Joint Revised Submission
CORBA/Firewall Security

BEA Systems, Inc.

Borland International, Inc.

Expersoft Corporation

FUJITSU LIMITED

International Business Machines Corporation
IONA Technologies PLC

NEC Corporation

Netscape Communications Corporation
Oracle Corporation

Sun Microsystems, Inc.

May 18, 1998
OMG Document orbos/98-05-04

Copyright 1998 BEA Systems, Inc.

Copyright 1998 Borland International, Inc

Copyright 1998 Expersoft Corporation.

Copyright 1998 FUJITSU LIMITED.

Copyright 1998 International Business Machines Corporation.
Copyright 1998 IONA Technologies PLC.

Copyright 1998 NEC Corporation

Copyright 1998 Netscape Communications Corporation.
Copyright 1998 Oracle Corporation.

Copyright 1998 Sun Microsystems, Inc.

All rights reserved.

The companies listed above hereby grant to the Object Management Group, Inc. (OMG) and
OMG members, permission to copy this document for the purpose of evaluating the technology
contained herein during the technology selection process by the appropriate OMG task force.
Distribution to anyone not a member of the Object Management Group or for any purpose other
than technology evaluation is prohibited.

The material in this document is submitted to the OMG for evaluation. Submission of this
document does not represent a commitment to implement any portion of this specification in the
products of the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE

ACCURATE, THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The companies listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.
The information contained in this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved.
Except as otherwise provided herein, no part of this work may be reproduced or used in any
form or by any means—qgraphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems— without the permission of one of the
copyright owners. All copies of this document must include the copyright and other information
contained on this page.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013.

CORBA/Firewall Security

Contents

1. Preface
1.1
1.2
1.3
1.4
15
1.6

Introduction

SubmissionContacts
Submission Supporters
Guide to Submission o o
Items Not Addressed in this Submission

Proof of Concept .

2. Responseto RFP Requirements.....................

RFP Proposal Specific Requirements.
2.1.1 Mandatory Requirements

2.1

2.2

2.1.2 Optional

Requirements.

Resolution of RFP Requirements.
221 Mandatory

2.2.2 Optional

3. Design Rationale and Background.
Rationale Summary
Background: Existing Practice.
Overview of Specification
Architectural Overview- GIOP Proxy Firewall

3.5 Firewall Profiles- Requirements.
3.6 The Rest of ThisDocument

3.1
3.2
3.3
3.4
3.5
3.6

4. ORB Interoperability through Firewalls.

4.1

Firewall Principles

Co© 0o®®owepan T G

10
10

10

11

13
13
14
15
16
16
17

19
19

4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9
4.10
4.11
4.12

4.13

5. Bi-directional GIOP

Bi-Directional GIOP
Bi-Directional IOP

Bi-directional GIOP policy
6. Conformance & CORBA Changes

51

52

6.1
6.2

ORBsand Firewalls.

Scope of Firewall Support in CORBA

Types of Firewall
TCPFirewalls

SOCKS. . .

GIOP Proxy e
4.7.1 Connectionstyles.....................
47.2 Callbacks
4.7.3 1IOP/SSL considerations
4.7.4 GIOP Proxy Interface.

Firewall tag components
Firewall POA Policy

Outbound firewalls.

Traversal algorithm

Passing credentials
4.12.1 SSL Certificates

IIOP/SSL Considerations

51.1

Conformance
Changes to CORBA 2.2

Appendix A Consolidated IDL
Firewall Module.
Additionsto SSLIOP

Al
A.2
A.3

Additions to the [IOP Module

21
21
22
22
24

28
28
29
32
32

35

39
40
40

43
44

44

47

a7
49

50

53
53
54

55
55
57
58

Preface 1

1.1 Introduction

The Internet has metamorphosized into a global information resource for private and
commercial use. Most organizations would like to take advantage of the powers of the
World-Wide-Web and still protect their assets. Therefore, network firewalls were
introduced to prevent unauthorized access and attacks, by protecting the points of entry
into the network. Currently, there is no standard mechanism for a firewall to identify
and control the flow of IIOP traffic.

The intent of the submission is to provide a standard approach to control IIOP traffic
through network firewalls, thereby allowing outside access to CORBA applications.

1.2 Submission Contacts

The following lists contact information for the submitters of this document. All
guestions concerning this submission should be directed to:

Ed Cobb

BEA Systems, Inc.

385 Moffett Park Drive
Sunnyvale, CA 94089
Phone: +1 408 542 4264
Fax: +1 408 744 0775
Email: ed.cobb@beasys.com

Jeff Mischkinsky
Borland International, Inc.

CORBA Firewall Security May 19, 1998 5:46 pm 1-5

1-6

951 Mariner's Island Blvd.
San Mateo, CA 94404
Phone: +1 650 312 5158
Fax: +1 650 286-2475
Email: jeffm@visigenic.com

Ken Fleming

Expersoft Corporation

5825 Oberlin Drive, Suite 300
San Diego, CA 92121

Phone: +1 619 824 4185

Fax: +1 619 824 4110

Email: kfleming@expersoft.com

Masayoshi Shimamura
FUJITSU LIMITED

Nikko Fudousan Building, 2-15-16, Shinyokohama

Kohoku-ku, Yokohama 222, Japan
Phone: +81 45 476 4590

Fax: +81 45 476 4726

Email: shima@rp.open.cs.fujitsu.co.jp

Anne Aldous

IBM Corporation

11400 Burnet Road

IZIP: 9133

Austin, TX 78758

Phone: +1 512 838 2186
Fax: +1 512 838 0156
Email: aldous@us.ibm.com

Martin Chapman

IONA Technologies PLC
The IONA Building

8-10 Lower Pembroke Street
Dublin 2, Ireland

Phone: +353 1 662 5255

CORBA Firewall Security

May 19, 1998 5:46 pm

Fax: +353 1 662 5244
email: mchapman@iona.com

Michael J. Greenberg

NEC Systems Laboratory, Inc.
4 Independence Way
Princeton, NJ 08540

Phone: +1 609 734 6142

Fax: +1 609 734 6001

Email: mjg@syl.nj.nec.com

Rahul Bhargava

Netscape Communications Corporation
M/S MV-061

501 East Middlefield Road

Mountain View, CA 94043

Phone: +1 650 937 2600

Fax: +1 650 528 4129

Email: rahul@netscape.com

Sastry Malladi

Oracle Corporation

500 Oracle Parkway
Redwood Shores, CA 94065
USA

phone: +1 650-506-8063

fax: +1 650-654-6211
email:smalladi@us.oracle.com

Jeff Nisewanger

Sun Microsystems, Inc.

901 San Antonio Road, MS UCUP02-201
Palo Alto, CA 94303
Email:jeff.nisewanger@eng.sun.com

CORBA Firewall Security May 19, 1998 5:46 pm

1-7

1.3 Submission Supporters

Companies and contacts supporting this submission are:

John Sebes.

TIS Labs at Network Associates, Inc.
3965 Freedom Circle

Santa Clara, CA 95054

Phone: +1 408 602 5646
Email:ejs@tis.com

1.4 Guide to Submission

Chapter 2 restates the requirements described in the original RFP, and discusses how
these are addressed in this submission.

Chapter 3 provides design rationale and design goals of the submission.

Chapter 4 provides a description and specification of firewall support in CORBA. In
particular it presents three types of firewalls that could be used when interconnecting
ORBs across a network. These are TCP, SOCKSv5, and GIOP proxy firewalls. The
issues related to client and server side usage are presented together with IDL
definitions. Particular attention has been made to ensuring that IIOP/SSL connections
can be established through firewalls.

Chapter 5 presents a modification to the existing GIOP/IIOP protocols. This
modification permits a server to reuse a connection it has with a client, so that the
server may issue requests to callback objects on the client side. This is called bi-
directional GIOP.

Chapter 6 provides a conformance statement, and outlines the changes required to
CORBA V2.2.

Finally, Appendix A consolidates the IDL defined in this submission.

1.5 Items Not Addressed in this Submission

This proposal does not address the use of SECIOP as a transport mechanism for secure
invocations. We will address these items at a later time.

1.6 Proof of Concept

This submission is based on several products and prototypes developed by submitters
of this revised specification.

CORBA Firewall Security May 19, 1998 5:46 pm

Response to RFP Requirements 2

2.1 RFP Proposal Specific Requirements

The following two sectiondMlandatory RequiremenisndOptional Requiremest
were cut and pasted from the original RFP document. We have included them in this
section for the convenience of the reader.

2.1.1 Mandatory Requirements

Proposals shall specify how a firewall can process IIOP to allow CORBA objects
managed behind the firewall to have operations invoked on them from the outside
world. Proposals shall describe how firewall processing of IOP can be done to enable
firewalls to do the following:

® Permit outside access to some inside CORBA-based application services, and also
prevent access to IIOP-based services that should not be accessible from the
outside.

Process IIOP as an ordinary application protocol. Proposals shall describe firewalls can
meet the above requirement by performing both, either, or neither of the following:

® determine what network traffic is expected to be IIOP (e.g. destination hosts, ports);

¢ differentiate between IIOP traffic that is permitted to enter the enclave, and IIOP
traffic that is not permitted;

® Protect inside target object servers from attack by data streams that are not valid
IIOP.

Proposals shall describe whether firewall processing of IOP depends on:

® Examination of IOP message header data or IOP message data, and if so which
fields.

¢ Authentication mechanisms (IIOP with SeclOP or SSL or any other form of
authentication) and if so what the use or dependency is.

CORBA Firewall Security May 19, 1998 5:46 pm 2-9

® Co-ordination of configuration data of firewalls and ORBs, e.g., to ensure that
object references (IORS) received by outside invokers can be used to make requests
that a firewall may allow.

Note also that this RFP does not require any modification of existing CORBA
specifications, e.g. IIOP, SeclOP, or SSL/CORBA. Likewise, responses to this RFP
should not require any modification without a very compelling justification.

2.1.2 Optional Requirements

In addition, proposals may describe how firewall processing of IIOP can be done to
enable firewalls to do the following:

® Control access at the granularity of specific objects and/or methods and/or any other
data that may be specific to an individual object invocation request message;

® Provide differentiated access based on authentication via firewall-to-firewall SSL
transport of IIOP, so that authenticated requests can be permitted more access than
unauthenticated requests;

® Provide differentiated access when SeclOP is implemented with IIOP, so that
authenticated requests can be permitted more access than unauthenticated requests;

® Use SeclOP or SSL to provide private IIOP interaction with selected authenticated
outsiders;

® Perform IIOP security functions when SSL or SeclOP is used for end-to-end
privacy between invoker and target object;

®* Meet mandatory requirements for any other inter-ORB protocols, as well as any
optional requirements.

®* Proposals may provide IDL interfaces for management and configuration of
firewalls.

2.2 Resolution of RFP Requirements

2-10

2.2.1 Mandatory

This proposal addresses all the RFP mandatory requirements as listed above, with the
following exception. In the case when a pass-through connection is established, as
described in section 3.7, the proxy has no visibility to the encrypted byte stream. It is
not possible to verify that valid IIOP traffic is flowing after the pass-through
connections has been established. However, pass-through connections are only allowed
under SSL, so the integrity of the client/server connection is maintained.

