Software Engineering over the Internet

Jungkee Kim

 Abstract - The Internet is the most influential factor of the modern software development activities. A common targeting platform is the part of the influence. This paper introduces case studies of those platforms and their relationship to the Internet and how different the new methods are comparing to the pre-age of the Internet.

I. Introduction
B

ROOK announced the three major breakthroughs in software technology, namely, high level languages, time sharing, and software development environments, but stresses that they solved only accidental, and not essential, difficulties. The emergence of Internet may be another major breakthrough for the software development environment. Part of the Internet’s influence is as a common target platform. Countless software engineering projects are now addressing issues such as access to legacy systems via the Web, development of non-Web client-server applications based on TCP/IP, and so on. The technology used or devised for these purposes define a buzzword set for the Internet age: Java, HTTP, HTML, XML, CORBA, ASP, JDBC, scripting languages. But the Internet is also an enabling technology that allows companies to meet the challenges of developing and evolving software under tightening market conditions, where getting to market first can be more important than actual development costs. The Internet supports globally distributed product development so that work can proceed around the clock in different locations.

 The Internet makes it possible to enable technology changes software engineering processes. However, most of these changes do not require Internet technology. Many of them could have been part of daily practice even in the old days of snail-mail and parcel services. But using the Internet as the base infra structure gives these new “just-in-time” processes economic viability as a way of doing business. Maurer and Kaiser suggest two examples to explain the effects of Internet for the software development. The first one is beta testing. The Internet provides a cheap way for distributing thousands of copies of new software to beta testers. Their feedback helps to resolve problems and improve the program. Microsoft is riding this wave extensively. And a nice touch: these beta testers provide their services free of charge. In principle, assuming the software itself was Internet-enabled, applications could even be instrumented to be self-testing, perhaps employing field data when security isn’t a concern, and automatically transmit fault reports back to the development organization. Another example is open-source projects, which offer an alternative to conventional software engineering processes for some kinds of software engineering processes for some kinds of software development efforts, but not all. These projects share source code freely among many “hobby” programmers and let the programmers – more or less without coordination – extend and improve it. Raymond stated that such bazaar style seemed to work, and work well, came as a distinct shock. Netscape’s decision to give away the source code for it’s Communicator tool was influenced by Raymond’s paper. The free Apache Web Server is another example of an open-source, commercial strength project.

II. The Web-based Issue Tracking
 The software process is the way to produce software. During the software life cycle, many problems emerge as various forms, such as faults, errors, bugs, or requests for additional features and are typically documented in issue reports that can originate from developers or end users. A database of issue reports generated and maintained during development can be analyzed to reveal valuable information about why a particular decision was made or why an error occurred. Such a repository forms dialogues between parties in which discrepancies can be raised, discussed, and resolved. Analysis of the dialogue leads to more informed decisions as well as improvements in both the product and the organization. Most large-scale, mission-critical projects implement independent verification and validation functions to find, track, and continuously analyze all major issues raised during the life cycle of a project. Callahan, Khatsuriya and Hefner introduced such collaborative tools based on the World Wide Web. The Project Issue Tracking System (PITS) toolkit, a Web-based issue-management tool, can be used to organize issue reports during development and to communicate with different project teams around the world.

