Classification and Characterization of Host Network Interface Architectures

Bo-kyun Na Salim Hariri

 EECS Department, Syracuse University ECE Department, University of Arizona Syracuse, NY 13244 Tucson, AZ 85721

Abstract

The recent advances in high-speed network technologies have made parallel and distributed computing over a Network of Workstations (NOW) an attractive and a cost-effective computing environment. However, the performance of parallel and distributed applications running on NOW resources suffers from high latency and low throughput even when the network speed is in Megabit or Gegabit per second range. The main reasons for the low performance can be contributed to the design of the host-network interface (HNI) and the software mechanisms used to transmit data from the host to the network and vice versa. In this paper, we review HNI designs and propose a hierarchical taxonomy to characterize and describe the architectures of HNI. The taxonomy consists of two levels of characterization: Architectural level and protocol level. In the architectural level, we describe the main components used to implement any HNI and how they interact with each other to perform the HNI functions. In the protocol level, we describe how the software functions (data copying, transport protocol functions, etc.) are mapped into the main HNI components identified at the architecture level. We provide several examples that show how our taxonomy can accurately describe the architectures of HNI and also characterize the performance limitations of any HNI design.
I. Introduction

The advances in network technology have shifted the bottleneck from transmission to HNI's processing. The architecture of a HNI depends on the required performance and cost. If a program on the host implements all the functions, it will be very slow since the host CPU must perform the normal computing tasks as well as the communication tasks. Thus, researchers have been investigating techniques to reduce the load of the processing from the host CPU by adding some processing capabilities to the HNI. Also, different techniques have been proposed to improve the performance of transmitting and receiving data out and into the host. These techniques can be classified into three classes [1, 2]: 1) Improving the implementation of standard transport protocols [3, 4]; 2) Introducing new communication protocols [5, 6, 7]; and 3) Implementing protocols on a special hardware [8, 9]. In general, these techniques have led to an-hoc designs of HNI and made the evaluation and characterization of their architecture a challenging research task.

In this paper, we present a two-level taxonomy to classify host-network interfaces in order to achieve better understanding of the HNI architectures, characterize the limitations of their architectures and assist in the design of efficient HNIs. The main features of our taxonomy include its ability to describe and characterize accurately the implementation of HNI functions required to transfer and receive data between the host and the network. Furthermore, this taxonomy enables us to identify the performance limitation of any HNI and to design a new HNI that meets certain performance and cost requirements.

The organization of this paper is as follows. In section 2, we describe related works. In section 3, we present our hierarchical taxonomy of HNIs. In section 4, we present illustrative examples on how to apply our taxonomy to classify HNIs that have been proposed in the literature.

II. Related Works
There has been several approaches to classify HNI architectures as discussed in [10, 11, 12]. E. Cooper and et al [12] classified HNIs as two types: simple DMA based and intelligent HNIs. P. Steenkiste and et al [10] classifies the HNI architectures by the number of copies durng data transfer from memory into network. They defined several types of overhead such as data copying, buffer management, protocol processing, interrupt handling and system calls. Based on the number of copying, the HNIs are classified as traditional 5-copy during data flow, outboard buffering, DMA based , DMA based with outboard buffering.

To improve the bandwidth and latency limitations imposed by DMA start-up time, low I/O transfer rate when compared to CPU rate, limited I/O address spaces, multiple data copying, and CPU bus contention in tightly coupled computing systems, D. Henry and C. Joerg [11] proposed and classified four categories of HNIs: O/S-based DMA, user-level memory mapped, user-level register mapped, and hardwired HNIs.

In all these classification techniques, it not clear how they can be used to describe accurately the architecture of HNI, predict the performance and their limitations. Furthermore, they do not provide designers with the capability to optimize the desing of HNI architecture to meet certain performance and cost requirements.