The RFP required that the submission describe the information examined by the
firewall to process the message. The firewall processing depends on examining the
IOR. On, requests, however, the principal value of the Service Context is evaluated.

CORBA Firewall Security May 19, 1998 5:46 pm

2.2.2 Optional

The submitters decided not to address the optional requirement of access control of
specific objects. This is currently addressed in CORBASEC.

SECIOP is not supported at this time. This proposal does address the use of SSL to
provide confidential IIOP with selected outsiders, as well as end-to-end confidentiality.

CORBA Firewall Security May 19, 1998 5:46 pm 2-11

2-12 CORBA Firewall Security May 19, 1998 5:46 pm

Design Rationale and Background 3

3.1 Rationale Summary

There are several elements of the rationale for this specification, but all of them stem
from one overall goal: better accessibility to CORBA application servers when there is
a firewall separating a server from a client. In this context, "better" means that client-
firewall-server communication can be enabled and controlled more easily for a broader
range of circumstances, with significantly lowered administrative burdens. In other
words, ORBs and firewalls currently have a limited form of "peaceful co-existence"
that provides satisfactory functionality only in some cases.

Thus, the main goal of this specification is to specify the changes to CORBA that are
needed for ORBs to function in a slightly different manner, so that CORBA
communication can more easily be handled by firewalls. An additional goal of this
document is to provide information on how current firewall techniques can be used to
control CORBA communication. This information illustrates the benefits of current
techniques, and also the limitations. The need to overcome these limitations is the main
driver for this specification.

Interoperable CORBA communication is via the GIOP protocol, which on the Internet
is implemented by the IIOP protocol (a mapping of GIOP to TCP transport). Because
firewalls control IP networking communication, and because ORBs communicate via
IIOP, much of this specification is concerned with various aspects of the ways that
firewalls handle the [IOP protocol. It is important to note that there is nothing
particularly problematic about IIOP as an Internet protocol, in terms of firewall
processing. In fact, this specification does not modify IIOP in any way. Rather, this
specification adds to CORBA new data elements (for example, in IORs) that provide
clients, firewalls, and servers the information needed for flexible, efficient, controlled
firewall traversal. This specification also defines CORBA interfaces that may be used
by CORBA software to provide information to a firewall.

CORBA Firewall Security May, 19, 1998 5:46 pm 3-13

3.2 Background: Existing Practice

3-14

Firewalls today can process IIOP in an effective but limited way. To describe CORBA
and firewall communication in this document, we use the term enclave to refer to some
set of CORBA objects that are protected by a firewall that controls all network
communication between those objects and the outside world. When a client within the
enclave communicates with one of these objects, the firewall is not involved. When a
client from outside the enclave communicates with one of these objects, the firewall is
involved, to ensure that communication occurs only if it is explicitly permitted. For
example, at a coarse level of control, an enclave may have some CORBA application
server hosts that outsiders can communicate with, and others which are reserves for
internal use within the enclave.

The limitations of current practice stem from the two basic requirements for cross-
firewall, inter-enclave communication. First, a client must be permitted by its own
enclave's firewall to initiate communication to the outside server. That is, the firewall's
configuration must include the TCP ports that clients will use to form outgoing TCP
connections to exchange IIOP messages with an outside server. Second, the server
must be permitted by its enclave's firewall to receive incoming connections from
outside clients. Of course, there is much more to firewall processing of IIOP than this,
but these two points are the foundation of firewall processing.

The essential problem with 1IOP and firewalls is that it is not easy in practice to know
in advance (and to represent in a firewall configuration) which hosts and ports will be
used for inter-enclave CORBA communication. The host/port addressing information

is contained in IORs that describe how to communicate with servers, assuming that
clients can contact servers directly. In the inter-enclave case, this assumption does not
hold. Clients attempt to contact servers directly. If they are lucky, then the intervening
firewalls have been specifically configured to allow the host/port connections needed
by the client. Otherwise the client is prevented by a firewall from establishing the
required communication. Because the client didn't know that it had to go through a
firewall, and didn't know where the firewall was, it was unable to contact the server.

Current technology can mitigate the difficulties on the client side, i.e., allowing the
client to go through its enclave's firewall to contact the firewall on the server side. If
clients use only TCP ports that are well-known to be for IIOP transport (or are
otherwise known in advance to the firewall administrator), then standard TCP-level
firewall mechanisms can be used to permit outgoing traffic. Section 4.5 provides more
information on TCP-level techniques. If the ports are not known in advance, then
Socks proxying techniques can be used to direct outgoing connections first to a Socks
proxy, and then outward to the Internet. Section 4.6 provides more information on
Socks techniques. In both cases, existing ORBs and firewall techniques are used.
Section 4.11 provides more information about outbound firewall traversal.

On the server side, the main difficulty is the difficulty of configuring firewalls to listen
for IIOP-bearing connections on all the ports, and destined for all the internal hosts,
that are mentioned in the host/port addressing information in any IOR for any object in
the enclave that outside clients might be allowed to access. To address this difficulty,

CORBA Firewall Security May, 19, 1998 5:46 pm

3

this specification describes new ORB functionality whereby IORs contain the
information needed to contact an object's firewall directly. As a result, firewalls can be
much more simply configured and managed. A firewall can have one host/port address
that clients directly use to contact the firewall that protects the object that it wishes to
communicate with.

3.3 Overview of Specification

This specification describes changes to CORBA that allow conformant ORBS to
provide solutions to several problems in existing CORBA/firewall practice.

The first such solution has been described above, in terms of IORs and firewall
addressing. Section 4.8 describes the format of the new fields in IORs that provides the
addressing information of firewalls. The extensible format allows for multiple kinds of
firewall addressing information to provided for different kinds of firewalls. In addition,
three tags are defined for this format, to support TCP firewalls, Socks proxy firewalls,
and GIOP proxy firewalls. GIOP proxies are firewall components that have the
capability of providing a very important security function: examination of the IIOP
traffic, ensuring that traffic that should be IIOP is in fact IIOP. Section 4.10 describes
further functionality of a GIOP proxy, including callbacks (see below).

The second area where this specification provides for new solutions is support for IIOP
over SSL. SSL is often used to protect IIOP communication in transit over the Internet
between a client in one enclave and a server in another. Therefore, the techniques for
IIOP firewall traversal must allow for SSL/IIOP traffic. Furthermore, GIOP proxying
techniques must also accommodate SSL. In cases where a GIOP proxy does not need
to examine IIOP message data, the SSL can passed-through unhindered and
unexamined. Therefore, the GIOP proxying techniques must accommodate firewall
traversal where the IIOP message cannot be viewed. Second, there is support for GIOP
proxies that examine IIOP messages, and in some cases must be able to examine [IOP
messages transported via SSL. Section 4.13 describes firewall profile tags needed to
represent both these cases of IIOP transport via SSL, and also describes data formats
for carrying client authentication data in service contexts. This data is needed in the
case where a GIOP proxy chains two SSL sessions together (one client-proxy, the other
proxy-server) in order to examine the client's IIOP messages. In such cases, the service
context is used to pass to the server the authentication data (e.g. X.509 certificate) of
the client.

The third area in which this specification provides for new solutions is support for
callbacks. The essential problem with callbacks is that the target host of callback
operation invocations is a workstation rather than a server host. While an enclave's
firewall configuration may permit a few selected inside server hosts to be the target of
outside IIOP traffic, it would be very unusual for a firewall configuration to allow any
inside workstation to be the target of an incoming TCP connection. Therefore, the
current usual callback technigue- the server calls back to the client's callback object via
a new TCP connection- is simply not acceptable for inter-enclave communication. This

CORBA Firewall Security May, 19,1998 5:46 pm 3-15

specification supports inter-enclave callbacks in two ways. Chapter 5 describes bi-
directional GIOP, a technique whereby a single client-initiated connection can be re-
used by the target server to carry IIOP traffic for server invocations on client-side
callback objects. Bi-directional GIOP is sufficient for cases where the server that is
calling back is also the server that the client originally contacted. In other cases, a
server may need to contact a callback object even though the client had not contacted
the server. These cases are supported by GIOP proxy functionality described in section
4.10.

3.4 Architectural Overview- GIOP Proxy Firewall

Having described the rationale and approach for each of the three main aspects of this
specification, it is important to also provide an overview of GIOP Proxies and the
requirements for how firewall profiles should allow GIOP proxies to operate. Several
issues arose during the formulation of an approach to CORBA and firewalls, and the
GIOP proxy is an important part of an approach (although TCP-level and Socks
techniques have their place as well) that covers all of the areas of CORBA/firewall
functionality. This document was written to synthesize a number of different
mechanisms into a coherent, standards-based specification.

A GIOP proxy is a new network communication component that supports inter-enclave
CORBA communication by firewall traversal, SSL support, and callback support. A
GIOP proxy could be part of a firewall, or could be deployed as a proxy server behind
a firewall that performs only simple TCP-level processing of 11OP traffic.

3.5 Firewall Profiles- Requirements

3-16

There are five basic issues that must be addressed for full GIOP proxy functionality.

1. Provide a mechanism which can supports both inbound and outbound GIOP
proxies.

2. Allow a client to connect to a server object using information stored in that server's
IOR; this means that if an IOR is sent to an external service, such as a Trader, a
client which gets a copy of the IOR can still connect to the correct inbound proxy,
namely the one corresponding to the server object's enclave.

3. Allow the use of multiple incoming and outbound proxies, so that a client which is
within several embedded enclaves can contact a server which itself is within several
embedded enclaves.

4. Interoperability - support for third-party ORBs and backwards-compatibility must
be considered.

5. Simplicity and efficiency of the proxy code should be maintained if possible.

CORBA Firewall Security May, 19, 1998 5:46 pm

3

Chapters 4 and 5 provide the details of new CORBA specifications that are needed to
meet these requirements. The overall approach can be summed up as follows:

IORs have profile data that directs clients to proxies;

Clients can use an IDL interface to invoke operations on GIOP proxy objects, to
provide information about desired proxy behavior (e.g. target object, callbacks,
chaining or pass-through mode for IOP/SSL);

Proxies decide whether each client's request for each object is permitted in the mode
requested,;

Proxies use these same interfaces to interact with one another, in cases where there are
sequence of proxies between an enclave boundary and a server (or client);

Clients (or upstream proxies) can invoke an operation using either 1IOP or SSL/IIOP,
and provide the information needed for the proxy to relay the operation invocation to
the target server (or downstream proxies);

The combination of bi-directional GIOP and GIOP proxy object interfaces allow for
various modes of callback traversal of firewalls.

3.6 The Rest of This Document

Sections 4.1 to 4.7 describe the various kinds of firewall approaches (TCP, Socks,
GIOP proxy) and the core issues of firewall traversal, SSL, and callbacks. Sections 4.8
and 4.9 amend the CORBA specification by the addition of definitions of new IOR
data and POA and associated POA policy. Section 4.10 amends the CORBA
specification by adding definitions of the interfaces to GIOP proxy objects (including
support for callbacks). Sections 4.11 and 4.12 describe firewall traversal and how the
new interfaces, etc., are used. Section 4.13 amends the CORBA specification by
adding firewall profiles for IOP/SSL. Chapter 5 amends the CORBA specification by
the addition of definitions for bi-directional GIOP (which can be used to support
callbacks across firewalls).

