<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 FINAL//EN">
PRIVATE


Web Logs – Database Backend, Mining and Visualization 

Dr. Geoffrey Fox
NPAC, Syracuse University,
gcf@npac.syr.edu

Jungkee Kim
NPAC, Syracuse University
jake@npac.syr.edu 

Deepak Ramanathan
NPAC, Syracuse University
deepak@npac.syr.edu

Abstract
Any user who visits a Web site, leaves a trail documenting their movement through the Web Site. These access logs provide a valuable source of information regarding the client's access patterns on the host Web Site. Apart from the pages the user visited, it is generally possible to pinpoint the geographical location of the client. Apart from the Access Logs, The Web Server also logs other information such as your point of entry into a Web Site, the Uniform Resource Locator (URL) of the site you came from, the client's operating system and browser make and version used to access the Web Site. 

Given this wealth of information, we decide to give these flats a relational flavor by storing this information in a database. Storage of these logs in a database would then permit us to run data mining tools to establish user patterns and conduct click stream analysis of the any given Web Site. We decided to use a Java Visualization Toolkit and Querying application that could query the database and give a visual representation of the results. 

While designing this application, we came across certain constraints that were inherent to the access logs. I P. addresses, that did not have a host name assigned to them, would turn up as entries that would provide no information regarding a host. We proceeded to solve this shortcoming by providing a database of IP addresses with the corresponding Organization Information. Also, we managed to develop programs that would extract key word information from referrer logs to determine search patterns that would lead to the NPAC site. This proved to be a very useful tool in fine tuning the site for optimum performance. The project also helped us to develop a comprehensive database of robots that constantly indexed our site. 

To demonstrate the flexibility of your application, we ported our access log datasets to both an Oracle and Illustra/Informix database. The application permits the user to specify any database make and proceed to query and visualize the results.

Table of Contents

Introduction to Web Server Logs
IP Resolution - Obtaining Organizational Information from IP addresses.
Referrer
Agent Logs
Populating the Database with Web Server Logs
Table Design
Streamlining the Database
Visualization of LogSets
Graphic User Interface for Database and Visualization tool
Future Direction
 

Introduction to Web Server Logs

Log files can hold from hundreds of thousands to millions of such records. Each time a user goes to a page anywhere on the Web, a record of that visit is left in some Web server. The news that just moving around the Web leaves these invisible footprints may give some users an eerie feeling of being watched. But, as will become clearer, the information within these "footprints" is pretty impersonal, unless you choose to personalize it. 

Most WWW servers execute NCSA's Hypertext Transfer Protocol daemon (httpd). In turn, each copy of this daemon maintains four logs (document accesses, agents, errors, and referrers) that are written on the local disk of the associated workstation server. 

In 1994, a group of server and analysis developers came up with the Common Log Format. This is a well-defined set of facts about each hit that a Web server processed. The CLF contains lines of eight fields: 

host ident authuser [date-time zone] "request" status bytes

where 

host -- Client hostname or IP address 
ident -- Identity (user name) if available 
authuser -- Authorization user ID 
date-time -- dd/Mmm/yyyy:hh:mm:ss 
zone -- Timezone: +dddd or -dddd 
request -- The first line of the request, e.g. "GET / HTTP/1.0" 
status -- Response status from server 
bytes -- Number of bytes transmitted 

Each field is separated by a single space. If a field is not known or available, a dash "-" is used as the field value instead. The "ident" field is rarely used, and "authuser" is only used at sites that require registration. 

While the referrer log records the "point of entry" into a site, the agent log identifies the OS/Browser used by the client. The Apache Web Server at NPAC stores the logs in the Common Date Format. 

IP Resolution - Obtaining Organizational Information from IP addresses.

For an average weekday NPAC gets roughly 20,000 accesses by 4000 unique hosts viewing an average of 4.2 pages. There are a total of 70680 hits consisting of 600000 kilobytes of information. 

Of these unique hosts nearly 30% are IP addresses. Unlike hostnames, which can be decomposed to obtain organization or country location, I P addresses do not provide any such information. 

By converting an I P address to a domain name, one can determine the components of the domain name and, often, the location of the requester. In the United States, common domain name extensions include education (edu), commercial (com), government (gov), and other (us). Outside the United States, countries typically use the ISO 3166 (1993) two letter country codes, or the network (net) extension. By exploiting these two letter country codes, one can identify the request's country of origin. To map IP addresses to a postal address, namely a city, we first determine the domain name. For locations outside the United States, the suffix of the domain name typically is an abbreviation of the country name. For all other cases, we query the whois database, retrieving the domain name and other location related information associated with the IP address.

