Comparing p4, PVM and MPI for Parallel Computing

Jungkee Kim

 Abstract - Since Parallel Computing is focused for the solution of High Performance Computing, many Parallel Programming tools has been introduced. In this paper, frequently used three Parallel Programming Tools are introduced and compared.

p4 is a portable library of C and Fortran subroutines for programming parallel computers. The PVM (Parallel Virtual Machine) provides Fortran and C language extensions for distributed memory parallelism and MPI (Message Passing Interface) is an industrial standard for writing “portable” message-passing parallel programs.

p4 is intended to be portable, simple to install and use, and efficient. MPI is expected to be faster within a large multiprocessor because it has many point-to-point and collective communication options. PVM is better for running over heterogeneous networks as it had good interoperability between different hosts.
I. Introduction
[image: image1.bmp]NE of the main causes of many programmers to wonder whether they should write their applications in several parallel tools. p4 is a library of routines designed to express a wide variety of parallel algorithms portably, efficiently and simply. PVM is the existing standard for distributed computing and MPI is actually the message passing standards. A related concern of users is whether they should invest the time and effort to rewrite their existing p4 and PVM applications in MPI.

 Though p4 is still used widely, it seems a classical parallel tool as MPI based on p4 is emerged recently. In this paper, I address features of each tool and the comparison would be helpful to programmers to assess the needs of their application and decide accordingly.

 Computer vendors are driven by the needs of their buyers, some of whom insist on p4, PVM and others on MPI. Therefore, all the major vendors have now committed resources to provide all of them on their systems. This removes concerns of availability and support for either of them and allows me to concentrate on the features and capabilities that distinguish them.

II. p4

1. History

p4 is a third-generation system. The figure 1 shows the structures of developing p4, which constructs have held up and which have changed as the system evolved.

[image: image2.png]Arganno ma macras for

monitara & m

(soquont

(naoteram)

arganne
Fartran m

e et oy

PPPP baok GMD macraa
x...,wm\

Stanford
sPLASH

(onanery

TeamsG

Figure 1 .

As shown above figure, HEP is the root of the p4. HEP was developed by Argonne National Laboratory in 1984 as the first commercial multiprocessor and the first machine in what would become Argonne’s Advanced Computing Research Facility (ACRF). It was the first in a long line of parallel computers that have been delivered with Fortran but unfamiliar, nonportable, and proprietary extensions for accessing and controlling parallelism. A monitor was chosen as central paradigm for controlling access to shared data by multiple processors.

 As parallel processing entered the commercial marketplace, the ACRF at Argonne expanded in 1985. C was also expanded (addition to FORTRAN). The package was still m4-based, but compilation was simpler because m4 ran on the machines themselves. As its macro definition basis and the focus on monitors it was sometimes called ``monmacs'' or ``parmacs.'' The package was expanded to include message passing for all three of the environments that supported the distributed-memory model: the iPSC/1, the (new) workstation network, and the shared-memory machines.

 Before the years 1989 when p4 was made, a various interesting and useful systems are built. Bob Beck at Sequent did a C++ version of the monitors part. Rolf Hempel at GMD greatly improved the Fortran interface and added extensive functionality on top of it for grid-based computation. He borrowed the word PARMACS, and what is now called PARMACS is his system, widely used in Europe. Robert Harrison of Argonne's Chemistry Division reimplemented the message-passing subsystem to provide more efficiency, better error handling, and a library of global operations in his system TCGMSG. Many of his enhancements were later incorporated into p4. The SPLASH group at Stanford built their collection of shared-memory applications on monmacs, adding instrumentation macros to support assorted research projects in parallel programming.

 In 1989 Ralph Butler and Ewing Lusk began a complete rewrite of the entire system, with the goal of producing a very robust system for wide distribution that included features present from the beginning as well as new features (message passing among heterogeneous machines, global operations) that users were requesting. There were also a great variety of new parallel machines and workstations to support [1].