CORBA Firewall Security May, 19,1998 5:46 pm 3-17

3-18 CORBA Firewall Security May, 19,1998 5:46 pm

ORB Interoperability through
Firewalls 4

This chapter discusses ORB interoperability in networks where firewalls are present. It
provides an overview of the issues involved, followed by specifications and
descriptions of how inter-ORB interoperability through firewalls can be achieved.

4.1 Firewall Principles

In a CORBA environment, firewalls are used to protect objects from clients in other
networks or sub-networks. A firewall will either permit access from another network to

a particular object or will prevent it. When access through a firewall is permitted this
may be at various levels of granularity. For example, access could be permitted to
some objects behind the firewall, or access could be restricted to certain operations on
particular objects.

An enclaveis a group of objects protected by a firewall. The firewall protects the
enclave's network (or sub-net) by separating it from other enclaves and/or the Internet
at large. The separation is the result of the fact that all communication between the
enclave and the outside must pass through the enclave firewall (or one of its firewalls,
if there are several). Firewalls have two distinct duties: inbound protection and
outbound protection. Inbound protections are used to control external access to internal
resources. Outbound protections are used to limit the outside resources that be
accessed from within the enclave.

Both aspects of firewall functionality are important for CORBA. A firewall's outbound
protection functions should allow inside CORBA application clients and objects to
initiate communication with objects outside the enclave. A firewall's inbound
protection functions should prevent communication between outside clients/objects and
inside objects that the outsiders should not permitted to communicate with. Without a
firewall's outbound protection, clients could access any resources. Without a firewall's
inbound protection, all of the enclave's resources are unprotected from the outside
world

CORBA Firewall Security May 19, 1998 5:46 pm 4-19

4-20

Inbound

Figure 4-1 illustrates an enclave with two inbound firewalls, and one outbound
firewall. Note that although the firewalls are logically and functionally separate, they
may share the same physical hardware, or even share the same address space.

Inbound
-

Outbound

Figure 4-1 An enclave with multiple inbound and outbound firewalls.

Enclaves can be nested, such that an enclave may contain other enclaves in a
hierarchical manner. This enables organizations to decentralize firewall access and
have different access policies. For example, an engineering department prevents the
finance department of the same company from accessing design documents. When
enclaves are nested, a sequence of firewalls has to be traversed. A firewall protecting
the outer enclave is called either an outermost inbound firewall or an outermost
outbound firewall, depending on its type. The outermost inbound firewall represents an
entry point into an organization.

Figure 4-2 illustrates a hierarchical nesting of enclaves. The outermost “company”
enclave contains two sub-enclaves, “finance” and “R&D”. The “R&D” enclave further
contains the “Research” enclave. Firewall “A” is the outermost outbound firewall for
the “company” enclave, and firewall “B” is the outermost inbound firewall. Again it is
important to note that the distinction between inbound and outbound firewalls is only a
logical one, and does not necessarily imply a physical separation or separate address
space.

CORBA Firewall Security May 19, 1998 5:46 pm

A
R&D B
Company
-

_

Figure 4-2 A hierarchical set of enclaves.

4.2 ORBs and Firewalls

In order to establish a connection to an object in another ORB, two sets of information
are required. Firstly the outbound firewalls that need to be traversed must be known,
and secondly the inbound firewalls that have to be traversed must be known. This
information may be distributed and not known in one place. For example, a client side
ORB may only know its first outbound firewall, and that firewall knows the next
outbound firewall. This will be particularly true in environments with fixed
configurations, such as in intranets and extranets.

Since this specification is trying to cover a wide variety of scenarios (internet, intranet,
and extranet), it is not possible to make too many assumptions i.e. it cannot be
assumed that a firewall has knowledge to reach another firewall. Indeed the only
assumption that can be made is that as a minimum, a client side ORB must know its
first outbound firewall, and must know the outermost inbound firewall required to
reach an object (this must be known since if there are no outbound firewalls the client
ORB has to interact directly with the outermost inbound firewall).

Information about outbound firewalls is configured into the client side ORB.
Information about inbound firewalls may be configured into a client side ORB in
intranet or extranet configurations, but generally it must be assumed that the client side
knows nothing about the server side. The only interoperable means to convey this
information is to include inbound firewall information in IORs, within tagged
components.

4.3 Scope of Firewall Supportin CORBA

The prime motivation of this chapter is to describe how it is possible for two ORBs to
interoperate when the two ORBs exist in different enclaves, and hence require
navigation of firewalls to establish communication.

CORBA Firewall Security May 19, 1998 5:46 pm 4-21

However since firewalls from different vendors vary considerably, issues related to
configuring a firewall (such as to register which host/ports are accessible or which
objects) are considered outside of the scope of CORBA, and hence are not defined.

In a similar nature, issues related to configuring an ORB with firewall information is
also considered out of scope, since this chapter focuses on interoperability.

4.4 Types of Firewall

45 TCP Firewalls

4-22

Broadly, there are two types of firewall: transport level and application level.

A transport level firewall allows different resources using different application level
protocols to be accessed. Such firewalls neither understand nor care about the type of
application protocol being used. Access is based purely on addressing information in
the header of transport packets. Hence access decisions are based on where things
come from or are going to and not on what is being accessed. Typically access control
is performed during connection setup, and if successful any application traffic may
pass over the connection. A TCP firewall, for example allows access to FTP, HTTP, or
IIOP resources, where access is controlled on which hosts/ports traffic is going
between.

Application level firewalls on the other hand are restricted to a particular application
level protocol, such as IIOP or HTTP. Access decisions are not only possible based on
transport addressing information, but may also be based on specific resources known
by the application level protocol. For example, if there are two object that can be
accessed through the same host and port, it is possible for the firewall to deny
invocations being sent to one object but to allow them for the other. This type of
control requires monitoring the traffic after the connection has been established, and
hence requires the firewall to understand the application level protocol.

The mechanisms used to interact with a firewall to establish a connection through it is
very dependent on the type of firewall it is. Therefore to achieve ORB interoperability
it is necessary to define which types of firewall are supported in CORBA. The current
specification recognizes three types of firewall types, namely TCP, SOCKSv5, and
GIOP Proxy. The specification however is flexible enough in that other firewall types
can be added in the future with minimal change.

A TCP firewall is a very simple transport level firewall. It performs access control
decisions based on address information in TCP headers. For ORB interoperability, TCP
firewalls provide the simplest means to protect resources, but at the largest level of
granularity i.e. host based control.

A TCP firewall works on a simple address mapping scheme: a connection request
received on a certain port of the firewall, results in the firewall establishing a
connection to a particular host/port. Once the two connections have been established,
application level traffic can be sent from source to destination via the firewall. From a
ORB perspective, GIOP messages will travel through the firewall uninterrupted i.e.
ORB protocols are inconsequential to a TCP firewall.

CORBA Firewall Security May 19, 1998 5:46 pm

4

The firewall can determine access control information from looking at the source
address field in the TCP header, and make a decision as to whether that source host can
connect through to the destination. A TCP firewall must have prior knowledge, and
conceptually has a configuration table containing tuples of the feimhgst, inport>,
<outhost, outport>).When a connection request frefinhost, inport>is received

assuming the firewall allows connections from that particular client, a connection is set
up to<outhost, outport>.

Since a TCP firewall performs static mappings, this highlights a particular problem. If
the outermost outbound firewall is a TCP firewall, and there is also an outermost
inbound firewall, the outbound firewall must know thigriori since it cannot

determine this information from the TCP header packets. Thus TCP firewalls are, in
general, not suited to being placed as the outermost outbound proxy, unless a fixed
configuration can be assumed, such as may be the case in intranet or extranet
environments.

A very simple form of ORB interoperability through TCP firewalls can be achieved
without any additions to CORBA. Assuming a server is in an enclave protected by a
TCP firewall, the server can be configured to know about this firewall and may
substitute the host and port address of the server with the host and port address of the
firewall in any IORs issued outside the enclave (how this is done is an implementation
issue for the ORB vendor). Hence a client outside the enclave will receive an IOR that
contains the address of the firewall and not the server. The client will therefore send
GIOP messages to the firewall (which are forwarded to the server) thinking that the
object is actually on the firewall. This scheme can be used independently from the
other mechanisms described in this chapter, since it is completely transparent to
clients. Often TCP firewalls are used in more complex configurations, where it is not
feasible to use this scheme. In these cases the mechanisms described in this chapter
can be used.

Since traditionally TCP/IP used a port per service, it is now common for TCP services
to be identified by the port number used for the server. For example, SMTP mail is
delivered on port 25, X11 traffic on port 6000, etc. As a result, most existing firewalls
base their low-level access control decisions on the port used, and due to this ORB
interoperability through TCP firewalls is impeded as there is no well-known “llOP
port”. We define a recommended “well-known IIOP port” and a “well-known

IIOP/SSL port”. Client enclaves with TCP firewalls will then be able to permit access
to IIOP servers by enabling access to this port through their firewall.

These ports are not mandatory, and IIOP servers can be set up to offer service through
other ports if that is desired. However the ports serve as a basic guideline for server or
TCP, SOCKS or GIOP proxy deployment, and allow client enclaves to immediately
identify or filter the traffic as IIOP without requiring protocol analysis.

The well-known IIOP port is xx, and the well-known 1HIOP/SSL port is xx.

Issue — OMG needs to assign these numbers (or ranges of numbers?)

CORBA Firewall Security May 19, 1998 5:46 pm 4-23

4

4.6 SOCKS

4-24

The SOCKS protocol is an open Internet standard (IETF RFC1928) for performing
network proxying at the transport layer. SOCKS creates a proxy which serves as a data
channel between a TCP or UDP based client and server. The proxy between the client
and server created by SOCKS is transparent to either party, which keeps to a minimum
the required modifications to the existing applications when incorporating SOCKS
proxy servers. SOCKS supports negotiation of authentication methods and can
accommodate various security policies. The most popular application of SOCKS is as
a circuit level network firewall, although it is more flexible and generic than a typical
network firewall. For example, a SOCKS firewall could understand application layer
protocols, including IIOPA SOCKS firewall vendor may provide a firewall that understand

IIOP without any additions to this specification - making a SOCKS firewall IIOP aware is
transparent to ORB interoperability.

Figure 4-3 shows the flow of events in the SOCKS protocol. When the client needs to
connect to the application server, it sends a message to the SOCKS proxy server to
establish a connection between the client and the SOCKS server.The initial message
that the client sends to the SOCKS server contains the authentication methods that the
client supports. These can include any GSS-API compliant authentication methods,
such as User/Password, Kerberos, or SSL. The SOCKS proxy server examines the
methods and selects an appropriate one that the SOCKS proxy server supports too. The
client and SOCKS proxy server then enter a method-specific sub-negotiation for the
purpose of the authentication.