Because querying the whois database takes up precious bandwidth, often requiring some time before retrieving the desired data, we store the Organizational Information of previously matched IP addresses to avoid repeated and unnecessary whois queries. Before querying the Internic database, we first query the database locally at NPAC. If the IP address is already present in the database we proceed onto the next unresolved IP. The results from the query to Internic are then stored locally in our database. This procedure has resulted in substantial improvement in speed of IP resolution.

With our current database ~20,000 entries, the number of queries that were being made to the Internic database has been constantly reducing. This translates into "repeat customers" visiting the NPAC site whose Organizational details have been identified in our database.

A query on the whois server for the I.P. 128.230.21.133 will return the following result:

whois -h whois.arin.net 128.230.21.133 
Syracuse University (NET-SYR-UNIV-NET)
Syracuse, NY 13244
Netname: SYR-UNIV-NET
Netnumber: 128.230.0.0
Coordinator:

Wobus, John (JW47-ARIN) jmwobus@mailbox.syr.edu
(315) 443-4324

The database stores the first paragraph of information in the database. A typical entry in the database would look like: <DIV ALIGN=CENTER>


PRIVATE
I P Address
Organization
Address



128.230.21.133
Syracuse University (NET-SYR-UNIV-NET)
Syracuse, NY 13244


PRIVATE




PRIVATE










Count


Keyword Used










213
57
31
30
18
17
16
15
13
12

Javascript
javascript tutorial
vrml
java tutorial
fortran tutorial
html
javascript
javascript tutorial
tiger photo
h263
webflow a visual programming paradigm for web java



PRIVATE






Excite

PRIVATE




PRIVATE










Count


Keyword Used










61
21
16
14
13
11
9
9
8 
8

Human body
Syracuse university
Atm
Great wall
the human body
zipcode
shellsort
frameset
end frameset
english short stories literature



PRIVATE






Hotbot 

PRIVATE




PRIVATE






Count

Keyword Used

PRIVATE




PRIVATE






7
4
4
4
4
4
4
4
4
4
4

Activemovie
Wwvm
Asynchronous transfer mode
laplace equation finite element method
video on demand project
visible human project
cold fusion example
tesselation
box muller method
omdt
geographical information system

PRIVATE






 Agent Logs

Agent Logs record the browser make, the browser version and the operating system from which the client accessed the Web Site. 

Here is a typical entry in the Agent Log.

[28/May/1998:02:31:37] Mozilla/4.05 [en] (Win95; I) 

· [28/May/1998:02:31:37] - The time stamp. Signifies the time the WWW user accessed the Web page. This example has the same entry as the one in the referrer log. 

· Mozilla/4.05 - This denotes the Web Browser and Version. In this case it translates to Netscape Communicator 4.05 

· (Win95; I) - The platform of the Web client. 

This helps us determine prevalent operating systems and browsers that visit the Web Site. 

Here is sample result of the agent log program :

PRIVATE










PRIVATE
58,990
10,951
9,691
6,266
5,882
1,173
1,128
767
591
564
204
110
96
73
45
17
13
6
3
2
31.08%
21.34%
20.04%
16.49%
6.09%
1.21%
1.17%
0.79%
0.61%
0.58%
0.21%
0.11%
0.10%
0.08%
0.05%
0.02%
0.01%
0.01%
0.00%
0.00%
Netscape v4.X
MSIE v4.X
Netscape v3.X
MSIE v3.X
MSIE v5.X
Spiders/Robots
ProNetscape v2.X
Other Agents
WebTV
MSIE v2.X
Netscape v1.X
Opera v3.X
AOL's Browser v3.X
NCSA Mosaic (Enhanced)
Netscape
Lynx
MSIE
Crescent  Internet ToolPak
WebVCR
Teleport









 Populating the Database with Web Server Logs

Scripting programs load the data into the database every day. Functionality of these programs is threefold: 

· It converts the data into a format that is acceptable to the database. Modifications to the log sets included the date format and exclusion of information as the Method employed to call the page. 

· An additional entry, Country of Origin, is included in the access table. The country is detected by a decomposition of the hostname. 

· Should the host have an IP Address, the program will proceed to query the database locally for Organizational Information. If there no entry exists the program will then query the ARIN whois server, retrieve the information and insert it into the database. 

Operating time for the program is approximately 30 minutes. Performance varies depending upon the external queries that the program needs to make to the ARIN database and the size of the Web Server Logs. As mentioned earlier, our current database has ~20,000 entries for I P Addresses with their Organizational Information and postal address.