2. Features

First, p4 uses the monitor for managing the shared memory. It is defined as a data type in C. However, FORTRAN has difficulty to support the monitor because it is lack of memory management functions. As p4 does not implement monitors on distributed-memory machines, the computational model would be too far away from the hardware for the efficiency that p4 aims for. The monitor operations are only provided on platforms that supply to the programmer a shared-memory computational model.

 Second, p4 provides facilities for sending and receiving typed messages. They are blocking operations in the sense that when the send returns, the buffer may be reused, and when the receive returns, the message is in the buffer. The probe operation allows one to test for the arrival of message before committing to wait for it. Optional versions of send specify synchronous operation, heterogeneous communication, or user-managed buffers.

 Third, management of a collection of processes, some subsets of which share memory, utilizes both the monitor and message-passing parts of the p4 library. In addition, there are routines for identifying a cluster master process in each cluster, finding out the number of clusters, and finding out the process identifiers of the processes in one's own cluster. These routines and others support the explicit expression of algorithms that take advantage of the cluster environment.

 It has miscellaneous functions. Program sections can be timed to the millisecond and micro-second. It has print user message function and taking level number function which is useful for debugging.

 It provides a number of collective operations, particularly useful in the distributed-memory model. For example, p4_global_op takes as one of its arguments an operation to be performed on distributed data. It is thus relatively easy to expand the set of collective operations. Recent supplied are maximum, minimum, absolute-value-maximum, absolute-value-minimum, sum, and product. Each operates on a vector of integers, floats, or doubles.

III. PVM
1. History

In 1989, the development of PVM started when Vaidy Sunderam, a professor at Emory University, visited Oak Ridge National Laboratory to do research with Al Geist on heterogeneous distributed computing. They needed a framework to explore this new area and so developed the concept of a Parallel Virtual Machine (PVM). In 1991, Bob Manchek, a research associate at the University of Tennessee, joined the research and implemented a portable, robust version of the PVM design. Jack Dongarra, who was also involved in heterogeneous distributed computing research, was useful in making PVM 2.0 publically available.

 As the PVM user base grew, a conscious effort was made to keep the PVM API backwards compatible so that all existing PVM applications would continue to run unchanged with newer PVM versions. PVM 3.0 was released in 1993 with a completely new API. The API change and new design were required to enable a PVM application to run across a virtual machine composed of multiple large multiprocessors.

2. Features

In PVM, a parallel computation is viewed as a collection of processes that communicate by passing messages. PVM was designed from the start for a general MIMD model. In other words, PVM includes functionality to manage a collection of programs mapped in some arbitrary manner onto the nodes of the parallel computer.

 Central to the design of PVM was the notion of a “virtual machine” – a set of heterogeneous hosts connected by a network that appears logically to the user as a single large parallel computer. One aspect of the virtual machine was how parallel tasks exchanged data. In PVM this was accomplished using simple message-passing constructs. There was a strong desire to keep the PVM interface simple to use and understand. Portability was considered much more important than performance for two reasons: communication across the internet was slow; and, the research was focused on problems with scaling, fault tolerance, and heterogeneity of the virtual machine.

 The PVM message passing system consists of a daemon process and a set of communication primitives. PVM provides the standard message passing routines such as pvm_send(), which is a nonblocking send, and pvm_recv(), which is a blocking receive. PVM also provides primitives to start tasks at a remote node, add/delete hosts to/from the current set of machines. PVM messages are tagged messages; i.e., each message is associated with a “tag” defined by the sender. Tagged messages enable a receiver to receive messages of a particular type. Communication between tasks is established using UDP sockets.

 The daemon process runs on each PVM host machine. The daemons communicate among themselves to perform operations such as starting up a user task, multicasting messages, and finding the status of a particular task on a particular host. Tasks have two modes to establish communication with other tasks, the task-to-task mode and the task-to-daemon-to-daemon-to-task mode. In the task-to-task mode, the tasks have a direct link to each other using a separate socket. Communication is usually faster in this mode. In the task-daemon-daemon-task communication mode, a message from task T running on host H to task T’ on host H’ takes the logical route T -> H => H’ -> T’. This communication mode is usually used if the tasks cannot open dedicated sockets to communicate between themselves.