 PITS provides a quantitative basis for the periodic IV & V findings meetings with NASA’s senior project management. It serves the needs not only of mission-critical projects where IV & V is applied, but can be extended to almost any project in public or private sector organizations. Determining the health of a project and keeping up with its schedule are difficult management tasks. PITS allows for continuous monitoring of issue categories that significantly affect the status of an ongoing software development project. PITS is designed to support extensive near and long-term trend analysis and provide summary reports on overall trends. This distinguishes PITS from other issue-tracking systems that primarily focus on project milestone issues. Each issue originated as a draft issue, transitioned to an open issue and was eventually resolved and classified as a closed issue. Several issues were opened and closed on the same day, but PITS retained such issues in draft form until a formal review. Disagreements over issue classification are discussed during formal reviews and resolved by management. A dispute is resolved by opening the issue or invalidating the item. If a valid draft issue has already been resolved by the development team, it is immediately closed. A continuous regression analysis on an issue repository can indicate problems early in the development process. Online issue management systems such as PITS can help management with cost and schedule estimates using continuous analysis. For example, we can determine the minimum, average, and maximum number of days needed to close an open issue based on characteristics found to be significant on a specific project. To help schedule a more accurate date of delivery, we can determine the range of the number of days needed to close all remaining open issues. We can plot the range of days on a periodic basis throughout the project to determine if a project’s delivery date is realistic. Many questions remain, however, concerning the privacy, security, and appropriateness of continuous analysis. The ability to detect faults early in the project’s life cycle reduces the mean time and effort to remove them. As Boehm has shown, correcting an error later in the project stream tends to cost 50 to 200 times more than correcting it when it is found. Regular monitoring of the documented issue reports allows team members to detect incorrect, ambiguous, or inconsistent requirements or design specifications that can lead to critical faults during the later stages of development. Tools like PITS and their underlying principles and practices have the potential to trigger process improvement by enabling developers to share and learn from each other’s experiences. PITS enforces formal, early, and continual communication carried out in a well-structured manner – a substantial step toward achieving a better capability maturity model (CMM) level. Most common errors can be isolated from the issue repository and taken care of by analyzing defects for causes. PITS also enables complex projects to preserve the memory of past communications and helps to retain this memory in its knowledge base, allowing developers to look into why a certain decision was made. Moreover, the PITS software metrics reports improve top-level management visibility into the software development process, giving management tighter control over the entire process. Because issue-tracking tools like PITS software are based on formal and recorded communication, they aid in decision making by involving every member in the project team. This collaboration not only increased the level of confidence in the resultant software, but also leads to a more maintainable software product. Moreover, PITS allows outside users with visitor access to access the defect knowledge base and get answers to problems or analyze available defect information in real time. This read-only capability enhances communication between the system vendors and their customers. Software for safety-critical systems has to be ultra-reliable. Keeping defects under strict control is a highest priority task and is essential for assessing reliability and predicting development schedule and cost characteristics. Counting the defects at various levels in the process gives a quantitative handle on how much work the proejct team has to do before it can release the software. By comparing the number of new defects uncovered to the number of defects resolved each week, developers and analysts can determine how close the project is to completion. A ratio indicating that defects are being corrected faster than they are being found shows that the project is making progress toward completion. The data on time required to fix defects categorized by type of defect provides a basis for estimating remaining defect-correction work on current and future projects. The data on phased in which defects are detected and corrected gives a good measure of the efficiency of the development process – for example, if 95 percent of the defects are detected in the same phase they were created, the process is very efficient. On the other hand, if more than 5 percent of the defects are detected one or more phased after the phase in which they emerged, the verification and validation process has a lot of room for improvement. Defect density, measured in terms of the number of defects per line of source code, speaks of the quality of the development effort. Several other techniques, such as defect pooling and defect seeding, reveal the degree of quality assurance on a project. Defect pooling is a simple defect prediction technique in which defect reports are arbitrarily separated into two pools and the total number of unique defects are estimated based on the overlap of defects reported in the separate pools. Defect seeding is a statistical technique in which the number of defects can be estimated based on the ratio of seeded defects found to indigenous defects found.

III. Agile Software Engineering Environment
 Aoyama announced a new software development model named ASP (Agile Software Process) which aims at quickly developing the software products on a time-based software process model. It another example of the Internet effects on the Software development.

 The ASP came from a long journey along with an evolution path of software processes from the conventional centralized sequential process to the distributed concurrent process and then the ASP. With a distributed concurrent process model, multiple functions for a line of software products are concurrently developed by multiple development teams at the multiple development sites geographically distributed. The two dimensional changes on software process have required us to fundamentally rethink every aspect of software development activities ranging from individual developers to entire project. Furthermore, we needed to change our development environment along with the change of our software process.