III. A Hierachical Taxonomy for HNI architectures
Our objective in this research is to develop a taxonomy with the following features: Good descriptive capability that can clearly describe the architecture of a HNI. The taxonomy can thus be used to predict the behavior of a HNI and design a future HNI that can efficiently and cost-effectively meet the requirements of a given class of applications. The hierarchical feature allows us to introduce more detailed at different levels of abstraction in order to achieve accurate description of the HNI architecture. Our approach is based on two classification techniques that have been used to classify and characterize computer systems [14, 15]. The taxonomy consists of two levels of abstraction: Architectural and protocol classification.

In the architectural classification, we define the main components required to transfer data from the host to the network and vice versa. Furthermore, we define in this level of classification, how these components are connect- ed as well as how they interact to perform the HNI tasks.

In the protocol classification, we identify all the software functions or protocols required to transfer data from the host to the network and vice versa. In addition, this level shows how each task is mapped into the component identified in the architectural level. The protocol level can be further refined by identifying all possible techniques to implement each protocol task. This refinement is useful to guide designers to develop a HNI architecture that meets certain performance and cost objectives.

These two levels of classification provide us with all the information required to describe and analyze the performance of a given HNI architecture.
A. Architectuarl Classification

The main components of any HNI architecture are the following: The host CPU unit that is used to execute application instructions; the main memory unit that is used as a storage device; the cache unit which is a small fast memory that acts as a buffer between the main memory and the host CPU; network buffer and FIFOs; protocol processor, and switching unit. The network buffer memory is the storage for transport-layer data (messages) and information related to the control and management parameters, while the network FIFOs are two set of registers for sending and receiving packets normally located at the host side. The FIFOs provides the protocol processor with contention-free memory access to the packet data. The protocol processor unit manages packet processing and various bookkeeping functions associated the protocol. The switching unit provides connectivity between other functional units using programmed I/O, DMA (Direct Memory Access), burst transfer, or registers.

B. Protocol Classification

This classification defines the main protocol functions required to perform the HNI functions and the architectural components used to imlement that function. The main protocol functions are packetization, error handling, flow control, and routing. In what follows, we describe each of these functions and the different mechanisms or techniques to implement them.

Packetization/Depacketization

A packet consists of a sequence of bytes with a header, an intended data (payload), and with or without a trailer. According to the routing unit and buffer-size limits in the sender and receiver, the intended data size can be fixed or variable. If an application sends a message larger than the packet data size, then the operating system or a protocol processing unit fragments the message into a series of packet data and reassembles the packets into the message in the receiving process. The packetization function can be classifiedas based on who processes the packet and whether or not its size is fixed or variable:

1. A variable-size data unit that is packetized by the host.

2. A variable-size data unit that is packetized by the HNI.

3. A fixed-size data unit that is packetized by the host.

4. A fixed-size data unit that is packetized by the HNI.

Data-Copying

When the host needs to send an application data to the network, the data moves from the application memory area into the HNI's send FIFO. According to the HNI architecture, data movements follow different paths. High performance HNI attempts to redunce the number of copying in order to imporove the performance and these techniques can be classified as follows:

1. 0-copy from the user space on the main memory to the network.

2. 1-copy from the user space of the main memory to the network buffer memory, then to the network.

3. 1-copy from the user space of the main memory to the kernel space of the main memory.

4. 2-copy from the user space to the network buffer memory through the kernel space of the main memory.