 Though PVM provides a clean abstraction to the programmer, the message passing latency is higher than the physical network’s latency. In many cases the PVM communication library achieves only 15-20% of the network’s theoretical capacity [5]. The extra latency is partially due to the overheads involved in TCP/IP communication; e.g., the UDP protocol computes a checksum for every packet sent out. The complex message buffering scheme in PVM also lowers the performance.

IV. MPI

1. History

The Message Passing Interface effort began in the summer of 1991 when a small group of researchers started discussion at a mountain retreat in Austria. The initial round of that MPI standardization effort began in April 1992 and culminated at Supercomputing ’93, where the standard was presented to the public. By the time of its public introduction, several implementations were already under way, notably the Argonne/Mississippi State “model implementation” (MPICH), which was also demonstrated at the same conference. Other portable implementations like LAM and CHIMP MPI have followed. The MPI Standard was completed in March of 1994. During the first half of 1994, IBM launched a commercial MPI effort. Cray Research, through an alliance with the Edinburgh Parallel Computing Center, was working to support MPI on the CRAY T3D.

 However, MPI-1 users soon discovered that their applications were not portable across a network of workstations because there was no standard method to start MPI tasks on separate hosts. Different MPI implementations used different methods. In 1995 the MPI committee began meeting to design the MPI-2 specification to correct this problem and to add additional communication functions to MPI. A decision was made to begin MPI-2 meetings in April of 1995. These meetings were held approximately every six weeks until October 11, 1997. After that meeting, the customary two month public comment period was initiated. At SuperComputing'96 (held in Pittsburgh, PA), the document was 'unveiled'. Meetings began again in January, 1997 and continued approximately every six weeks until April 25, 1997. At this meeting, the MPI-2 Document was unanimously accepted by the voting institutions.

2. Features

MPI-1 provides many features intended to improve performance on scalable parallel computers with specialized interprocessor communication hardware.

 A large set of point-to-point communication routines is the main feature. Sending and receiving of messages by processes is the basic MPI communication mechanism. The basic point-to-point communication operations are send and receive.

 A large set of collective communication routines for communication among groups of processes is the second feature. Collective communication is defined as communication that involves a group of processes. An example of collective move functions illustrated for a group of six processes are shown figure 2.

[image: image3.png]aata —

of of
a o |d|
o o |J]|
@ o | |
< |w |||« < < < < ||
5 -
5 5] _
] z] 2]
H H E N g
@ 3 m S =
8 8 ES k=]
£ =
&
=]
<
<
<
I
< 5 <

5955990 /0 ——

Figure 2 : Collective move functions illustrated for a group of six processes

 A collective operation is executed by having all processes in the group call the communication routine, with matching arguments. The syntax and semantics of the collective operations are defined to be consistent with the syntax and semantics of the point-to-point operations. Thus, general datatypes are allowed and must match between sending and receiving processes.

 A communication context that provides support for the design of safe parallel software libraries. Parallel libraries are needed to encapsulate the distracting complications inherent in parallel implementations of key algorithms. They help to ensure consistent correctness of such procedures, and provide a ``higher level'' of portability than MPI itself can provide. As such, libraries prevent each programmer from repeating the work of defining consistent data structures, data layouts, and methods that implement key algorithms (such as matrix operations). Since the best libraries come with several variations on parallel systems (different data layouts, different strategies depending on the size of the system or problem, or type of floating point), this too needs to be hidden from the user.

 The ability to specify communication topologies is the next main feature. A topology is an extra, optional attribute that one can give to an intra-communicator. Topologies cannot be added to inter-communicators. A topology can provide a convenient naming mechanism for the processes of a group (within a communicator), and additionally, may assist the runtime system in mapping the processes onto hardware. The last main feature is the ability to create derived datatypes that describe messages of non-contiguous data.

 MPI-1 user soon discovered that their applications were not portable across a network of workstations because there was no standard method to start MPI tasks on separate hosts. Different MPI implementations used different methods. In 1995, the MPI committee began meeting to design the MPI-2 specification to correct this problems and to add additional communication functions to MPI.