 The ASP is not a single technique but a total technology based on a coherent concept. At the heart of the ASP system, the concept of the ASP model is rather different from conventional process models as illustrated in Fig. 1.

[image: image1.png]p
i

Incremeatal “Analysis Dosign Tomt
om G

e v D
e~

Inlogration

Tokya ;é"; H:
omtn (gl e |
.

P

Fig. 1 A Process Model of the ASP System

 The characteristics of the ASP model are a concurrent and asynchronous process, an incremental and iterative process, distributed multi-site software process, and people-centered process.

 To realize the ASP, we must avoid the potential problems in the ASP and pull out the full capabilities of the ASP. As summarized in Table 1, the problems in the ASP can be classified into a matrix from the process and product points distributed process, concurrent process and time-based process management. The environment should ease the problems. However, some characteristics may conflict with each other. For example, to improve the continuity of the process may cause the higher interference among the processes. Therefore, the solution must consider the balance of the requirements.

Table 1 Potential Problems in the Management of ASP

Characteristics
Process Issues
Product Issues

Distributed Process
Discontinuity of Process
Information Sharing

Concurrent Process
Interference among Processes (Process Coupling)
Interaction among Products (Product Coupling)

Time-Based Process Management
Precise estimation and control
Frequent change and integration

 To avoid these problems and take advantage of the ASP, they provide an integrated software engineering environment, namely ASEE (Agile Software Engineering Environment). The environment provides a balanced support for process and product management. The environment vertically integrates a wide variety of components PRIME (Process Information ManagEr), and a PSEE (Process-centered Software Engineering Environment).

 PRIME provides the following functions: to just-in-time guide the individual developer software process defined in a tree-structured chart on the windows of his/her workstation, to support planning and executing software process, to support concerning statistics at appropriate levels of process and organization through networks, to visualize statistics from multiple view points at appropriate levels of process and organization, and to control security. WAIN provides functions, to encapsulate the structure of various design documents and provide uniform access methods to the documents, to support the creation, editing, retrieval and change control of design documents, to enable developers to navigate across the distributed repositories, and to control security. The internet is particularly suitable to the infrastructure of software engineering environments. However, the conventional Web technology is not enough to manage the process and products. The process management requires to control process enaction and analyze the dynamic behavior of the processes. The product management requires configuration and change management. To provide these management, we need a set of protocols on the HTTP. Many PSEEs and groupware require rigorous management of process enaction especially on the order of process execution. However, it is found such constraints cause inflexibility and loss of productivity. Therefore, they introduced an encapsulation policy and a backlash mechanism in the execution of software processes at the level of the individual developer. The people-oriented philosophy in the design of PRIME may be a key to designing PSEE.

IV. COTS and Internet

 Developing software systems from Commercial Off-The Shelf (COTS) components is becoming a popular way to achieve cost-effective software development, and its use is expanding from business applications to soft real-time systems. COTS is said to bring cost reduction and time saving while increasing the quality of systems. Though it is not clear if this is true, it is clear that customers often require “open systems” and this forces system makers to use COTS products even if they do not want to use them. However, in the actual software projects, it is often seen that a project is delayed by bugs in COTS products or otherwise beset by problems because of unsuitable conventional process models. Hirai et al. proposed a new process model that places an emphasis on gathering bug information from Internet information sources. They devised new defined COTS-based development process model as in figure 2.

[image: image2.png]>R 9

Ieformation G athering Staff
*stability repart
Fatal bgs
¢ (Gathering
Information

“huglist
cow-how | +tug lis]

b 3;EM <

Develoging Staff

=

“Solutions

ahee Staff.

Figure 2. COTS-based software development process model.

 Conventional process models have been full-scratch development-centered models. If a software project follows an old-style model by mistake, it may not allot suitable cost for new phases. For example, if the evaluation of COTS, which is one of the new phases, is underestimated, this can result in selection of the wrong COTS, introducing problems into the project. As COTS is a “moving target”, a steady and firm method for development cannot be expected. Instead precedent systems seem to be a good alternative especially in COTS-based production. If we can store precedent systems in database and abstract empirical rules, say rules to avoid problems or know-how to achieve quick development that would be very helpful for the future projects.