1.The IETF has standardized version 5 of the SOCKS protocol. The standard way to refer to
this specific version of the protocol is “SOCKSv5”. Within this document, we refer to
SOCKSV5 simply as “SOCKS” as a matter of convenience.

CORBA Firewall Security May 19, 1998 5:46 pm

Send method Check the
herald — > policy

Verify the Send chosen
method < | method
Authentication Authentication

process > process

Y Y

Send proxy Process the
request - request

Y

Setup proxy Accept
circuit ‘ P> connection
Check proxy Send circuit
status < status
Check proxy Send circuit Application
status > Satus P rotocols

Figure 4-3 The SOCKSv5 Protocol

Upon the successful completion of the authentication process, the client sends the
request details to the SOCKS proxy server i.e. the server it wants to connect to. If the
negotiated method includes encapsulation for the purposes of integrity and/or
confidentiality, the requests must be encapsulated in the method-dependent
encapsulation. The SOCKS proxy server then establishes a connection to the
application server on behalf of the client, if the application server is accessible from
the client according to the configuration data at the SOCKS proxy server. Once the
connection from the client to the application server via the SOCKS server is
established, the client may now start passing application data to the SOCKS server,
which in turn relays the data to the application server. If the selected authentication
method supports encapsulation for the purposes of integrity and/or confidentiality, the
data encapsulated using the method-dependent encapsulation, from the client to the
SOCKS server and from the SOCKS server to the application server.

By default, a SOCKSified TCP or UDP based client communicates to a SOCKS proxy
server over port 1080. Note that this port has been reserved by the IETF specifically
for this purpose. As such, most existing firewalls enable clients to connect to a SOCKS

CORBA Firewall Security May 19, 1998 5:46 pm 4-25

(1) Authenticate Client ~ N ~ N
D EEEEEE——

proxy server using this port. The following figure depicts a typical scenario of a TCP
or UDP based client communicating across a firewall to an application server, using
SOCKS.

Client AP , |
linked With_ 2) Connection Reqiat g;)rsgs Proxy Application
ﬁbor;:rgs client 3) RequestGranted (4) Create ConnectipnServer

- -

5) Send/Receive Datqa Relay Data (6) Send/Receive|Data

\ j— - — — — Ba—>\ /

Firewall

Figure 4-4 SOCKS in a Typical Firewall Traversal Scenario

The figure above depicts the very simple case in which there is exactly one firewall
(protecting either outbound traffic from the client, or inbound traffic to the application
server). In general, though, there may be any number of firewalls between the client
and application server. As such, SOCKS also supports authenticated traversal of
multiple proxy servers. As illustrated in the following figure, each connection between
the client and a SOCKS server, between two SOCKS servers, and between a SOCKS
server and the application server can be authenticated progressively using SOCKS,
starting from the client. A virtual private connection can then be created between the
client and application server. If SSL is deployed, the client's certificates can be passed
through the connections to allow SOCKS servers and the application server to
authenticate the client directly.

Outbound Firewalls Internet Inbound Firewalls

SOCKS
—3 Server

SOCKS

4-26

SOCKS Server SOCKS Server SOCKS

<«—> SOCKS SOCKS SOCKS <> AP
< “—>b Server

Figure 4-5 Multiple SOCKS servers between client and server applications.

CORBA Firewall Security May 19, 1998 5:46 pm

4

/ﬁ(l) Authenticate Client ™~ e N
-———— P

SOCKS provides a flexible and extensible circuit level mechanism for generic proxy
server construction. Various authentication/encryption methods, including SSL, can be
independently deployed. SOCKS permits transparent traversal through multiple proxy
servers. Access control based on IP address information and user information is also
supported by SOCKS transparently, with access information put in the configuration
files associated with the client and SOCKS proxy servers. Since SOCKS servers relay
application data, it is possible to extend a SOCKS proxy with various network traffic
screening and filtering capabilities i.e. for it to also act as an application level firewall.

From the perspective of SOCKS, IIOP is simply an example of a TCP-based
application protocol. As such, SOCKS is already capable of serving as a proxy
mechanism for IIOP, enabling IIOP traffic to traverse firewalls. Thus, to handle the
simple case of a CORBA client invoking an operation on a CORBA object across a
firewall (a special case of Figure 4-4), the only requirements are that the CORBA
client must be linked with a SOCKSified TCP library, and that the firewall must
support SOCKS (which most existing firewalls do). Such a scenario is depicted below:

Existing COR- o G o Requek
BA Client) Connection Request SOCKS Proxy Existing
linked with B Server ,
Inked wi 3) RequestGranted (4) Create Connectipn CORBA
SOCKS client ‘ Obiect
librar y ol e

y 5) Send/Receive Data Relay Data (6) Send/Receive|Data

\ e - — — e _/

Firewall

Figure 4-6 Existing CORBA AP Traversing Firewall with SOCKS

A “SOCKSified” TCP library provides an identical API for sending TCP/UDP traffic,
and it reimplements these functions to interact with the SOCKS firewall. Therefore to
use SOCKS, application code still calls the TCP/UDP API to open up a connection to
the destination it requires. No source code changes are required to use SOCKS, it only
has to be relented with the “SOCKSified” TCP/UDP library. In order to enable the
configuration depicted above, no source code changes to an existing CORBA
application, or CORBA 2 compliant ORB, are necessary. The only modifications to the
existing environment that are necessary is that the client application must be re-linked
with a SOCKSified TCP client library, and the client host must be configured to route
SOCKS requests to the appropriate proxy server. The latter is controlled by client-side
configuration files.

CORBA Firewall Security May 19, 1998 5:46 pm 4-27

4

4.7 GIOP Proxy

A GIOP Proxy is an application level firewall that understands GIOP messages and the
specific transport level inter-ORB Protocol supported i.e. a TCP GIOP Proxy
understands [IOP messages. If more transport mappings of GIOP are standardized, a
GIOP proxy supporting that protocol must understand those inter-ORB messages.

A GIOP Proxy firewall, or just GIOP Proxy for short, relays GIOP messages between
clients and Objects. It may base access control decisions on information in the GIOP
packet. For example, it could block requests to an object with a particular object_key,
or it could block requests for a particular operation on an object.

A GIOP Proxy hosts a GIOP Proxy Object. This is a fully fledged CORBA Object
which provides operations for firewall navigation. Note that this does not require a full
ORB to be implemented in the firewall, as long as the Object behaves in a way that is
consistent with the semantics of a CORBA Object, and it understands the GIOP
protocol and a transport mapping (such as [IOP).

To establish a connection to a server, a client first set up a connection to the GIOP
Proxy. If the GIOP Proxy is an outbound one, the ORB should be configured with the
IOR of the proxy object. If the GIOP Proxy is an inbound one, the server’s IOR should
contain the IOR of the proxy object on the firewall. After a connection is established,
the client interacts with the proxy object to establish a connection to the target server.
The interaction(s) required with a proxy may be dependent on the transport mapping.
IIOP 1.0 and 1.1 clients interact with a proxy in one way, while 11OP 1.2 clients
interact in a different way. This is explained in more detail below. Irrespective of how
the client interacted with the proxy, and assuming appropriate permissions, the proxy
will establish a connection with the server. Once this is done, the client and server may
send GIOP messages to each other, according to the normal GIOP rules.

4.7.1 Connection styles

4-28

There are two styles of connection through a GIOP Pmeymal andpassthrough

A normal connection is where, from a GIOP perspective, the firewall terminates each
connection. From a client perspective, the firewall behaves like a server, and from a
server perspective the firewall behaves like a client. Whenever a proxy blocks a
message it must behave in a manner consistent with GIOP and CORBA semantics. For
example, if a request is blocked by the proxy, and the client expects a reply, the proxy
must send a reply (probably with a NO_PERMISSION exception). It is the firewall's
job to ensure that both connections maintain orderly GIOP dialogues, such that neither
the client nor the server are aware that the proxy is involved.

In a normal connection, a proxy can monitor the GIOP traffic. This gives rise to two
security issues. Firstly the client may not trust a GIOP proxy, and hence would not
want the proxy to examine the traffic. Secondly, the client and server may be using a
particular authentication and/or encryption mechanism that is unknown to the proxy.
Both of these cases can be solved by the conceppa$sthroughconnection. A
passthrough connection is one where the GIOP Proxy does not terminate the
connections (at the GIOP level), it simply forwards on all GIOP messages it receives to

CORBA Firewall Security May 19, 1998 5:46 pm

4

the appropriate party. This recognizes that either the proxy is not capable or is not
allowed to examine the traffic. In a pass-through connection, the firewall is not
responsible for maintaining the GIOP dialogue on the connection, and it may not issue
any GIOP messages of its own (such as replies or close connection). Pass-through
connections exhibit similar behavior to a transport level firewall, but on an object level
i.e. once the proxy permits access to a particular object any traffic (following the rules
of GIOP interactions) may flow uninterrupted though the proxy.

A GIOP Proxy has to support the capabilities of normal and passthrough connections.
However, in a particular deployment, a GIOP Proxy may reject requests to establish
pass-through connections because of prevailing security policies. It should always be
possible, assuming access is permitted, to establish a normal connection through a
GIOP Proxy.

4.7.2 Callbacks

In many cases, it is desirable for a CORBA-based application server to contact a client
in order to facilitate asynchronous information flow. Such a pattern involves the client
creating an object, and passing the reference to that object to the server as a parameter
in a operation. Unfortunately this poses problems when firewalls are present, since it is
common that outbound firewalls will not allow inbound connections to be made. In
these cases it is possible to treat the callback object in exactly the same way as a fully
fledged server and create an IOR for the callback object that contains information
about inbound firewalls of the callback object. The server can then establish a
connection to the callback object though the servers outbound firewalls, and the
callbacks inbound ones.

This mechanism is however not possible for client side ORBs that can't generate IORs
with local inbound firewall components for callback objects in the client space.

Usually these are dynamically created untrusted objects that either can't or are not
allowed to use the local inbound firewall information. For example, a callback object
created in a Java applet downloaded via the browser neither has the knowledge about
the inbound firewalls nor is allowed to accept the inbound connection by the inbound
firewalls. Hence the IOR will not contain the appropriate firewall component
information. In the absence of any mechanisms, invocations on such a callback object
will be blocked by (at least) the client side firewall.

CORBA Firewall Security May 19, 1998 5:46 pm 4-29

Firewall Enclaves

Server B

GIOP requests

FWc = client side firewalls
FWs = server side firewalls

Figure 4-7 Client side firewall blocks requests from servers.

Figure 4-7 illustrates this, by showing that GIOP requests sent by servers will be
blocked by the client side firewall.

4-30 CORBA Firewall Security May 19, 1998 5:46 pm

Firewall Enclaves

Server B

GIOP requests

FWc = client side firewalls
FWs = server side firewalls

Figure 4-8 Client side firewall accepts GIOP requests using bi-directional GIOP.