Flow-Control

The objective of the flow control is to prevent the sender from overloading the network and/or the receiver. This requires well defined protocol to govern the operations of the sender, receiver and the network. The network notifies the users when it becomes congested in a timely fashion, and then, the user's application reduces the flow accordingly. Flow control implementation techniques can be classifed based on receiver functions, state reporting mechanisms, and transmiter functions:

· Receiver Functions (RF):

1. Maintaining a receiving window based on acknowledgements and sequence numbers.

2. Software-based for counting the number of received packets.

3. Hardware-based counting of the number of received packets.

4. Hardware-based measurement of the inter-packet arrival time.

5. Accepting/discarding packets based on buffer availability.

· State-reporting schemes (SR):

1. Window-based acknowledgements.

2. [image: image1.wmf]PH

-

PN

PH

-

MN

Mc

-

PN

Mc

-

MN

MH

-

MN

Architectural Level

Protocol Level

Data

Copying

Error Handling

D/C

Routing

Flow control

RFC/SR/TFC

Packetiz

ation

WD 2840

Medusa

VuNet

Yes V2

PHNI

MINI

Myrinet

Nectar CAB

VMP NAB

SHRIMP

ORBIT

PIO

DMA

PIO

reg

PIO

PIO

PIO

reg

reg

Bm

DMA

PIO

PIO

PIO

DMA

PIO

PIO

Bm

Bm

Bm

DMA

DMA

PIO

PIO

DMA

DMA

Bm

DMA

DMA

1

1

3

4

4

4

1

4

2

2

4

3

4

3

3

2

3

2

2

2

3

1

1/1/1

1/1/1

1/1/1

3/2/2

1/1/1

5,1/3,1/3,1

5/3/3

1/1/1

4/2/2

1/1/1

2/2/2

1,2,4/3

1,2,3/3

1,2,3/3

1,2,3,4/3

1,2,3,4/3

1,2,3,4/3

1,2,3/3

1,2,3/3

1,2,3/3

1,2,3/3

1,2,3,4/3

3

3

4

4

4

4

2

2

3

3

4

Hierarchy

Name

Table 1: The Syntax Notation of Conventional HNIs

The current inter-packe arrival time and burst size.

3. Start/stop control signal.

· Transmitter Functions (TF):

1. Sending packets based on current window size.

2. Sending packets based on the current acceptable transmission rate.

3. Sending packets based on start/stop control signals.

Error Handling

The error handling of high-level protocol layer perform error detection, reporting, and correction. Error detection is performed by means of sequence numbers, length fields, and checksums. Error reporting mechanisms inform the sender about errors detected by the receiver, then the sender retransmits the errored data to the receiver. Error correction methods recover from errors by retransmission of the corrupted or missed data.

· Error-detection functions (D):

1. Cyclic Redundancy Check (CRC) Techniques. There are several CRC standard fucntions (CRC-8, CRC-10, CRC-12, CRC-16, CRC-32, or CRC-CCITT) that can be used. Furthermore, the CRC can be applied to all the packet fields or a subset, which is control part, data part, or control + data part. The CRC fuccntion can also be implemented by hardware or software.

2. Length indicator of data.

3. Sequence number.

4. Multiplexing identifier (MID).

· Error-correction functions (C):

1. Forward Error Correction (FEC);

2. Automatic Repeat Request (ARQ);

3. FEC + ARQ.

Routing/switching

When an application process tries to setup a connection with another application process, it must specify the port number of the destination process and the machine address on which the process is running. The address (or address resolution) function generates the source address, destination address(es) on network and the addresses of the intermediate-node if needed. The routing/switching function can be classified as follows:

1. Circuit switching;

2. Source routing;

3. Packet switching;

4. Virtual circuit switching (statistical switching).
IV. Illustrative Examples
In this section, we show our taxonomy can be applied to a representative set of HNI architectures. We also discuss its features in describing the HNI architecture and how the protocol fucntions are implemented.

Figure 1. The architectural classification of the AURORA HNI.
Figure 1 shows the architectural classification of the AURORA OSIRIS or ORBIT HNI [16]. The main components are the host (EQ \s\up(P)\s\do(H)), main memory (EQ \s\up(M)\s\do(H)), protocol processor (EQ \s\up(P)\s\do(N)), network buffer (EQ \s\up(M)\s\do(N)), and DMA controller (EQ \S\up(K)\s\do(DMA)). The EQ \s\up(P)\s\do(H) and the EQ \s\up(P)\s\do(N) communi cate to obtain the control and network parameters. According to EQ \s\up(M)\s\do(H) addresses generated by EQ \s\up(P)\s\do(N) , EQ \S\up(K)\s\do(DMA) transfers data between EQ \s\up(M)\s\do(H) and EQ \s\up(M)\s\do(N) without EQ \s\up(P)\s\do(H) intervention.

