$CONTRL


$CONTRL group (optional)

This is a free format group specifying global switches.

SCFTYP together with MPLEVL or CITYP specifies the wavefunction. You may choose from

= RHF Restricted Hartree Fock calculation (default)

= UHF Unrestricted Hartree Fock calculation

= ROHF Restricted open shell Hartree-Fock. (high spin, see GVB for low spin)

= GVB Generalized valence bond wavefunction or OCBSE type ROHF. (needs $SCF input)

= MCSCF Multiconfigurational SCF wavefunction (this requires $DRT input)

= NONE indicates a single point computation, rereading a converged SCF function. This option requires that you select CITYP=GUGA, RUNTYP=ENERGY, TRANSITN, or SPINORBT, and GUESS=MOREAD.

MPLEVL = chooses Moller-Plesset perturbation theory level, after the SCF.

= 0 skips the MP computation (default)

= 2 performs a second order energy correction. MP2 is implemented only for RHF, UHF, ROHF, and MCSCF wave functions. Gradients are available only for RHF, so for the others you may pick from RUNTYP=ENERGY, TRUDGE, SURFACE, or FFIELD only.

CITYP = chooses CI computation after the SCF. Any SCFTYP except UHF may be followed by a CI computation.

= NONE skips the CI. (default)

= GUGA runs the Unitary Group CI package, which requires $CIDRT input. Gradients are available only for RHF, so for other SCFTYPs, you may choose only RUNTYP=ENERGY, TRUDGE, SURFACE, FFIELD, TRANSITN, or SPINORBT.

Obviously, at most one of MPLEVL or CITYP may be chosen.

RUNTYP specifies the type of computation, for example at a single geometry point:

= ENERGY Molecular energy. (default)

= GRADIENT Molecular energy plus gradient.

= HESSIAN Molecular energy plus gradient plus second derivatives, including harmonic harmonic vibrational analysis. See the $FORCE and $CPHF input groups.

multiple geometry options:
= OPTIMIZE Optimize the molecular geometry using analytic energy gradients. See $STATPT.

= TRUDGE Non-gradient total energy minimization. See groups $TRUDGE and $TRURST.

= SADPOINT Locate saddle point (transition state). See the $STATPT group.

= IRC Follow intrinsic reaction coordinate. See the $IRC group.

= GRADEXTR Trace gradient extremal. See the $GRADEX group.

= DRC Follow dynamic reaction coordinate. See the $DRC group.

= SURFACE Scan linear cross sections of the potential energy surface. See $SURF.


single geometry property options:

= PROP Properties will be calculated. A $DATA deck and converged $VEC group should be input. Optionally, orbital localization can be done. See $ELPOT, etc.

= MOROKUMA Performs monomer energy decomposition. See the $MOROKM group.

= TRANSITN Compute radiative transition moment. See the $TRANST group.

= SPINORBT Compute spin-orbit coupling. See the $TRANST group.

= FFIELD applies finite electric fields, most commonly to extract polarizabilities. See the $FFCALC group.

= TDHF analytic computation of time dependent polarizabilities. See the $TDHF group.


Note that RUNTYPs involving the energy gradient, which are GRADIENT, HESSIAN, OPTIMIZE, SADPOINT, IRC, GRADEXTR, and DRC, cannot be used for any CI or MP2 computation, except when SCFTYP=RHF.
EXETYP
= RUN Actually do the run. (default)

= CHCK Wavefunction and energy will not be evaluated. This lets you speedily check input and memory requirements. See the overview section for details.

= DEBUG Massive amounts of output are printed, useful only if you hate trees.

= routine Maximum output is generated by the routine named. Check the source for the routines this applies to.

MAXIT
= Maximum number of SCF iteration cycles. Pertains only to RHF, UHF, ROHF, or GVB runs. See also MAXIT in $MCSCF. (default = 30)


ICHARG
= Molecular charge. (default=0, neutral)

MULT
= Multiplicity of the electronic state

= 1 singlet (default)

= 2,3,... doublet, triplet, and so on.


ICHARG and MULT are used directly for RHF, UHF, ROHF. For GVB, these are implicit in the $SCF input, while for MCSCF or CI, these are implicit in $DRT or $CIDRT input. You must still give them correctly here.
ECP
= effective core potential control.

= NONE all electron calculation (default).

= READ read the potentials in $ECP group.

= SBK use Stevens, Basch, Krauss, Jasien, Cundari potentials for all heavy atoms (Li-Rn are available).

= HW use Hay, Wadt potentials for all the heavy atoms (Na-Xe are available).


the next three control molecular geometry

COORD
= choice for molecular geometry in $DATA.

= UNIQUE only the symmetry unique atoms will be given, in Cartesian coords (default).

= HINT only the symmetry unique atoms will be given, in Hilderbrandt style internals.

= CART Cartesian coordinates will be input.

= ZMT GAUSSIAN style internals will be input.

= ZMTMPC MOPAC style internals will be input.

Note that the final three choices require the input of all atoms in the molecule. GAMESS will orient the molecule, and determine which atoms are unique. The reorientation is likely to change the order of the atoms from what you input.

Note that the final three choices require the use of $BASIS to define the basis set. The first two choices may or may not use $BASIS, as you wish.

UNITS
= distance units, any angles which are entered in $DATA must be in degrees.

= ANGS Angstroms (default)

= BOHR Bohr atomic units

NZVAR
= Coordinate switch.

= 0 Use Cartesian coordinates (default).

= M If COORD=ZMT or ZMTMPC and a $ZMAT is not given: the internal coordinates will be those defining the molecule in $DATA. In this case, $DATA must not contain any dummy atoms. M is usually 3N-6 (or 3N-5 for linear).