The program also permits the user to employ a database of their choice. Our loader program is configured to work with Oracle and Illustra/Informix databases. These were the two databases that we used to test out the loading procedure and the Querying and Visualization. While Oracle requires the SQL loader, Illustra uses the micopy utility, which performs type casting and goes through the rules system and all integrity constraint checking. Currently, in order to load the information to the database, you will have to run the program on machine that has both the database and the Web Server Logs. For loading across machines, Oracle SQL Net needs to be installed on the database end. Currently we do not support this functionality. Also requirements include that a client version of whois be installed on the machine you intend to run the loader program on.

 

Table Design:

The access logs are loaded into the database with a relational schema. The common key being the common datestamp that is applied to all the logs. We then proceeded to choose this datestamp as the referential key to query these different log sets stored in the database. Currently we have a months data in the database and all queries and visualizations have been done on this one month data. Performance has varied from weak to very satisfactory. Table creation varied between Oracle and Illustra and these variations were taken into account while designing the tables. Data definition types were the same for both the databases. Another variation was the datetime support in both the databases. Illustra uses a abstime data type which fit in very well with the schema of the log format. Oracle, on the other hand, required specific definition types to accept the current format of the date and the time. This was remedied in the control file for the SQL loader application. Also, while designing the tables, it was necessary that the table definition be more or less the same for both Illustra and the Oracle database. 

Streamlining the Database:

Size of the raw WebServer logs were roughly 15MB a day. On stripping out entries related to "hits" rather than an "access", the size of the logs were reduced to 3MB. A month's data of trimmed Web Server Logs will have a size of 50MB. This is a large dataset considering once loaded into the database the size of the database will increase beyond the raw dataset size. 

In order to extract efficient performance from the database various tuning procedures such as indexing and tuning of the database would be required. 

We performed different indexing techniques with the Oracle and Illustra database. A clustering index scheme was used on the table structure with satisfactory results. Speed of querying rapidly increased once a clustering index was put into place.
While commercial web traffic analyzers use proprietary databases into which they load the access log information after applying the appropriate filters, we have essentially made our application open and easily adaptable to any database (provided the database has support for JDBC).

 Visualization of Log Sets
 

SciVis is a client server visualization and analysis system developed at NPAC, which takes full advantage of Java (comprising of nearly 50,000 lines of code). The purpose of SciVis was to provide researcher with a customizable data analysis system to aid in their research. One of the key features of SciVis is that it has filters that are user definable. While considering SciVis as a Data Mining Application we can customize our filters to permit results to be displayed in a particular fashion over a given period of time.

The Visualization of Web Access Logs is done using SciVis and a custom query application written entirely in Java. We utilize Java Database Connectivity to connect to different databases across the network. The application, currently connects to an Oracle and Illustra/Informix database using the appropriate JDBC drivers. This is very easily extensible to other databases having JDBC support. The user has to provide the connection string to the database, a username and a password. Once connected, queries can be launched to the chosen database and the results can be viewed using SciVis application.

The SciVis server is freely available for download from the NPAC site and and be obtained by following this URL
http://kopernik.npac.syr.edu:8888/
 


 

Screen Display of the SciVis application.

Graphic User Interface for Database and Visualization tool

The Swing component set is a new graphical user-interface (GUI) toolkit that simplifies and streamlines the development of windowing components - that is, the visual components (such as menus, tool bars, dialogs and the like) that are used in graphically based programs. GUI between Database and Visualization tool uses Swing components and is designed in such a way that it execute without modification on any kind of computer, and will always and feel just like a program written specifically for the particular computer on which it is running.

The Graphical User Interface(GUI) is designed as a Java application which can be run directly by the Java interpreter because it interfaces with Scivis which is also a Java application.

Structure of the Querying Application can be divided into three parts:

Interface to the Database is composed of Java DataBase Connectivity(JDBC) and Structured Query Language(SQL). The JDBC drivers provide for two different databases, Oracle and Illustra/Informix databases. The database can be chosen from a menu bar selection and database login dialog box. The SQL commands are set as variables in the Java program. Depending on the type of query asked by the client the corresponding SQL is executed to the chosen database. 

The menu portion provides the user interface to selecting which database will be used and what kind of visualization would be executed. The default database assumes the current system as being an Oracle database with a predetermined user account, password, and table name. The plot is essentially one of Number of Hits over Time. This could be done on hourly dataset, daily over a week or daily over a month. Other options include querying for a particular hostname, a particular country and a plot of traffic patterns on a particular page on a site.

The visualization data files are made within the program and they are used as Scivis ASCII input files – as extension name '.sva'. Though each kind of graph has the different file name, the graph displaying of more than two same kinds is prohibited because it may cause the SciVis server to behave erratically.


 

A screen dump of access to the Web server over a Period of a Week.


  

· The NPAC Statistics Application Package

.