Figure 2. The protocol classification of AURORA HNI.

Figure 2 shows the protocol classification of the AURORA HNI. The packetization/depacketization is performed by the EQ \s\up(P)\s\do(N) to format packets in the 53byte fixed size. The data copying is done by DMA with 0-copying between a user-space of main memory and the network FIFO. For flow control function, the EQ \s\up(P)\s\do(N) of the receiver counts the number of received packets, reports the arrival rates to the sender, then the EQ \s\up(P)\s\do(N) of the sendercontrol the transmitting speed of packets. For error handling function, error detection is done by CRC-8 for header and CRC-32 for data, length indicator, sequence number, MID. Errors are corrected by the FEC and ARQ algorithms that are implemented on EQ \s\up(P)\s\do(N) . For routing function, the EQ \s\up(P)\s\do(N) generates network addresses based on the virtual circuit switching.

Table 1 shows our syntax notation for HNI designs that have been reported in the literature.

VI. References

[1]
Salim Hariri, High Performance Distributed Systems: Network, Architecture and Programming, in preparation.

[image: image2.wmf]P

N

M

n

Network

FIFO

Network

M

H

M

c

P

H

S(1

-

1)

K

DMA

P

H

M

N

S(1

-

1)

P

N

K

MAC

Network

P

H

M

c

M

m

S(1

-

1)

S(1

-

1)

DMA

CRC

K

CRC

[image: image3.wmf]

Routing

(P

N

: 4)

Packetization/

Depacketization

(P

N

)

Flow Control

(

RF:2, SR:2, TF:2

)

Error Handling

(D:1(HW

CRC),

2 3

4 (P

N)

), C:3(P

N

))

Data Copying

(DMA: 1)

Decode

Instructions

(P

H

 : Appl.)

Send/Receive

(Network FIFO)

Network

Appl.

Buffer

(M

H

)

(control,

s(1

-

1))

(control,

s(1

-

1))

(data,

DMA)

(data,

DMA)

(control,

s(1

-

1))

(data,

DMA)

(data

s(1

-

1))

(data

s(1

-

1))

[2]
C. Brendan, S. Traw, and J.M. Smith, “Hardware /Software Organization of a High-Performance ATM Host Interface”, IEEE Journal on selected areas in communications, pp.230-253, February 1993.

[3]
D.D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An Analysis of TCP Processing Overhead”, IEEE Communications Magazine, pp. 23-29, June 1989.

[4]
E.C. Cooper, P.A. Steenkiste, R.D. Sansom, and B.D. Zill, “Protocol Implementation on the Nectar Commu nication Processor”, ACM, pp. 135-144, 1990.

[5]
R. M. Sanders and A. C. Weaver, “The Xpress Transfer Protocol (XTP) - A Tutorial”, ACM Comp. Comm. Review, Oct 1990.

[6]
David R. Cheriton, “VMTP: A Transport Protocol for the Next Generation of Communication Systems”, Proc. ACM SIGCOMM Symp.: Commun., Architectures, and Protocols, pages 353--415, 1986.

[7]
David D. Clark, Mark L. Lambert, and Lixia Zhang, “NETBLT: A High Throughput Transport Protocol”, ACM SIGCOMM Workshop, pp 353--359, 1987.

[8]
H. Kanakia and D. R. Cheriton, “The VMP Network Adapter Board ", ACM, pp175--187, Aug. 1988.

[9]
D. S. Henry and C. F. Joerg, “The Network Interface Chip”, Technical report, MIT, June 1991.

