Intalio, Inc

o
x I b 2/15/2001
exolab’org

Copyright © 2000, Intalio, Inc

o
x I b 2/15/2001
exolab’org

Copyright © 2000, Intalio, Inc

{:nj
I b 2/15/2001
exolab’org

The ItemDescriptor class is a bit more complex. This class is
containing inner classes which are the XML field descriptors for
the different components of an ‘Item’ element i.e. id, quantity
and price.

Copyright © 2000, Intalio, Inc 47

@
x I b 2/15/2001
exolab’org

4 FAQ

* I have many simpleTypes in my schema but there is no classes
generated to represent these simpleTypes?

A simpleType remains merely a type. It has no particular meaning in the
structure of an XML Schema or an instance if an XML Schema.

Right now the Source Generator generates source for a simpleType only
when this simpleType is an enumeration.

» How does the Source Generator handle the attribute ‘maxOccurs’ ?

If you use in your schema an element with the attribute ‘maxOccurs’ set to
a number greater than 1, the Source Generator will create a collection that
can contain many elements. This collection depends on the property set up
in the castorbuilder.properties file. For more details on collections, you can
refer to section 2.2.1.

For instance, if you use the Source Generator with the default property and
you want generate source for the following element:

The result will be

with some specific methods for dealing with the Vector:

addVal ue(int vValue),java.util.Enuneration enumnerateVal ue(),
i nt get Val ue(int index), int[] getValue(),

int getVal ueCount (), renoveAl | Val ue(),

int renoveVal ue(int index),

set Val ue(int vVliaue, int index), setValue(int[] Val ueArray).

Note: an array setter method is automatically created.

Copyright © 2000, Intalio, Inc 48

o
I b 2/15/2001
exolab’org

For example, given the following schema fragment:

The source code generator will produce the following “array
setter” method:

* What is the compatibility with the different JDKs?

The Source Generator supports the different version of the JDKs since
version 1.1.

But some features can work only a Java 2 Platform.

* I want to use the Source Generator with a Castor Schema Object
Model not with a data file, does the API allow that?

You can create a new instance of the Source Generator and simply call the
method gener at eSour ce(Schema schema, String packageNane)
of the Sour ceGener at or class.

* I want to use another implementation of the SAX Parser but Castor
seems to rely on Xerces, is there a way to specify another parser?

Castor is not relying on the SAX Parser implementation of Xerces. You can
use another implementation by setting the following property in the
castor.properties file:

Copyright © 2000, Intalio, Inc 49

o
I b 2/15/2001
exolab’org

Defines the default XM parser to be used by castor

The parser must inplenment org.xnl.sax. Parser

#

or g. exol ab. cast or. par ser =or g. apache. xer ces. par ser s. SAXPar ser

Castor relies on Xerces only for the serializer.

+ Isit possible to generate comments in the generated source ?

If you want to insert comments on a class or element, you can use the
ANNOTATION tag in the XML Schema.

The Source Generator is generating javadoc-style comments for all the
contents of an ANNOTATION tag.

For instance in the example of section 3, the following:

generates:

e How can I retrieve the content of an element when I used
m xed="true’ inthe type definition of this element?

In several cases you might want to deal with the content of an element. For
instance when using the m xed attribute in a complexType or when
having this kind of element declaration :

Copyright © 2000, Intalio, Inc 50

{:nj
I b 2/15/2001
exolab’org

This schema fragment represents this instance element:

It might be useful to retrieve the content which in this particular case is an
i nt eger.

The Source Generator handles it by generating a content member as well as
the getter-setter methods for this member.

In the generated class for the Foo element of the previous element you
should have:

Copyright © 2000, Intalio, Inc 51

o
I b 2/15/2001
exolab’org

Note: Due to its special role, the name ‘content’ is a reserved name in
Castor and should not be used in a schema.

+ XML naming conventions allows the use of several characters
that are not allowed in Java members (for instance ‘.’ or ‘:’).
How the Source Generator is treating these members?

When encountering such members the Source Generator turns their names
by using its own naming convention.