 One simple way to control a process is to provide the project members with information for guidance. Project members need information on the basis of which they can decide what they should do next. What information is needed varies according to the members' role in the project and the project's development phase. If useful information is given to suitable members at suitable times, this guidance will probably lead to a good result. So-called push-type information providing seems to be a promising way to send information to project members automatically. Several practical systems has been proposed and used already. A more important problem is deciding what kind of information should be sent. But providing information alone is not sufficient to control the software development process. Not all programmers would be familiar with the new COTS-based software development process. They are used to full scratch development. This means that some programmers have a tendency to follow a conventional software development process. When they come across some trouble while they are developing software systems, the first thing they would do may be to check source codes they wrote or monitor the system's behavior closely to find something wrong. But when the process is COTS-based, what they should do first might be to gather bug information on the COTS components or look for someone who has experienced the same problem. What should be emphasized is that people do not willingly change their way of working by their own free will. The members should be forced to follow the new procedure by some means or other.

 As shown figure 2, a new phase, COTS evaluation phase, was added. In this phase, project members learn about bugs and acquire know-how associated with the COTS to be used. One more distinctive point of the model is that the information-gathering process is introduced to the process model. Staffs are divided into three groups, information-gathering, quality assurance and development. Information gathering is a kind of logistical job. The staffs provide several projects with COTS-related information, which they have collected from Web pages or from other COTS-based projects. The development staffs are the actual developers who construct systems. The evaluation phase and product understanding phase having been introduced into the development staff's process. The product evaluation phase, which comes after the system requirement phase, is the phase at which a COTS is chosen. In this phase the stability of the COTS components is evaluated. Also it is checked whether the COTS has any fatal bugs that interfere with any fundamental system requirements. In the COTS understanding phase that comes next, developers learn about COTS in detail, understanding known bugs to be avoided or gaining some know-how to aid quick development. Quality assurance staffs also accept COTS-related bug information. Based on this information, they inspect the built product for any overlooked bugs.

 Keyword matching is the only way to search for related precedent systems. The suitable methods are progressing.

 COTS-based software Process Controller (CPC) provides project members with COTS-related information in accordance with the software development process defined in figure 3. Some of this information is gathered by the CVO and some is gathered by the information gathering staff. When the project is started, members’ mail address and roles in the project are registered as a project configuration file, which is passed to the CVO. The first information from CPC is stability reports and fatal bug information on the candidate COTS. Several keywords that are supposed to be associated with serious bugs have been defined. The information gathering staff manually mark bug reports ad fatal when they find any serious bug reports. CPC recognizes this keyword-matched or tagged information and sends it to the appropriate members, in this case to the chief designer. This is done by referring to the project configuration file. The designer then decides the COTS products and the versions to procure based on this information. The selected COTS components’ names are registered in the configuration file. But the exact structure of the system, such as how components are connected to each other, cannot be represented as a description method does not prepared yet.

[image: image3.png]Intranet

cvo

Development Process |wg—ii | Debug
~stability repart } buglist
+Fatal buigs +know-how | sbug list “Solutions

crC

Eier R ET—

L ol
NS

e
Frocedend
Systems DB|

w4 a

The Intermet

2

Information-gathering staff

=
Ko b
o8

[EEo——

Figure 3. COTS-based software development environment

Before the process enters the integration phase, the COTS understanding phase occurs. CPC selects relatively minor bugs and know-how related to the COTS to be used and sends these to the developers. If new information on the COTS arrives from CVO during the software development process, this is sent to developers. All the bug information gathered by CPC and the information staff is sent to the quality assurance staff in the test phase. The staff inspection use the information to the products for any overlooked bugs.

V. The Internet and Distributed Software Engineering Data

 Another trial for the Internet usage for the software engineering undergoes by Tesoriero and Zelkowitz. They focus on the cooperating data collection for the software development processes improvement.