 One-sided communcation function is newly adopted to MPI-2 features. Remote Memory Access (RMA) extends the communication mechanisms of MPI by allowing one process to specify all communication parameters, both for the sending side and for the receiving side. The use of RMA communication mechanisms avoids the need for global computations or explicit polling.

 As MPI-1 is static, no processes can be added to or deleted from an application after it has been started. MPI-2 supports the dynamic process management and solve the problem in the previous version.

 MPI-2 introduces extensions of many of the MPI-1 collective routines to intercommunicators, additional routines for creating intercommunicators, and two new collective routines: a generalized all-to-all and an exclusive scan. In addition, a way to specify ``in place'' buffers is provided for many of the intracommunicator collective operations.

V. Comparison
1. Portability vs. Interoperability

The p4 vies the parallel computation in terms of two domains: shared memory between clusters of processes, and message passing for intercluster communication. It is important to note, however, that p4 only supports shared memory that is provided by the system; it does not itself provide virtual shared memory. A small amount of performance has been sacrificed in order to make most of p4’s implementation code portable.

 The MPI interface was developed with the intent of encompassing all of the message-passing constructs and features of various MPP and networked clusters so that programs would execute on each type of system. The portability achieved by MPI means that a program written for one architecture can be copied to a second architecture, compiled and executed without modification.

 PVM also supports this level of portability, but expands the definition of portable to include interoperable. PVM programs similarly can be copied to different architectures, compiled and executed without modification. However, the resulting PVM executables can also communicate with each other. In other words, an MPI application can run, as a whole, on any single architecture and is portable in that sense. But a PVM program can be ported heterogeneously to run cooperatively across any set of different architectures at the same time. To get the flexibility, PVM sacrifice some performance in favor of the flexibility to communicate across architectural boundaries. There may be some small overhead incurred if message passing does not executed in local or identical machines.

2. Process Management

Process management in p4 is static. That is, all processes in the computation are created when the program starts up. The details of process creation are provided through a user-written file. This file encodes the information required to manage the network and names.

 MPI-1 has no defined method to start a parallel application, but MPI-2 contains functions to start a group of tasks and to send a kill signal to a group of tasks.

 PVM has the ability to start and stop tasks, to find out which tasks are running, and possible where they are running.

 Although MPI does not have a concept of a virtual machine, MPI does provide a higher level of abstraction on top of the computing resources in terms of the message-passing topology. In MPI , a group of tasks can be arranged in a specific logical interconnection topology. Communication among tasks then takes place within that topology with the hope that the underlying physical network topology will correspond and expedite the message transfers. PVM does not support such an abstraction, leaving the programmer to manually arrange tasks into groups with the desired communication organization.

3. Fault Tolerance

PVM has supported a basic fault notification scheme for some time. Under the control of the user, tasks can register with PVM to be “notified” when the status of the virtual machine changes or when a task fails. This notification comes in the form of special event messages that contain information about the particular event. A task can “post” a notify for any of the tasks from which it expects to receive a message. The notify message allows the task an opportunity to respond to the fault without hanging or failing.

 The MPI-1 does not include any mechanisms for fault tolerance, although MPI-2 standard includes a notify scheme similar to PVM’s. However, MPI-2 still has no mechanism to recover from the spontaneous loss of a process.

4. Context for safe communication

As the structure of implementation, p4 does not support the concept of the context. However, MPI has the communicator feature. The communicator is a communication context to a group of processes. Having a communication context allows library packages written in message passing systems to protect or mark their messages so that they are not received by the user’s code.

 The MPI does not support the unique context tag. And, it is unsafe for two groups to send messages to each other. So, MPI introduces an inter-communicator which allows two groups of processes to agree upon a safe communication context.

 PVM can create a system-wide unique context tag, which leads to a simpler and more general context model. Moreover, new processes can use existing contexts to start communicating with an existing group. It is useful on fault-tolerant programs which want to replace failed tasks.