Bi-directional GIOP can be used to partially solve the problem by permitting a server
to reuse the client’s connection to send GIOP request messages. This is only a partial
solution since if the server that needs to perform callbacks is on a different host, it
must establish a new connection (which is prohibited in the java applet security model,
for example). Figure 4-8 illustrates this. Here it is assumed the client has a connection
to Server A, and provided both sides permit the use of bi-directional GIOP, GIOP
requests from A can be sent on the connection, and will hence pass through the client
side firewall. Server B, on the other hand, cannot callback to the client even if the
Server B has the object reference of the callback object. Since the IOR that B has will
probably not contain firewall components, B cannot even use the normal mechanisms
to navigate firewalls.

To provide a more generic solution in addition to the above, GIOP Proxy objects
provide an operation that a client may call. The proxy will generate an IOR with
appropriate firewall information in it, that can then be exported to the server. The
server can establish a connection to the GIOP Proxy, and send traffic on it. The proxy
will re-use the connection it already has with the client in a bi-directional mode to send
the GIOP messages to the client. The behavior of this is fully defined below.

CORBA Firewall Security May 19, 1998 5:46 pm 4-31

4.7.3 IIOP/SSL considerations

GIOP Proxy firewalls that forward [IOP requests also need to support the use of SSL
as a transport mechanism for secure invocations, since ORB interoperability could be
based on IIOP/SSL. There also needs to be the same level of access control available
to the proxy administrator regarding permitted users and permitted targets.

The desired features are:
« Client and server side authentication for proxified connections.
¢ Access to client and server X.509 certificates.

* Access control to proxies.

A requirement for SSL support is that the certificate of the client be accessible at each
link of the proxy chain, and at the server. Another requirement is that it be possible for
each proxy along the chain (or at least each inbound proxy) to impose its access policy
on the traffic passed through it. Since SSL was not designed with this kind of proxying
in mind, and in fact protects against it as an ostensible "man in the middle" attack, a
higher-level solution is defined.

Proxies that can support SSL connections fall into two categories, trusted and
untrusted.

Untrusted proxies can forward information from a client in the form of a pass-through
connection, i.e. the proxy has no visibility of the encrypted byte stream. This ensures
the integrity of the client and server communication but leaves little opportunity for
access control. This type of connection restricts the proxy's ability to apply its access
control list fully, but it is necessary when either the server or client do not fully trust
the proxy.

Trusted proxies can forward connections using a pass-through connection but also can
establish separate connections to the server and provide full access control. This allows
the implementation of access control either at the server as in the untrusted case or at
the proxy at a per operation basis. All trusted proxies belong to a trust group decided
by the target servers.

Since all proxies will have access to the IOR of the target object, and the certificate of

the client, they can judge whether this client may use a pass-through connection or not.
Whether or not a proxy allows or denies permission for a client to use pass-through in

any given circumstance is up to the proxy’s implementor.

4.7.4 GIOP Proxy Interface

All GIOP firewalls must support objects of the following type:

4-32 CORBA Firewall Security May 19, 1998 5:46 pm

// 1DL
module Firewall {
enum ProxyMode { NORMAL, PASSTHRU };

interface GIOPProxy {
Object new_target(in Object target, in ProxyMode mode);
Object new_callback(in Object callback);

k

new_target

Thenew_target operation informs the firewall that it should prepare itself to

receive requests destined for the specified target. The object returned from this
operation is the destination on the firewall that a request on the target should be sent to
i.e. the object_key in the return object should be used in the GIOP request header.

The mode argument indicates how a client is going to connect to the object. A mode
value of NORMAIlindicates that the proxy will act as an endpoint for GIOP traffic This
allows the proxy to examine the GIOP traffic as it flows through the firewall and
potentially apply access control on individual requests. A mod®A&STHRU

indicates that the proxy will not be an endpoint of GIOP traffic and is not able to
examine the traffic once the connection to the object is established. See Section 4.7.1
for more details.

If the firewall supports GIOP 1.2 and requireBl@RMAIlconnection, it is not
necessary to invoke theew_target operation. Instead the sender (assuming it
knows GIOP 1.2) can place the target IOR intdrgetAddress field of the
GIOPRequestHeaderl_2 . However if aPASSTHRWonnection using GIOP 1.2 is
required,new_target must be invoked, and the resulting object should be used as
the destination of the GIOP 1.2 messages.

Note that in theNORMAIcase, IIOP over SSL can be used although separate IOP/SSL
connections will be established between the client and the firewall, and the firewall
and the target.

The object returned by theew_target operation must contain an object key which
allows the proxy to uniquely identify the target. A client is not required to open a new
connection to the proxy server, even when the target object(s) are located in different
servers.

new_callback

Thenew_callback operation is designed, optionally with the bi-directional GIOP,
to create an proxy object inside the server firewall domain that is reachable by the
different servers to accept callbacks from the different servers.

CORBA Firewall Security May 19, 1998 5:46 pm 4-33

4-34

When the object adapter creates the object reference for the callback object, it may
invoke thenew_callback operation on the outermost inbound GIOP Proxy on the
server side and pass the callback object as the argument. The object returned from this
operation - a proxy object on the GIOP Proxy - is the destination on the GIOP Proxy
that a request to the callback object should be sent to. Essentially the IOR of this proxy
object becomes the IOR of the callback object created by the client.

When thenew_callback operation is invoked, the client should usually have the bi-
directional service context to inform the GIOP Proxy to reuse the connection to
forward requests from GIOP Proxy to the client.

When the server wants to invoke the methods on the callback object, the request
messages will be sent to the GIOP Proxy because the IOR of the callback object is the
IOR of the proxy object on the GIOP Proxy. The GIOP Proxy should forward the
request messages on the connection on whichefe callback for this proxy

object was received if the bi-directional IIOP is used.

In the case that there are firewalls between the outer most inbound GIOP Proxy and
the servers, there are different ways to deal with depending on the GIOP Proxy
implementation and firewall configuration.

1. If the server knows how to reach the outermost GIOP Proxy through the firewalls
between them, these firewalls can be treated as outbound firewalls to the server.

2. If the GIOP Proxy knows how the server should reach itself through the firewalls
between them, these firewalls can be treated as inbound firewalls to the GIOP
Proxy

3. If there are more GIOP Proxies between the outer most inbound GIOP Proxy and
the server, the outer most inbound GIOP Proxy can inneke callback on the
inner inbound GIOP Proxy to create a proxy object which is closer and directly
reachable to the server.

CORBA Firewall Security May 19, 1998 5:46 pm

4

Thus this issue is left to the GIOP Proxy implementation and firewall configuration.

Proxy Object

callback object

FWc GP

FWc = client side firewalls
FWs = server side firewalls
GP = the outer most inbout@OP Proxy o the server side

Figure 4-9 GIOP Proxy that permits different server to use callbacks.

Figure 4-9 illustrates use of new_callback. When the object adapter in the Applet
creates the object reference for the callback object, it should invoke the

new_callback method on GP with a bi-directional GIOP service context. The
new_callback method will return a proxy object on the GP. When Server A or
Server B invokes the methods on the callback object, the Servers will make
connections to GP through FWs since FWs is configured as outbound firewalls to the
Servers. The requests the Servers send will reach the Applet’s callback object through
the proxy object on the GP, reusing the connection the client has with GP.

4.8 Firewall tag components

An IOR contains information about the target address of an Object, such as a host/port
pair. In order to traverse a firewall, an IOR must contain access information about the
inbound firewalls. In a configuration where there are multiple enclaves (firewalls

within firewalls) it may be necessary to carry access information for all inbound
firewalls, although strictly it is only necessary to convey information on the outermost
inbound firewall. To include firewall information in an IOR the following tagged
component is defined.

CORBA Firewall Security May 19, 1998 5:46 pm 4-35

module Firewall {

const IOP::Componentld TAG_FIREWALL_TRANS = xx;// OMG-
allocated

/ITAG_FIREWALL_TRANS is a sequence of FirewallMechanism
sequence <FirewallMechanism> multipleFirewallMechanisms;

typedef unsigned long FirewallProfileld,;

struct FirewallMechanism {
FirewallProfileld tag;
sequence<octet> profile_data;

3

}; /lend module Firewall

The TAG_FIREWALL _TRANSomponent can appear zero or more times in an IOR
profile. It is optionally present and may not be dropped. Each
TAG_FIREWALL_TRANSomponent represents a single entry point into the target’s
network. Multiple firewall components indicate that there are multiple entry points into
the target’'s network, any one of which can be used to reach the target.

A TAG_FIREWALL_TRANS$omponent is encoded as an encapsulated sequence of
FirewallMechanism structures. The sequence of firewall mechanisms describes
the chain of publicly known inbound firewalls that need to be traversed to reach the
target object. The order of FirewallMechanism in the Firewall Component sequence is
important. The sequence dictates the order of traversal necessary to reach the target.
The first FirewallMechanism in the sequence indicates the furthest publicly known
firewall from the target (i.e. an initial entry point) and the last in the sequence
represents the closest publicly known firewall to the target object. At least one
FirewallMechanism, representing an initial entry point, must be present. It is optional,
and up to designers and administrators as to whether the full sequence of inbound
firewalls are recorded or just the initial entry point firewall.

Each firewall mechanism containg-aewallProfileld and firewall profile data

of the structure defined by that type. A firewall profile is defined in terms of the type
of firewall supported. Currently three firewall profiles are defined to support SOCKS
firewalls, TCP level firewalls, and GIOP proxy firewalls.

The FirewallProfileld tag is a numeric identifier used to indicate the type of
profile and the encoding of the profile data of that type. These numbers are maintained
by the OMG. Each registered firewall profile must have an assigned tag, and must
define how the profile data is encoded.

4-36 CORBA Firewall Security May 19, 1998 5:46 pm

Support for IOP 1.0 IORs

An [IOP 1.0 IOR cannot contain tagged components in a TAG_INTERNET_IOP
profile. In cases where firewall information should be carried with the IOR, the IOR
should contain a TAG_INTERNET _IOP profile describing the target object and a
TAG_MULTIPLE_COMPONENTS profile that contains firewall components.

GIOP Proxy Firewall Tag

A GIOP proxy firewall tag contains an IOR ofFrewall::GIOPProxy object. It
is defined as:

/\DL
/I in module Firewall

const FirewallProfileld FW_MECH_PROXY = 0;

typedef GIOPProxy ProxyFirewallMechanism;

The profile_data field of aFW_MECH_PROXY a CDR encapsulation of a
GIOPProxy IOR.

An IOR for a GIOPProxy object must not contain &iyG_FIREWALL_TRANS
components.

TCP Firewall Tag

A TCP firewall tag is defined as:

/\DL
/I in module Firewall

const FirewallProfileld FW_MECH_TCP = 1;

struct TepFirewallMechanism {
string host;
unsigned short port;
sequence<IOP::TaggedComponent> components;

3

The profile_data field of aFW_MECH_TCPhould be encoded as a CDR
encapsulation of acpFirewallMechanism struct.

Currently the only valid component that may be placed irctmponents field in
the TcpFirewallMechanism struct is an SSL tag - all other tagged components
should be ignored.