 Measurement has been emphasized as an effective method for gaining control and insight into software activities. Because of this, many organizations have incorporated data collection into their software processes. However, just as important as the collection of data is the presentation, understanding, and resulting actions which accompany with the data collection process. Data collection must be an active component in the development cycle of a project and not simply a passive task that results in large, mostly unused, data files.

 Data collection is a major component of both the Quality Improvement Paradigm (QIP) at NASA Goddard’s Software Engineering Laboratory (SEL) and the Software Engineering Institute’s Capability Maturity Model (CMM). However, neither QIP nor CMM offer much detail on how to display data in a way that helps project managers make fast and effective decision. To devise a solution to determine trends and deviations from expected behavior, SEL developed the Software Management Environment, which provides quasi-real-time feedback on project data. Tesoriero and Zelkowitz used the SME system as a basis for the Web Measurement Environment (WebME) which extends SME functionality to a Web-based development environment.

 The WebME system has a World Wide Web interface which provides a wide variety of users with access to the system and the data. For our instantiation of the WebME system, there are no restrictions to access to the system or data. However, similar system architecture could be used within the boundaries of a corporate Intranet with appropriate security measures in place.

[image: image4.png]“End-User
Applications

" Mediating
Information
Servers

Figure 4. WebME System Architecture

 The WebME system is based on the mediator architecture. A mediated architecture horizontally partitions the architecture into three layers: end-user applications, mediating information servers, and information resources. In the WebME context, the distributed databases are the information resources. The data wrappers interface with the mediating information server. The Web browsers and the associated HTML forms represent the end-user application layer. The WebME mediator is responsible for gathering and processing the data required to fulfill end-user requests and returning answers to the end-user.

 To extend SME functionality to the Internet, they developed two new capabilities: consistent combination of data updates from multiple sources, and model building for these combined data.

 The attributes of real-world entities can be mapped into formal mathematical representation to give a better understanding of the entities themselves. This attribute mapping is captured in a measurement definition. When dealing with data from a distributed development environment, the values obtained through data collection have a context – or measurement definition – that must be preserved when data is combined. In WebME, attribute definitions are based on the structural model of measurement, which defines attributes in terms of instruments, units, values, and scale type. A measurement instrument obtains the values of an attribute in a specific unit and scale type. A WebME attribute definition consists of an instrument, unit, and interval. The attribute definition becomes the wrapper for extracting data from the external database. Initially, WebME only displayed attribute values over time. To capture this temporal property of a unit more explicitly, an interval property to the structural measurement model’s attribute definition was added. Because the data used with WebME thus far has been of one scale type, the scale-type property in the attribute definition has not been included yet. In WebME, there are two types of measures: direct and indirect, or derived. For direct measures, the measurement instrument is an executable program that extracts measured values from a database at desired intervals. For indirect measures, the instrument is an equation that computes attribute values by adding, subtracting, multiplying, or dividing other attribute values. The units and intervals of the attributes in the equation are then used to infer the indirect attribute units and interval properties. The WebME System performs two types of consistency check. The first occurs when a WebME script is processed. During this consistency check, the indirect-attribute equations are checked for compatibility. The second check occurs when a user submits a query to display the data from the Web browser. When two or more attributes are requested, the requested attributes are checked for compatibility. WebME uses name equivalence to define compatibility. For addition and subtraction, the units and interval properties of the operands must be name equivalent. For multiplication and division, this restriction is relaxed: unit properties may be different, but the interval properties must be name equivalent. Compatible attributes – attributes with equivalent units and intervals – can be plotted on the same graph. The WebME scripting language facilitates data combination by letting users define classes of measurement attributes, where a class represents a given development environment. For example, NASA SEL is a defined class of measurement. The measurement attributes defined for a class represent the data collected in the development environment. Entities are assigned to an attribute class. Any two attributes can be displayed on the same graph if their units are equivalent. This way of defining data lets users consistently view different, but related data that are collected and stored separately. The scripting language also gives users flexibility in defining data types. If measurements are collected for a new attribute, adding a new attribute definition with the scripting language provides users access to that data. Although WebME checks for consistency in units and intervals, users can still encounter difficulties. For example, if “lines of code” is used as a unit, the database expert must ensure that the units at each location mean the same thing. A potential weakness in the scripting language as currently specified is the descriptive power of its access method descriptions. WebME defines access methods by specifying an executable to be uses as an instrument. Although comments describing exactly how to use the instrument may be included in the script, the executable name, host, and parameters are the only pieces of information about the instrument that are stored as metadata.