= M For other COORD choices, or if $ZMAT is given: the internal coordinates will be those defined in $ZMAT. This allows the use of more sophisticated internal coordinate choices. M is ordinarily 3N-6 (3N-5), unless linear bends are used in the $ZMAT.

Note that NZVAR refers mainly to the coordinates in which an OPTIMIZE or SADPOINT run is performed, but also to the values printed for any of the other run types. It is possible to use internals to enter the molecule, but still to use Cartesians during the optimization!

LOCAL
= controls orbital localization.

= NONE Skip localization (default).

= BOYS Do Foster-Boys localization.

= RUEDNBRG Do Edmiston-Ruedenberg localization.

= POP Do Pipek-Mezey population localization. See the $LOCAL group. Localization does not work for SCFTYP=GVB or CITYP.

interfaces to other programs

MOLPLT
= flag that produces an input deck for a molecule drawing program distributed with GAMESS. (default is .FALSE.)

PLTORB
= flag that produces an input deck for an orbital plotting program distributed with GAMESS. (default is .FALSE.)

AIMPAC
= flag to create an input deck for Bader's atoms in molecules properties code. (default=.FALSE.) For information about this program, contact
Richard F.W. Bader
Dept. of Chemistry
McMaster University
Hamilton, Ontario L8S-4M1 Canada
bader@sscvax.cis.mcmaster.ca

RPAC
= flag to create the input files for Bouman and Hansen's RPAC electronic excitation and NMR shieldings program. RPAC works only with RHF wavefunctions. Contact Prof. Aage Hansen in Copenhagen (nahaeh@vm.uni-c.dk) about this program. (default is .FALSE.)

FRIEND
= string to prepare input to other quantum programs, choose from

= HONDO for HONDO 8.2

= MELDF for MELDF

= GAMESSUK for GAMESS (UK Daresbury version)

= GAUSSIAN for Gaussian 9x

= ALL for all of the above

PLTORB, MOLPLT, and AIMPAC decks are written to file PUNCH at the end of the job. The two binary disk files output by RPAC are written at the end of the job. Thus all of these correspond to the final geometry encountered during the job.

In contrast, selecting FRIEND turns the job into a CHECK run only, no matter how you set EXETYP. Thus the geometry is that encountered in $DATA. The input is added to the PUNCH file, and may require some (usually minimal) massaging.

PLTORB and MOLPLT are written even for EXETYP=CHECK. AIMPAC requires at least RUNTYP=PROP. RPAC requires at least RUNTYP=ENERGY, and you must take action to save the binary files AOINTS and WORK15.

The NBO program of Frank Weinhold's group can be attached to GAMESS. The input to control the natural bond order analysis is read by the add in code, so is not described here. The NBO program is available by anonymous FTP to ftp.osc.edu, in the directory pub/chemistry/software/SOURCES/FORTRAN/nbo

computation control switches

For the most part, the default is the only sensible value, and unless you are sure of what you are doing, these probably should not be touched.

NPRINT
= Print/punch control flag See also EXETYP for debug info. (options -7 to 5 are primarily debug)

= -7 Extra printing from Boys localization.

= -6 debug for geometry searches

= -5 minimal output

= -4 print 2e-contribution to gradient.

= -3 print 1e-contribution to gradient.

= -2 normal printing, no punch file

= 1 extra printing for basis,symmetry,ZMAT

= 2 extra printing for MO guess routines

= 3 print out property and 1e- integrals

= 4 print out 2e- integrals

= 5 print out SCF data for each cycle. (Fock and density matrices, current MOs

= 6 same as 7, but narrow terminal output

This option isn't perfect.

= 7 normal printing and punching (default)

= 8 more printout than 7. The extra output is (AO) Mulliken and overlap population analysis, eigenvalues, Lagrangians, ...

= 9 everything in 8 plus Lowdin population analysis, final density matrix.

NOSYM
= 0 the symmetry specified in $DATA is used as much as possible in integrals, SCF, gradients, etc. (this is the default)

= 1 the symmetry specified in the $DATA group is used to build the molecule, then symmetry is not used again. Some GVB or MCSCF runs (those without a totally symmetric charge density) require you request no symmetry.

INTTYP
= POPLE use fast Pople routines for sp integral blocks, and HONDO Rys polynomial code for all other integrals. (default)

= HONDO use HONDO/Rys integrals for all integrals. This option produces slightly more accurate integrals but is also slower.

NORMF
= 0 normalize the basis functions (default)

= 1 no normalization

NORMP
= 0 input contraction coefficients refer to normalized Gaussian primitives. (default)

= 1 the opposite.

ITOL
= primitive cutoff factor (default=20)

= n products of primitives whose preexponential factor is less than 10**(-n) are skipped.

ICUT
= n integrals less than 10.0**(-n) are not saved on disk. (default = 9)

restart options

IREST
= restart control options (for OPTIMIZE run restarts, see $STATPT) Note that this option is unreliable!

= -1 reuse dictionary file from previous run, useful with GEOM=DAF and/or GUESS=MOSAVED. Otherwise, this option is the same as 0.

= 0 normal run (default)

= 1 2e restart (1-e integrals and MOs saved)

= 2 SCF restart (1-,2-e integrls and MOs saved)

= 3 1e gradient restart

= 4 2e gradient restart

GEOM
= select where to obtain molecular geometry

= INPUT from $DATA input (default for IREST=0)

= DAF read from DICTNRY file (default otherwise)

As noted in the first chapter, binary file restart is not a well tested option!



Back to list of input groups...