CORBA Firewall Security May 19, 1998 5:46 pm 4-37

4-38

Socks Firewall Tag

A socks firewall tag is defined as:

/I DL
/lin module Firewall

const FirewallProfileld FW_MECH_SOCKSVS5 = 2;
typedef unsigned short AuthMethodType;

const AuthMethodType NONE = 0;

const AuthMethodType GSSAPI_KRB5 = 1;
const AuthMethodType PASSWORD = 2;
const AuthMethodType CHAP = 3;

const AuthMethodType SSL = 4;

const AuthMethodType CRAM = 5;

struct AuthSchemeKeyDistributor {
string key_distribution_host;
unsigned short key_distribution_port;

k

struct AuthenticationScheme {
AuthMethodType auth_type;
sequence<octet> auth_kdc;

h

struct SOCKSV5FirewallMechanism {
string host;
unsigned short port;
AuthenticationScheme method;

h

The profile_data field of aFW_MECH_SOCKS\hould be encoded as a CDR
encapsulation of 80CKSV5FirewallMechanism struct.The host and port fields
should contain the host address and port number of the SOCKS proxy server to which
the client should connect using the SOCKS V5 protocol. Typical SOCKS V5
implementations rely on local configuration information to enable the client to select
an appropriate authentication method to use when connecting to the proxy server. The
AuthenticationScheme field is supplied to account for situations in which the
client has no configuration information pertaining to the target proxy server. It is
defined as a data structure that has two members: one which informs the client which
authentication method should be used when connecting to the proxy server, and
another, thauth_kdc member, which is provided to contain information about the
key distribution authority which should be used when obtaining the necessary
authentication and/or encryption keys.

CORBA Firewall Security May 19, 1998 5:46 pm

The information contained in theuth_kdc member will be specific to the
authentication method being used. Typically, it will either contain an encapsulated
AuthSchemeKeyDistributor structure containing the hostname and port number
for the key distribution authority, or else it will be a null sequence when the
authentication method in use requires no key distribution authority. The semantics of
the AuthSchemeKeyDistributor fields differ per authentication method.

Note that the defined authentication method constants, and their associated values, are
the same as those defined in defined in the IETF draft-ietf-atf-socks—progvmb

note that information in a SOCKS firewall mechanism is not intended to be used
directly by an ORB. It contains information relevant for the socks implementation and
should passed to that.

Since the SOCKS tag is intended for use for SOCKs and not for ORBS (at most the
ORB passes the data to a SOCKS library), it is not necessary from an ORB
interoperability perspective to define specific encoding for each typetbf kdc

field, although they should be encoded as CDR encapsulations. If it is shown in the
future that ORB interoperability is affected by not defining these encodings, they will
have to be defined.

4.9 Firewall POA Policy

In order to take advantage of the tag component defined above, a server side ORB
must contain configuration information about the firewalls in its domain. No interfaces
for the setting or retrieving of firewall information in an ORB are defined as this is an
implementation issue. However, it is desirable to provide a portable means by which
the object implementor can decide whether an object could be accessible through a
firewall. The following POA policy is defined for this purpose:

2.The exception to this is SSL, which hasn't yet been officially registered with the
IETF. However, the value of 4 has been reserved for SSL, with the expectation that it
will be officially submitted to the IETF in the near future.

CORBA Firewall Security May 19, 1998 5:46 pm 4-39

/\DL
/I In module Firewall

typedef unsigned short FirewallPolicyValue;

const FirewallPolicyValue EXPORT = 0;
const FirewallPolicyValue NO_EXPORT = 1;

const CORBA::PolicyType FIREWALL_POLICY_TYPE = xx;
/ to be assigned by OMG

interface FirewallPolicy : CORBA::Policy {
readonly attribute FirewallPolicyValue value;

h
The default value of a FirewallPolicy MO _EXPORTWhen creating a POA with a
firewall policy using thePortableServer::POA::create_ POA , it is possible

that prevailing security policies may prevent any object form being exported beyond
the firewall. In these cases theate POA operation may raise a
PortableServer::POA::InvalidPolicy exception.

In the absence of a FirewallPolicy being passed irctbate POA operation, a POA
will assume a policy value MO_EXPORT

To create a FirewallPolicy, th@RB::create_policy operation is used.

4.10 Outbound firewalls

An IOR may contain information on the inbound firewalls that need to be traversed to
reach the target object. Before an inbound firewall is reached, it may be necessary to
traverse outbound firewalls. Information about outbound firewalls is configured into
the client side ORB and each outbound firewall. It is only necessary for each client or
outbound firewall to know about the next firewall it needs to send requests to i.e. it
does not need to know the complete sequence of outbound proxies that need to be
traversed. It is out of scope of this specification to define how the client ORB or a
firewall is configured with outbound firewall information. It is worth pointing out that

a client or an outbound firewall that forwards messages to another outbound firewall,
does not use any of the firewall information that may be present in the target IOR. The
firewall information in an IOR is only used by the client when there are no outbound
firewalls to be traversed, or by the outermost outbound firewall. In either case they use
the information in the IOR to determine what the first inbound firewall is.

4.11 Traversal algorithm

4-40

One of goals for ORB interoperability through firewalls is to allow a mixture of

different firewall types to be used between clients and servers. Each firewall type has
its own mechanisms for establishing connections through it. In order to traverse a
sequence of firewalls of different types it is necessary to understand how they work in
combinations. Currently three firewalls types are defined (TCP, SOCKSv5, and GIOP
Proxy). This section defines the rules necessary to traverse a sequence containing any

CORBA Firewall Security May 19, 1998 5:46 pm

4

combination of these three types of firewalls. Any additional firewall type added must
define any rules necessary for it to be used in combination with all the other defined
firewall types.

It is assumed that the client is in possession of an IOR that contains firewall profiles.
If it is not it can only attempt a regular 11OP req&est

A client will determine if it needs to go through a firewall to make a request on the
target object. If the client is in the same domain a direct invocation can be made. The
client can determine this be examining the host address information in the target IOR.

A client that determines it cannot make a direct invocation needs to traverse firewalls.
If the configuration in the client provides information on an outbound firewall that
must be traversed, the client will send the request to that firewall. If the client cannot
determine an outbound firewall, it looks in the IOR and picks the first
FirewallMechanism in theTAG_FIREWALL_TRANSield of any firewall

component found in IOR.

Having determined which is the first firewall to traverse, the client will perform
different behaviors depending on the type of firewall that needs to be traversed.

Traversing a GIOPProxy firewall
To traverse a GIOPProxy firewall, a client opens up a connection to the object.

If the firewall and client supports GIOP 1.2 and requirdCRMAIlconnection, the
client constructs &I10P_REQUEST_HEADER_1 that contains the full server IOR
(including all firewall components) as the target address information. The request is
sent to the object.

If either the firewall or the client do not understand GIOP 1.2, BASSTHRU
connection is required, the client issueseav_target passing over the complete
IOR of the target. The operation returns an IOR, which contains information on the
host, port and object_key required to send a request to the firewall.

On receipt of a GIOP request, a GIOP proxy has to determine if the next hop is another
firewall or the target. If it is the target, a connection is setup and the request is sent to
the object. If the next hop is another firewall, the proxy follows the traversal rules
described in this section (i.e. follows the same traversal algorithm as a client does).

Traversing a TCP firewall

A TCP firewall is very simple. To traverse a single TCP firewall the client opens a
connection to the host and port of the TCP firewall and sends data on the connection.
The TCP firewall will then forward on the traffic to the host/port defined in its
configuration tables. However there is a problem if the firewall after a TCP one is a
SOCKS firewall. The problem stems from the fact that to traverse a SOCKS firewall
3.Note that a TCP firewall can transparently be used by substituting the host/port information

in the IOR with the host and port of the TCP firewall. This does not affect the algorithm

defined here. Note also that a GIOP Proxy can also transparently reside behind a TCP fire-

wall using the same mechanism.

CORBA Firewall Security May 19, 1998 5:46 pm 4-41

4-42

the socks protocol needs to be used to establish a connection to it (see Section 4.6).
However a TCP firewall cannot perform a SOCKS setup, since it is essential dumb.
Therefore the client will have to do the SOCKS setup, via the TCP firewall. The
problem gets more complicated if along the chain there are more SOCKs firewalls
after TCP ones. Essentially the client has to progressively build up a connection to the
various SOCKS Firewalls on the route.

To traverse a TCP firewall you have to determine if the firewall after the TCP firewall
is a SOCKS one or not. If it is this algorithm should be followed:

1. set the host/port of the TCP firewall as the SOCKS server in the clients SOCKS
library i.e. configure the local SOCKS library to think that the TCP firewall is the
SOCKS proxy server.

2. find the first non-SOCKS firewall or the target after the SOCKS firewall.
3. open the TCP connection to the non-SOCKS firewall or the target

4. if the non-SOCKS firewall is another TCP firewall, the client has to repeat the
above process

The above algorithm sets up a “virtual circuit”, from a client to either a GIOP Proxy or
the target object. The virtual circuit may traverse a mixture of SOCKS and TCP
firewalls.

If the circuit terminates at the target object, the client can use the connection to send
required GIOP requests. Otherwise the client traverses the GIOPProxy firewall as
described above.

Traversing a SOCKS Firewall
To traverse a SOCKS firewall the client needs to follow the following algorithm:

1. if necessary, configure the SOCKS library with the host/port of the first socks
firewall

2. determine the first non-SOCKS TCP endpoint. This will either be a TCP firewall, a
GIOP Proxy or the target.

3. if the first TCP endpoint is the target, open a TCP connection to the target host/port
and send the GIOP requests. Underneath the covers the sock library will connect to
the socks firewall allowing traffic to flow through to the destination.

4. if the first TCP endpoint is a GIOP Proxy, either invoke new_target or send a
GIOPRequestHeaderl_2 (described above, traversing a GIOP Proxy firewall).
Underneath the covers the sock library will connect to the socks firewall allowing
traffic to flow through to the GIOPProxy.

5. if the first TCP endpoint is a TCP firewall, it has to be traversed using the
algorithm described above for traversing TCP firewalls i.e. you have to set up a
virtual circuit to the target or the next GIOP Proxy.

CORBA Firewall Security May 19, 1998 5:46 pm

4.12 Passing credentials

Typically, a secure connection, such as IIOP/SSL, will use a passthrough connection to
achieve end-to-end authentication. However passthrough connections may only be
accepted if they are permitted by the proxy’s security policies.

In the event that the proxy’s configuration does not specify that the client is permitted
to use a pass-through connection to the object it specified, the proxy returns a
NO_PERMISSION exception. This allows the client to fall back to usmg_target

with a mode of NORMAL.

When a client establishes a normal connection to a target via a trusted proxy and uses
a secure transport (e.g. IIOP/SSL), in order to achieve end-to-end authentication, the
proxy will have to forward the clients certificate/identity to the server. To achieve this,
the following service context is defined.

/I DL
/I in module Firewall

const IOP::Serviceld Forwardedldentity=xyz; // OMG allocated

typedef unsigned short IdTag; /[l OMG allocated
struct ldentity {

IdTag tag;

sequence<octet> data;
h

typedef sequence<Identity> IdentityL.ist;

Each security mechanism that requires the passing of identities, must halMagn
allocated, and must define for tHdiTag how thedata in theldentity structure
is encodedldTag values are allocated by the OMG.