 SME’s modeling technique defines and builds baseline and predictive models of growth data, but the models are static. For example, SME can average together a set of similar projects to form a baseline attribute model, such as the average growth in the number of reported errors per week over the development cycle; it can then compare a new project to this average to see how it performs relative to the older projects in the database. For WebME, a more dynamic, evolving set of models are needed. One alternative to SME’s static growth models, investigated by researchers in 1993, was clustering algorithm that used Euclidean distance. This model includes only those projects with the same “shape” as the new project in the baseline average. The non-cumulative raw data is highly variable and can hide trends and patterns. An algorithm was developed to uncover significant trend changes in noisy data. The algorithm adopts statistical techniques used in economic forecasting models. Once the algorithm identifies the major trend changes, it draws a characteristic curve. The curve exposes an underlying structure to the data that is not apparent from the scatter plot alone.

 The use of collected data on past projects as predictors of future project behavior is a growing phenomenon in software development. However, development environments vary widely, It is important that the baseline predictor projects have characteristics that are amenable to the new project being compared. Approaches like the Experience factory have been proposed as a means to organize such developmental practices. However, means must be found for passing information among such environments and for comparing results obtained in two different environments. A tool like WebME gives the analyst a mechanism for defining common characteristics across such domains.

VI. Conclusion
 The Internet it the most influence factor for the current computer technology. As other fields the software engineering also has been effected by the Internet directly and indirectly. Maurer and Kaiser introduced the Internet effect on the software development. Other case studies announced on the above use the Internet for the software engineering tool or environment to improve the efficiency of the software development. The suggested many method to absorb in the Internet , but most of them are under progressing and I could not find the concrete example yet how much the Internet using reduce the time and effort for the software development or improving the reliability of the software. GNU is as very interesting example for the software development. Many people can be involved in divided part of the software development team and produces some useful software. That may be an interesting instances for the promising role of the Internet on the software engineering.

References

[1] F. Maurer and G. Kaiser, “Software Engineering in the Internet Age,” IEEE Internet Computing,, September-October, 1998, pp. 22-24.

[2] F. P. Brooks, “No Silver Bullet,” IEEE Computer, April 1987, pp. 10-19.

[3] S. R. Schach, Classical and Object-oriented Software Engineering, 3rd edition, Irwin, 1996.

[4] E. Raymond, “The Cathedral and the Bazaar,” http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar.html, 1998.

[5] J. R. Callahan, R. R. Khatsuriya, and R. Hefner, “Web-Based Issue Tracking for Large Software Projects”, IEEE Internet Computing,, September-October, 1998, pp. 25-33.

[6] M. Aoyama, “Agile Software Engineering Environment over the Internet,” ICSE 98 Workshop on Software Engineering over the Internet, http://sern.CPSC.ucalgary.ca/~maurer /ICSE98WS /ICSE98WS.html, 1998

[7] C. Hirai et al., “A Proposal of an Internet-based Software Development Process Model for COTS-Based Systems Development,” http://sern.CPSC.ucalgary.ca/~maurer/ICSE98WS /ICSE98WS.html, 1998

[8] R. Tesoriero and M. Zelkowitz, “A Web-Based Tool for Data Analysis and Presentation,” IEEE Internet Computing,, September-October, 1998, pp. 63-69.

[9] R. Tesoriero and M. Zelkowitz, “Using the Internet to Combine and Analyze Distributed Software Engineering Data,” http://www.cs.umd.edu/~roseanne/webme/ICSE98WS, 1998.