[10]
Peter A. Steenkiste, “A Systematic Approach to Host Interface Design for High-Speed Networks”, IEEE Computer, pages 47--57, March 1994.

[11]
D.S. Henry and C.F. Joerg, “A Tightly-Coupled Proce ssor-Network Interface", ACM, pp 111--123, 1992.

[12]
E. Cooper, O. Menzilcioglu, R. Sansom, and F. Bitz, "Host Interface Design for ATM LANs", IEEE Computer Society, pages 247--258, October 1991.

[13]
Subrata Dasgupta, “A Hierarchical Taxonomic System for Computer Architectures”, IEEE Computer, pages 64--74, March 1990.

[14]
D. B. Skillicorn, “A Taxonomy for Computer Archite ctures”, IEEE Computer, pp 46--57, Nov. 1988.

[15]
D. P. Siewiorek, C. G. Bell, and A. Newell, “Computer Structures”, McGraw-Hill, 1982.

[16]
C. Brendan, S. Traw, and Jonathan M. Smith, “Hardware/Software Organization of a High-Perform ance ATM Host Interface”, IEEE J. on selected areas in communications, 11(2):240--253, February 1993

� EMBED MSDraw.Drawing.8.1 ���

� EMBED MSDraw.Drawing.8.1 ���

� EMBED MSDraw.Drawing.8.1 ���

[image: image4.wmf]P

N

M

n

Network

FIFO

Network

M

H

M

c

P

H

S(1

-

1)

K

DMA

P

H

M

N

S(1

-

1)

P

N

K

MAC

Network

P

H

M

c

M

m

S(1

-

1)

S(1

-

1)

DMA

CRC

K

CRC

[image: image5.wmf]PH

-

PN

PH

-

MN

Mc

-

PN

Mc

-

MN

MH

-

MN

Architectural Level

Protocol Level

Data

Copying

Error Handling

D/C

Routing

Flow control

RFC/SR/TFC

Packetiz

ation

WD 2840

Medusa

VuNet

Yes V2

PHNI

MINI

Myrinet

Nectar CAB

VMP NAB

SHRIMP

ORBIT

PIO

DMA

PIO

reg

PIO

PIO

PIO

reg

reg

Bm

DMA

PIO

PIO

PIO

DMA

PIO

PIO

Bm

Bm

Bm

DMA

DMA

PIO

PIO

DMA

DMA

Bm

DMA

DMA

1

1

3

4

4

4

1

4

2

2

4

3

4

3

3

2

3

2

2

2

3

1

1/1/1

1/1/1

1/1/1

3/2/2

1/1/1

5,1/3,1/3,1

5/3/3

1/1/1

4/2/2

1/1/1

2/2/2

1,2,4/3

1,2,3/3

1,2,3/3

1,2,3,4/3

1,2,3,4/3

1,2,3,4/3

1,2,3/3

1,2,3/3

1,2,3/3

1,2,3/3

1,2,3,4/3

3

3

4

4

4

4

2

2

3

3

4

Hierarchy

Name

Table 1: The Syntax Notation of Conventional HNIs

[image: image6.wmf]

Routing

(P

N

: 4)

Packetization/

Depacketization

(P

N

)

Flow Control

(

RF:2, SR:2, TF:2

)

Error Handling

(D:1(HW

CRC),

2 3

4 (P

N)

), C:3(P

N

))

Data Copying

(DMA: 1)

Decode

Instructions

(P

H

 : Appl.)

Send/Receive

(Network FIFO)

Network

Appl.

Buffer

(M

H

)

(control,

s(1

-

1))

(control,

s(1

-

1))

(data,

DMA)

(data,

DMA)

(control,

s(1

-

1))

(data,

DMA)

(data

s(1

-

1))

(data

s(1

-

1))

_962803763.unknown

_962804658.unknown

_960641794.unknown