The IdentityList is a sequence because sometimes other information needs to be
passed. For, example, the "role" of the client (the client could have several roles, but
the same cert), and/or the extracted Distinguished Name and password, key, etc. if
other identity types are defined.

A GIOPProxy inserts &orwardedldentity service context on the first GIOP
request received from a client and forwarded on each new connection between the
proxy and target. Additionally the context should be inserted when multiple clients are
sharing the same connection from the proxy to the server, and the previous request
message was from a different client.

Since the proxy inserts the service context and the proxy is also the point at which
requests from different clients are multiplexed on the same server connection, it is only
necessary to insert the service context when it would be ambiguous to the server from
which client the request originated. This allows the server to cache the most recent

CORBA Firewall Security May 19, 1998 5:46 pm 4-43

4.13

4-44

identity and thus reduces the need to pass the identity in every request. Note that it is
valid to have thd-orwardedldentity service context in every request, although
this may incur a performance and message size penalty.

The followingldTag s are currently definedAG_ID_SSL_CERT
TAG_ID_SSL_CERThas the value of 0.

4.12.1 SSL Certificates

To pass SSL certificates inFarewall::Forwardedldentity service context,
the following is defined:

// DL
module SSLIIOP {
const Firewall::ldTag TAG_ID_SSL_CERT = 0;// OMG allocated

typedef sequence<octet> ASN_1 Cert;
typedef sequence<ASN_1 Cert> SSL_Cert;

k

Thedata field of aTAG_ID_SSL_CERTshould be encoded as a CDR encapsulation
of a SSL_Cert.

An SSL_Cert is a sequence (chain) of X.509 certificates, ordered with the sender's
certificate first followed by any certificate authority certificates proceeding
sequentially upward. An ASN_1 CERT is encoded using DER.

Note: The certificates are not encoded as PKCS #6 extended certificates; they are
X.509 certificates as defined by the ITU-T and IETF. Furthermore, the chain of
certificates is not a SET of ExtendedCertificateOrCertificate as defined by PKCS #7; it
is a sequence as defined by the CORBA CDR encapsulation rules.

[IOP/SSL Considerations

Establishing IIOP/SSL connections through GIOP Proxies requires some refinements
of the mechanisms defined above. These are defined by examples below.

Untrusted Proxies

The following is a run through of the pass-through connection case for untrusted
proxies.

CORBA Firewall Security May 19, 1998 5:46 pm

A B C
Client . GIOP Pr02><y Target

1. A invokes new_target(C, PASSTHRU) on B

2. B sets up a TCP connection to C

3. B repliesto A

4. A initiates an SSL hanshake with C via the proxy.

Figure 4-10 Pass-through Connection

Using Figure 4-10, client A connects to the untrusted proxy B using normal IIOP
without SSL. The client issuesreew_target using C as the target objects to

connect to andPASSTHRUAs the mode argument (1). At this point B can perform
access control to allow/deny the pass-through connection to C. If a pass-through
connection is allowed, B sets up a TCP connection to C (2), and then replies to A (3).

When A receives a successful reply from tieev_target operation, A starts an SSL
negotiation with C to complete the pass-through connection through B (4). B no longer
has visibility/control over communication between A and C, although it may drop the
pass-through connection at any time.

It is possible to support pass-through through multiple proxies. For example if in the
above example there was another proxy B2 between B and C, during processing the
new_target operation from A, B can try to establish a pass-through connection to C
via a call tonew_target on B2. If this fails, due to NO_PERMISSION for example,

B should fall back to try to connect through B2 using MgRMAImode.

CORBA Firewall Security May 19, 1998 5:46 pm 4-45

4-46

Trusted Proxies

B C
GIOP Proxy Target

1. A invokes new_target (C, NORMAL) on B over an IIOP/SSL connection

2. B repliesto A
3. B negotiates an SSL connection with C

Figure 4-11 Normal Connection through a Trusted Proxy

Referring to Figure 4-11, if B is trusted, A may decide to establNDBMAL

connection through the proxy to the target, C. A invakew_target on the proxy

using a mode oNORMAI(1) using an IIOP/SSL connection, with authentication of A
and/or B taking place. As a result, B can establish an SSL connection to C, with
authentication of B and/or C taking place (4). The server C rejects the proxy’s attempt
to establish an SSL connection if it B does not belong to it's trust group. When the two
connection are established, client identity or a certificate of the client is made available

to the server byorwardedldentity service context information in GIOP
messages.
CORBA Firewall Security May 19, 1998 5:46 pm

Bi-directional GIOP 5

This chapter contains a proposal for bi-directional GIOP. Section 5.1 describes
changes to the GIOP, and Section 5.2 describes a new POA policy to indicate that use
of bi-directional GIOP is allowed.

5.1 Bi-Directional GIOP

The specification of GIOP connection management in CORBA V2.0 requires that
connections are not symmetrical e.g. only clients (which initialize connections) can
send requests and only servers (which accept connections) can receive them.

This restriction gives rise to significant difficulties when operating across firewalls. It
is common for firewalls not to allow incoming connections, except to certain well-
known and carefully configured hosts, such as dedicated HTTP or FTP servers. For
most CORBA-over-the-internet applications it is not practicable to require that all
potential client firewalls install GIOP proxies to allow incoming connections, or that
any entities receiving callbacks will require prior configuration of the firewall proxy.

An applet, for example, downloaded to a host inside such a firewall will be restricted
in that it cannot receive requests from outside the firewall on any object it creates, as
no host outside the firewall will be able to connect to the applet through the client's
firewall, even though the applet in question would typically only expect callbacks from
the server it initially registered with.

In order to circumvent this unnecessary restriction, it is proposed that the asymmetry
stipulation above be relaxed in cases where the client and the server agree on it. In
these cases, the client (the applet in the above case) would still initiate the connection
to the server, but any requests from the server on an objects exported by the client to
the server via this connection will be sent back to the client on this same connection.

The mechanism by which the client and server agree on this capability is as follows:

The client creates an object for exporting to a server.

CORBA Firewall Security May 19, 1998 5:47 pm 5-47

5-48

The client exports the IOR as a parameter of an GIOP Request on the server object. If
the ORB policy permits bi-directional use of a connection, a Request message should
contain anOP::ServiceContext structure in its Request header, which indicates that
this GIOP connection is bi-directional. The service context may provide additional
information that the server may need to invoke the callback object. To determine
whether an ORB may support bi-directional GIOP a new POA policy has been defined
(Section 5.2).

Each mapping of GIOP to a particular transport should define a transport specific bi-
directional service context, and havel@::Serviceld allocated by the OMG. It

is recommended that names for this service context follows the pattern
BiDir<protocolname>, where <protocol name> identifies a mapping of GIOP to a
transport protocol, e.g. for IOP the name is BiDirllOP. The service context for bi-
directional IIOP is defined below (Section 5.1.1).

The server receives the Request. If it recognizes the service context and supports bi-
directional connections, it may send invocations on this object back along the
connection.

The server may not wish to support bi-directionality either due to lack of support for it,
or because it has been configured that way. In this case, it may fall back to initiating a
connection to the object in the usual way.

If a GIOP connection is used bi-directionally, the client should attempt to keep the
connection alive as long as is necessary to complete its object's service to the server. If
the client initiates a new connection it is not foreseen here that the server can use that
connection for requests on the object exported previously.

A server talking to a client on a bi-directional GIOP connection can use any message
type traditionally used by clients only, so it can use Request, LocateRequest,
CancelRequest, MessageError and Fragment (for GIOP 1.1). Similarly the client can
use message types traditionally used only by servers: Reply, LocateReply,
MessageError, CloseConnection and Fragment.

CloseConnection messages are a special case however. Either ORB may send a
CloseConnection message, but the conditions in section 13.5.1 of the CORBA v2.2
specification are modified in that the ORB sending the CloseConnection must not be
awaiting Replies to any Requests, and must not have begun processing any Requests
from the other side. If these conditions are satisfied and the ORB sends a
CloseConnection, the ORB on the opposite side must assume that any outstanding
Requests it has sent were not processed and may be resent on a new connection. The
ORB which sends the CloseConnection must not send any messages after the
CloseConnection. It may also close the connection, although the caveats regarding
protocols which do not implement "orderly shutdown" in section 12.5.1 apply.

Bi-directional GIOP connections modify the behavior of Request IDs. In the GIOP
specification, section 12.5.1 (Connection Management), it is noted that "Request IDs
must unambiguously associate replies with requests within the scope and lifetime of a
connection”. With bi-directional IIOP, the Request ID unambiguously associates

CORBA Firewall Security May 19, 1998 5:47 pm

3)

replies with requests per connectiand per directionso the same Request ID can be
used for a Request going from client-to-server and for a Request going from server-to-
client, simultaneously.

It should be noted that a single-threaded ORB needs to perform event checking on the
connection, in case a Request from the other endpoint arrives in the window between it
sending its own Request and receiving the corresponding reply; otherwise a client and
server could send Requests simultaneously, resulting in deadlock. If the client cannot
support event checking, it must not indicate that bi-directionality is supported. If the
server cannot support event checking, it must not make callbacks along the same
connection even if the connection indicates it is supported.

A server making a callback to a client cannot specify its own bi-directional service
context — only the client can announce the connection's bi-directionality.

5.1.1 Bi-Directional IIOP

The IOP::ServiceContext used to support bi-directional 11OP contains a
BiDirllOPServiceContext structure as defined below:

/' 1DL

module 11OP {

IOP::Serviceld BiDirllOP = xx; // to be assigned by the OMG

struct ListenPoint {
string host;
unsigned short port;

h
typedef sequence<ListenPoint> ListenPointList;

struct BiDirllOPServiceContext {
ListenPointList listen_points;

k

The data encapsulated in tBé&DirllOPServiceContext structure allows the

ORB, which intends to open a new connection in order to invoke on an object, to look
up its list of active client-initiated connections and examine the structures associated
with them, if any. If shost andport pair in a connectionsten_points list
matches that which the ORB intends to open a connection to, then the connection can
be re-used to make the invocation.

The host element of the structure should contain whatever values the client may use in
the IORs it creates. The rules foost andport are identical to the rules for the 1IOP
IOR ProfileBody 1 Jhost andport elements; see section 13.7.2 of the CORBA 2.2

CORBA Firewall Security May 19, 1998 5:47 pm 5-49

specification. Note that if the server wishes to make a callback connection to the client
in the standard way, it must use the values from the client object's IOR, not the values
from thisBiDirllOP structure; these values are only to be used for bi-directional
GIOP support.

TheBIiDirllOP service context may be sent by a client at any point in a connection's
lifetime. Thelisten_points specified therein must supplement any

listen_points already sent on the connection, rather than replacing the existing
points. Typically, when the same client has multiple connections to the same server, the
listen_points will be identical. However, if they differ they supplement each

other i.e. any of the listen points received on any of the connections may be used.

If a client supports a secure connection mechanism, such as SeclOP or IIOP/SSL, and
sends &BiDirllOP service context over an insecure connection hite andport
endpoints listed in th8iDirllOP should not contain the details of the secure
connection mechanism if insecure callbacks to the client's secure objects would be a
violation of the client's security policy.