The following example sums up these conventions:

The Source Generator will generate the following Java members:

Copyright © 2000, Intalio, Inc 52

5
I b 2/15/2001
exolab’org

5 Open Issues: possible improvements

» Propose a Fine grained control on each class

» Provide a target (in Ant) so that we can compile directly the generated
classes

* Provide an XML input file to control some properties:

- Choose the name of the generated files
- Decide what is the super class of the generated class

- Decide what is the type of the generated classes (abstract, final,
private...)

» Provide a stylesheet to convert old schemas to new ones

* Plug with a GUI schema editor

Copyright © 2000, Intalio, Inc 53

5
I b 2/15/2001
exolab’org

6 Glossary

[1] DOM (Document Object Model)

Document Object Model provides a standard set of objects for
representing and manipulating HTML and XML documents.

[2] SAX (Simple API for XML)
SAX is a standard interface for event-based XML parsing.
[3] XML (Extensible Markup Language)

The Extensible Markup Language (XML) is a subset of SGML. Its goal is
to enable generic SGML to be served, received, and processed on the
Web in the way that is now possible with HTML.

[4] XML Schema

An XML Schema is a specific XML language that describes the structure
and the types of an XML document.

[5] XML Data binding
Representing an XML document directly in-memory.
[6] Marshalling Framework

The marshalling framework is responsible for doing the conversion
between Java and XML.

Copyright © 2000, Intalio, Inc 54

5
I b 2/15/2001
exolab’org

7 References

W3C XML SCHEMA
XML Schema Part 1: Structures
XML Schema Part 2: Datatypes
W3C Candidate Recommendation 24 October 2000

See http://www.w3.0rg/TR/2000/CR-xmlschema-1-20001024

http://www.w3.0rg/TR/2000/CR-xmIschema-2-20001024

SAX 2.0
Simple API for XML Version 2.0
David Megginson et al. 5" May 2000

See http://www.megginson.com/SAX/

Sun XML Data Binding WhitePapers
An XML Data Binding Facility for the Java Platform.
Sun Microsystems, Inc. 30 July 1999.

See http://java.sun.com/xml/docs/bind.pdf

Castor XML
Castor XML.
The Exolab group.

See http://castor.exolab.org

Copyright © 2000, Intalio, Inc 55

http://www.w3.org/TR/2000/CR-xmlschema-1-20001024
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024
http://www.megginson.com/SAX/
http://castor.exolab.org/

5
I b 2/15/2001
exolab’org

Java, Sun, Sun Microsystems are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and in
other countries.

XML, XML Schema and related standard are trademarks or
registered trademarks of MIT, INRIA, Keio or others, and a
product of the World Wide Web Consortium.

Copyright © 2000, Intalio, Inc 56

	Abstract
	Why a Source Code Generator?
	XML Data Binding
	The role of the source generator

	Usage, options & XML Schema support
	Usage
	Source Generator Options
	2.2.1 Command Line Options
	Collection types:

	2.2.3 Advanced options
	2.2.3.1 Bound Properties
	2.2.3.2 Class Creation/Mapping
	The 'element' method
	The 'type' method

	2.2.3.3 Setting a super class

	XML Schema support
	2.3.1 Built-in types
	2.3.1.1 Primitive Datatypes
	2.3.1.2 Derived datatypes
	2.3.1.3 Conclusion – Comments
	Primitive datatypes
	Derived datatypes

	2.3.2 Structure
	Schema Component: Schema
	Schema Component: Attribute Declaration
	Schema Component: Element Declaration
	Schema Component: Complex Type Definition
	Schema Component: Attribute Group Definition
	Schema Component: Model Group Definition
	Schema Component: Model Group
	Schema Component: Particle
	Schema Component: Wildcard
	Schema Component: Identity-constraint Definition
	Schema Component: Notation Declaration
	Schema Component: Annotation
	Schema Component: Simple Type Definition

	Requirements
	Castor packages
	External libraries

	Example
	The schema file
	The generated code

	FAQ
	Open Issues: possible improvements
	Glossary
	References