 

Database Selection 

Future Direction

As discussed earlier, given the size of the datasets that are generated every month, we need to treat the datasets with a data warehousing perspective.
Data warehousing is the process of integrating enterprisewide data into a single repository from which end users can run reports and perform data analysis. Because of the enormous quantities of information available, data warehouses often grow to be very large. As a result, one of the most significant challenges of implementing a data warehouse is ensuring high performance. 
 

In order to make a data warehouse effective, a relational database has to do more than handle the accumulation and management of gigabytes to terabytes of data. It also has to provide streamlined and rapid access to the information. One of the many reasons that traditional entity-relationship (ER) models have failed in the context of decision support is poor performance. Standard, highly normalized data models are designed to provide extremely efficient data access for large numbers of transactions involving very few records. In decision support systems, there tend to be relatively few concurrent transactions, each accessing very large numbers of records. This is what differentiates OLAP systems (on-line analytical processing, or decision support) from OLTP systems (on-line transaction processing). 

As per our data mining needs, in the instance of a user trying to plot Web Accesses over the past few months, the query would need to read at least 250,000 rows of access data in order to obtain the relevant information. Not only is this process time consuming but also places enormous resource overheads on the database.




One of the suggested solutions is the Method of Aggregation

Aggregation is the process by which low-level data is summarized in advance and placed into intermediate tables that store the summarized or "aggregated" information. These aggregate tables allow applications to anticipate user queries, and eliminate the need to repeat resource-intensive calculations that would otherwise be performed each time the summary information is requested. 

A typical data warehouse architecture begins as a massive store of transactions at the lowest, or "atomic," level. Measures are stored in the main fact table in their most detailed form so that later phases of data analysis and reporting can make use of them. 

But extracting data from the most atomic level does not yield optimal performance, even with leading-edge software and hardware. Fact tables tend to be very large, resulting in serious performance challenges; summing millions of rows takes a long time no matter what software or hardware is used, and no matter how well the data warehouse has been tuned. 

A significant percentage of queries against the data warehouse call for summarization, or aggregation, of data elements. A typical user might ask: "Show me all hits on the NPAC Web site for the past three months." This would be interpreted by the database as, "Add up all the hosts for each of the days for the past 90 days." If there is an average of 20,000 hits to the site per day in and data is stored at the transactional level, this query would have to process 18,00,000 rows to return the answer. A summary-intensive query like this can take up significant resources. 

For commonly accessed data, presummarization is often useful. This enables intermediate results or "aggregates" to be used, significantly reducing resources required to deliver the final query results. To appreciate the value of aggregates, consider a request for August sales: If there is an aggregate table already created to track monthly hits on the Web Site, the query has to process only 300 rows (monthly output of hits on the site). Compared to the 18,00,000 rows the same query would have to process with data stored at the transactional level, the resource savings is several orders of magnitude. In fact, since query response time in a well-tuned warehouse is roughly proportional to the number of rows the query has to process, the improvement in performance with the above summary could be close to a factor of 30,000. 

How Much to Aggregate? 

Most existing technologies offer database users a drastic choice: no aggregation at all, or exhaustive aggregation, for every possible combination of queries the user might want. 

Performing no aggregation is generally out of the question for substantive data warehouses. Aggregating in every possible combination achieves the best possible query performance but at tremendous storage, maintenance, and loading-time cost. First, storing summary information at every possible level consumes enormous amounts of disk space, increasing the storage requirements by a factor of five or more. Second, typical data warehouses have thousands of combinations of dimension elements, and creating a table or tables to hold the aggregates for all those combinations is an overwhelming maintenance task. Finally, building aggregates every time new information is added to the fact table can become so time consuming and resource intensive that the load window required to make the warehouse operational may become unacceptably long. 

Choosing the Right Aggregates

There are two main considerations when determining what aggregates to create: 

· Data density: Where is the data concentrated, and in which dimension elements do the number of rows steeply increase? 

· Usage patterns: Which aggregates would most improve performance for the specific queries run most often by the end user? 

If a given dimension element represents a large number of rows as compared to other elements in the hierarchy, aggregating by that dimension element drastically improves performance. Conversely, if a dimension element contains few rows, or if it contains hardly more rows than the superseding dimension element, aggregating by that dimension element is less efficient. 

This analysis becomes more meaningful -- and more complicated -- as dimensions combine with one another. Defining a data request by multiple dimensions not only decreases the range of data retrieved, but also the density.. Data density complicates our calculation of how many records a query engine will have to process. A sizing simulation based on the facile assumption that every possible record exists, i.e., that the data is perfectly dense, skews the performance analysis of each aggregate.

These are some of the data warehousing issues that we need to investigate in order to design and develop a database that at the very least is responsive and efficient. 

 



