CSE 657 – Operating Systems

Quiz 1

Summer 1998

June 22, 1998

1) The text discussed a collection of solutions to providing mutual exclusion and scheduling the use of a critical resource. Ranging from the simplest to the more complicated, these were:

· Mutual exclusion based only on READ and WRITE being atomic operations.

· Test and Set

· Semaphores

· Critical Regions

· Monitors

For each of these, describe: its main feature (what problem did it solve); What is its weakness (why was the next solution needed).

(a) Mutual exclusion based only on READ and WRITE being atomic operations; sometimes called Dekker’s algorithm

(b) Test and Set

(c) Semaphores

(d) Critical Regions

(e) Monitors

(f) Of course these constructs only work if all parties use the mechanisms correctly. Discuss how an operating system might encourage application developers use facilities provided.

2) A First Come First Served queuing system averages 16 jobs in the queue. When these jobs are serviced they require an average of 40 seconds of cpu time. A measurement shows that jobs arrive at the rate of 80 per hour on average.

(a) What is the average waiting time?

(b) What is the average turnaround time and how is it determined?

(c) What is the system’s utilization, , and what does its value mean for this system?

(d) What would you have to do to the system to decrease ?

(e) Suppose someone tells you that they use scheduling algorithm X, but most of the time the average queue length is one. What does that say about the behavior of method X?

3.

(a) Give a definition of a process.

(b) Give a definition of a thread.

(c) Describe the differences between processes and threads.

Consider the following fragment of text from something like the produce-consumer problem a semaphore X has been declared and initialized to 1 and a semaphore Y has been initialized to 0, and variable n is initialized to 0 and size represents the size of the buffer, then we might have something like

.

.

program producerconsumer;

var n: integer
 X: semaphore := 1;

 Y: semaphore := 0;

procedure producer;

begin

repeat

produce(item);

wait(X);

buffer[in] := item;

in := (in + 1) mod size

n := n+1;

if n = 1 signal(Y);

signal(X);

forever

end;

procedure consumer;

var M: integer;

begin

wait(Y);

repeat

wait(X);

item := buffer[out];

out := (out+1) mod size;

n := n-1;

m := n;

signal(X);

consume(item);

if m=0 then wait(Y);

forever;

end;

begin {main program}

n:=0;

cobegin

producer; consumer

coend

end.

(d) What deos semaphore X do?

(e) How does the system prevent the consumer from running until the first item is produced?

(f) Why is n copied into m? Can’t we just access n else where since we are just reading it? Explain.

(g) What is the biggest problem with solving this problem with the semaphore solution given?

(h) Would this problem encoded in critical regions be any easier to implement? Explain. (You do not need to actually give code for this, just explain your answer.)