5. Conclusion

Though the p4 is still widely used in parallel computing, as the point of view to the future, it will be reduced using and remembered as a classical tool. Of course, the performance on the critical application relatively bad comparing to other two tools.

 If an application is going to be developed and executed on a single MPP, then MPI has the advantage of expected higher communication performance. MPI has a much richer set of communication functions so MPI is favored when an application is structured to exploit special communication modes not available in PVM. The most often cited example is the non-blocking send.

Figure 3. Application Performance over ATM Using Four Homogeneous Workstations.

 As PVM is built around the concept of a virtual machine, PVM has the advantage when the application is going to run over a networked collection of hosts, particularly if the hosts are heterogeneous. PVM contains resource management and process control functions that are important for creating portable applications that run on clusters of workstations and MPP.

 The one of the performance evaluations [12] shows an example of conclusion.

VI. Reference

1. Butler, R., and Lusk, E. Monitors, Messages, and Clusters: the p4 Parallel Programming System, Technical Report of NSF, CCR-9121875.

 2. Geist, G., Kohl, J., and Papadopoulos, P., PVM and MPI: a Comparison of Features, Technical Report of the Office of Energy Research, DE-AC05-96-OR22453, 1996.

 3. Pancake, C., Can Users Play an Effective Role in Parallel Tools Research?, The International Journal of Supercomputer Applications and High Performance Computing, Vol. 11, pp. 84-94, 1997.

4. Lu, H., Dawarkadas, S., Cox, A., and Zwaenepoel, W., Quantifying the Performance Differences between PVM and TreadMarks, Journal of Parallel and Distributed Computing, Vol. 43, pp. 65-78, 1997.

 5. Subramaniam, K., Kothari, S., and Heller, D., A Communication Library Using Active Messages to Improve Performance of PVM, Journal of Parallel and Distributed Computing, Vol. 39, pp. 146-152, 1996.

 6. Lauria, M., and Chien, A., MPI-FM: High Performance MPI on Workstation Clusters, Journal of Parallel and Distributed Computing, Vol. 40, pp. 4-18, 1997.

 7. Bruck, J., Dolev, D., Ho, C., Rosu, M., and Strong, R., Efficient Message Passing Interface (MPI) for Parallel Computing Clusters of Workstations, Journal of Parallel and Distributed Computing, Vol. 40, pp. 19-34, 1997.

 8. Skjellum, A., Early Applications in the Message-Passing Interface (MPI), The International Journal of Supercomputer Applications and High Performance Computing, Vol. 9, pp. 79-94, 1995.

 9. Beguelin, A., Dongarra, J., Geist, A., Manchek, R., and Sunderam, V., Recent Enhancements to PVM, The International Journal of Supercomputer Applications and High Performance Computing, Vol. 9, pp.108-127, 1995.

 10. Mattsom, T., Programming Environments for Parallel and Distributed Computing: A Comparison of P4, PVM, LINDA, and TCGMSG, The International Journal of Supercomputer Applications and High Performance Computing, Vol. 9, pp.138-161, 1995.

 11. Dongarra, J., and 63 other authors, Special Issue – MPI, The International Journal of Supercomputer Applications and High Performance Computing, Vol. 8, pp. 165+, 1994.

 12. Park, S., Lee, J., and Hariri, S., An Evaluation Methodology for Parallel/Distributed Software Tools, Submitting paper to IEEE Transcations on Parallel and Distributed Systems.
 12. Snir, M., MPI: the complete reference, MIT Press, Cambridge, Mass., 1996.

 13. Geist, A., PVM: parallel virtual machine: a user’s guide and tutorial for networked parallel computing, MIT Press, Camgridge, Mass., 1994.

 14. MPI, A Standard for Message Passing, Finished and Available, http://www.crpc.rice.edu/CRPC/newsletters/jul94/news.mpi.html.

 15. Distributed, http://hpux.dsi.unimi.it/hppd/hpux/Distributed/.

 16. Cornel Theory Center, Parallel Programming Tools Overview, http://www.tc.cornel.edu/Parallel.Tools/.