If a client has not set up any mechanism for traditional-style callbacks using a listening
socket, then theort entry in its IOR must be set to the outgoing connection's local
port (as retrieved using tlgetsockname() sockets API call). Theort in the

BiDirllOP structure must match this value. This will allow multiple clients, all
running in restrictive security modes (such as Java applets) on the same host, all of
them connecting to one server, to each receive callbacks on their correct connection.

[IOP/SSL considerations

Bi-directional 1IOP can operate over IIOP/SSL, without defining any additions to the
IIOP/SSL or the bi-directional GIOP mechanisms. However if the client wants to
authenticate the server when the client receives a callback this cannot be done unless
the client has already authenticated the server. This has to be performed during the
initial SSL handshake. It is not possible to do this at any point after the initial
handshake without establishing a new SSL connection (which defeats the purpose of
the bi-directional connections).

5.2 Bi-directional GIOP policy

In GIOP, there are strict rules on which side of a connection can issue what type of
messages (for example clients can not issue GIOP reply messages). However, as
documented in above, it is sensible to relax this restriction if the ORB supports this
functionality and policies dictate that bi-directional connection are allowed. To indicate
a bi-directional policy, the following is defined.

5-50 CORBA Firewall Security May 19, 1998 5:47 pm

//IDL
module 1IOP {
// Bidirectional Policy

typedef unsigned short BidirectionalPolicyValue;
const BidirectionalPolicyValue NORMAL = 0;
const BidirectionalPolicyValue BOTH = 1;

const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = xx;
/I to be assigned by OMG

interface BidirectionalPolicy : CORBA::Policy {
readonly attribute BidirectionalPolicyValue value;

k

A BidirectionalPolicyValue of NORMAIstates that the usual GIOP

restrictions of who can send what GIOP messages apply i.e. bi-directional connections
are not allowed. A value @OTH indicates that there is a relaxation in what party can
issue what GIOP messages i.e. bi-directional connections are supported. The default

value of aBidirectionalPolicy is BOTH
In the absence of BidirectionalPolicy being passed in the
PortableServer::POA::create_ POA operation, a POA will assume a policy

value of BOTH

A client and a server ORB must each hav@directionalPolicy with a value
of BOTHfor bi-directional communication to take place.

To create aBidirectionalPolicy , the ORB::create_policy operation is
used.

CORBA Firewall Security May 19, 1998 5:47 pm 5-51

5-52 CORBA Firewall Security May 19, 1998 5:47 pm

6.1 Conformance

Conformance & CORBAChanges 6

There are two different compliance points defined in this specification.

In order to be conformant with the firewall specification (Chapter 4) the following is
required:

® A server side ORB must be able to generate IORs that contain
TAG_FIREWALL_TRANS components.

® A server side ORB must be able to generate TAG_FIREWALL_TRANS
components that contain FW_MECH_PROXY firewall mechanisms (i.e. must be
able to support GIOP proxies)

* A server side ORB may generate TAG_FIREWALL TRANS components that
contain FW_MECH_SOCKSV5 or FW_MECH_TCP i.e. support for SOCKS and
TCP firewalls is optional.

* A server side ORB must implement FirewallPolicy objects.

® A client side ORB must be able to navigate GIOP proxy firewalls, and optionally,
may be able to navigate SOCKSv5 and TCP firewalls.

®* The forwarded identity service context must be supported in IIOP/SSL
implementations.

® A GIOP Proxy firewall must implement the GIOPProxy interface.

In order to be conformant with the bi-directional GIOP specification (chapter 5),
ORBS must support all of the specification. ORBS that support IOP must implement
the bi-directional specification.

CORBA Firewall Security May 19, 1998 5:47 pm 6-53

6.2 Changesto CORBA 2.2

6-54

This section provides an overview of the changes to CORBA 2.2. as a result of this
specification. Detailed editing instructions will be provided to OMG staff if the
submission becomes adopted OMG technology.

Chapter 4 of this documerRB Interoperability through Firewallswith

modifications indicated below, should be inserted as a new chapter in the CORBA
specification. It should reside immediately after chapterGeheral Inter-ORB

Protocol The main change is the introduction of a new firewall module. The parts of
Chapter 4 that should be placed elsewhere are:

® the SSL_Cert forwarded identity definitions - Section 4.12.1 of this document -
should be put in an appropriate place in the SSL section of CORBA Security.

Chapter 5 of this documerBj-directional GIOR should be edited into Chapter 13,
General Inter-ORB Protocol.

CORBA Firewall Security May 19, 1998 5:47 pm

Consolidated IDL A

This Appendix contains the IDL defined in this specification. Note that we hope the
OMG will allocate the necessary TAG ids before adoption!

A.1 Firewall Module

/I IDL for Firewall Module: file “Firewall.idl”
#include “IOP.idI"

module Firewall {
const IOP::Componentld TAG_FIREWALL_TRANS = xx;
/ITAG_FIREWALL_TRANS is a sequence of FirewallMechanism
typedef unsigned long FirewallProfileld;
struct FirewallMechanism {

FirewallProfileld tag;
sequence<octet> profile_data;

h

typedef sequence <FirewallMechanism> multipleFirewallMechanisms;
/I Allocated FirewallProfileld tags.

const FirewallProfileld FW_MECH_PROXY = 0;

const FirewallProfileld FW_MECH_TCP = 1,
const FirewallProfileld FW_MECH_SOCKSV5 = 2;

CORBA Firewall Security May 19, 1998 5:47 pm -55

/I definition of the GIOP Proxy interface
enum ProxyMode { NORMAL, PASSTHRU };

interface GIOPProxy {
Object new_target(in Object target, in ProxyMode mode);
Object new_callback(in Object callback);

¥

/I AFW_MECH_PROXY contains:

typedef GIOPProxy ProxyFirewallMechanism;
/I AFW_MECH_TCP contains:

struct TepFirewallMechanism {
string host;
unsigned short port;
sequence<IOP::TaggedComponent> components;

h
// Definitions for SOCKSV5FirewallMechanism
typedef unsigned short AuthMethodType;

const AuthMethodType NONE = 0;

const AuthMethodType GSSAPI_KRB5 = 1;
const AuthMethodType PASSWORD = 2;
const AuthMethodType CHAP = 3;

const AuthMethodType SSL = 4;

const AuthMethodType CRAM = 5;

struct AuthSchemeKeyDistributor {
string key_distribution_host;
unsigned short key_distribution_port;

3

struct AuthenticationScheme {
AuthMethodType auth_type;
sequence<octet> auth_kdc;

3
/I AFW_MECH_SOCKSV5 contains:

struct SOCKSV5FirewallMechanism {
string host;
unsigned short port;
AuthenticationScheme method,;

k

CORBA Firewall Security May 19, 1998 5:47 pm

/I Definitions for the Forwardedldentity service context
const IOP::Serviceld Forwardedldentity=xyz;// OMG allocated
/I A fowardedldentity contains a sequnce of Identity structs
typedef unsigned short IdTag; // OMG allocated
struct ldentity {
IdTag tag;
sequence<octet> data;
h
typedef sequence<Identity> IdentityL.ist;
I/l Firewall POA Policy
typedef unsigned short FirewallPolicyValue;
const FirewallPolicyValue EXPORT = 0;
const FirewallPolicyValue NO_EXPORT = 1;

const CORBA::PolicyType FIREWALL_POLICY_TYPE = xx;
/ to be assigned by OMG

interface FirewallPolicy : CORBA::Policy {
readonly attribute FirewallPolicyValue value;

k

}; /lend module Firewall

A.2 Additions to SSLIOP

/I Additional IDL for SSLIOP module: file “SSLIOP.idI”
#include “Firewall.idl”

module SSLIOP {
const Firewall::ldTag TAG_ID_SSL_CERT = xx;// OMG allocated

typedef sequence<octet> ASN_1_Cert;
typedef sequence<ASN_1_Cert> SSL_Cert;

CORBA Firewall Security May 19, 1998 5:47 pm

A.3 Additions to the IIOP Module

-58

/I Additional IDL for IOP module: file “llOP.idI”
#include “1OP.idI"

module 11OP {
const IOP::ServiceldBiDirllOP = xx; // to be assigned by the OMG

struct ListenPoint {
string host;
unsigned shortport;

¥
typedef sequence<ListenPoint> ListenPointList;

struct BiDirllOPServiceContext {
ListenPointList listen_points;

K
// Bidirectional Policy

typedef unsigned short BidirectionalPolicyValue;
const BidirectionalPolicyValue NORMAL = 0;
const BidirectionalPolicyValue BOTH = 1;

const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = xx;
/ to be assigned by OMG

interface BidirectionalPolicy : CORBA::Policy {

readonly attribute BidirectionalPolicyValue value;

h

CORBA Firewall Security May 19, 1998 5:47 pm

	Preface
	1.1 Introduction
	1.2 Submission Contacts
	1.3 Submission Supporters
	1.4 Guide to Submission
	1.5 Items Not Addressed in this Submission
	1.6 Proof of Concept

	Response to RFP Requirements
	2.1 RFP Proposal Specific Requirements
	2.1.1 Mandatory Requirements
	2.1.2 Optional Requirements

	2.2 Resolution of RFP Requirements
	2.2.1 Mandatory
	2.2.2 Optional

	Design Rationale and Background
	3.1 Rationale Summary
	3.2 Background: Existing Practice
	3.3 Overview of Specification
	3.4 Architectural Overview- GIOP Proxy Firewall
	3.5 Firewall Profiles- Requirements
	3.6 The Rest of This Document

	ORB Interoperability through Firewalls
	4.1 Firewall Principles
	4.2 ORBs and Firewalls
	4.3 Scope of Firewall Support in CORBA
	4.4 Types of Firewall
	4.5 TCP Firewalls
	4.6 SOCKS
	4.7 GIOP Proxy
	4.7.1 Connection styles
	4.7.2 Callbacks
	4.7.3 IIOP/SSL considerations
	4.7.4 GIOP Proxy Interface
	new_target
	new_callback

	4.8 Firewall tag components
	Support for IIOP 1.0 IORs
	GIOP Proxy Firewall Tag
	TCP Firewall Tag
	Socks Firewall Tag

	4.9 Firewall POA Policy
	4.10 Outbound firewalls
	4.11 Traversal algorithm
	Traversing a GIOPProxy firewall
	Traversing a TCP firewall
	Traversing a SOCKS Firewall

	4.12 Passing credentials
	4.12.1 SSL Certificates

	4.13 IIOP/SSL Considerations
	Untrusted Proxies
	Trusted Proxies

	Bi-directional GIOP
	5.1 Bi-Directional GIOP
	5.1.1 Bi-Directional IIOP
	IIOP/SSL considerations

	5.2 Bi-directional GIOP policy

	Conformance & CORBA Changes
	6.1 Conformance
	6.2 Changes to CORBA 2.2

	Consolidated IDL
	A.1 Firewall Module
	A.2 Additions to SSLIOP
	A.3 Additions to the IIOP Module

