Rule-based Classification for Robot Agents

Jungkee Kim

 Abstract - The Internet is the most influential factor of the modern society. Many companies, organizations and schools maintain web pages for the direct sale, advertisement, or information services. Some of them extract various statistics who are customers, where they are from, or which software they use. However, the number of reference done by robot agents may mislead the statistics or analysis. The object of this project is to find out the rules for the classification of the robot reference and to apply to the sample data to get the pure user references for the appropriate information of web site. So, the process for the rule extracting and its applying process can be experimented, and this will give some knowledge how the expert systems could be constructed.

I. Introduction
 Since the Internet emerged from laboratory, it has rapidly enlarged its territory. Especially, World Wide Web provides the environment of convenience to the ordinary people. Many companies, organization and schools operate a web server for the direct sale, advertisement, or information services. Each HTTP server can acquire some files to record who is visiting which page at what time and several other information. So, some of web managers analyze the log file and seek some useful information using various statistics tools or log file analyzer. However, many robot agents dominate the number of the specific subdirectory references and the result of the analysis tool would give the manager the twisted data. As many managers are only interested in the human’s reference, the robot classification would be the useful method to provide the proper analysis of the web site visiting.

 In this project, the modeling for robot visit searching will be established by making some rules to find out which patterns of logs are those of the robot agents.

1. Robot Agent

 Web Robots are Web client programs that automatically traverses the Web's hypertext structure by retrieving a document, and recursively retrieving all documents that are referenced. The meaning of recursive here doesn't limit the definition to any specific traversal algorithm. Even if a robot applies some heuristic to the selection and order of documents to visit and spaces out requests over a long space of time, it is still a robot.

Normal Web browsers are not robots, because they are operated by a human, and don't automatically retrieve referenced documents (other than inline images).

 Web robots are sometimes referred to as Web Wanderers, Web Crawlers, or Spiders. These names are a bit misleading as they give the impression the software itself moves between sites like a virus; this not the case, a robot simply visits sites by requesting documents from them.

2. Log files of an HTTP server

Most WWW servers execute NCSA’s Hypertext Transfer Protocol daemon (http). In turn, each copy of this daemon maintains four logs (accesses, agents, errors, and referers) that are written on the local disk of the associated workstation server.

In 1994, a group of server and analysis developers came up with the Common Log Format (CLF). This is a well-defined set of facts about each hit that a Web server processed. The CLF contains lines of eight fields as the follow table.

Item
Contends

Host
Client host name or IP address

Ident
Identity (user name) if available

Authuser
Authorization user ID

Date-time
day/month/year:hour:minute:second

Zone
Timezone: +dddd or –dddd

Request
The first line of the request, e.g. “GET / HTTP/1.0”

Status
Response status from server

Bytes
Number of bytes transmitted

Table 1. Common Log Format

Each field is separated by a single space. If a field is not known or available, a dash (“-”) is used as the field value instead. The ident field is rarely used, and authuser is only used at sites that require registration.

Code Range
Response Meaning

100 ~ 199
Informational

200 ~ 299
Client request successful

300 ~ 399
Client request redirected, further action necessary

400 ~ 499
Client request incomplete

500 ~ 599
Server errors

Table 2. HTTP Server Response Code Group

3. Log files

 There are usually four different log files, Access log, Agent log, Referer log, and Error log in an HTTP server. Access log has all the contents of table 1 and each access to a page of the HTTP record the each line of the log files. Agent log has only time tag and an agent for the accessing. Sometime, the agent gives some hints for the remote host’s operating system and which kind of browser they use. Some robots show their identity on the agent. Referer log file has the time tag and the referrer of the current accessing. That is to say, if a user refer a search engine and access to one of our web pages, then the referrer is the page of the search engine which guide to the specific web page. The error log file writes down the error message when an error occurs.

 However, each separated log file is not useful to analyze the characteristics of a Robot. So, some HTTP servers allow customized format and a customized log file, which combines Access, Agent, and Referer log files, named ‘Combined log’ is used on this project.

 Many web sites collect the log file as data and many statistics programs analyze the hidden information and make graphs. However, it is not easy to catch up the robot site visiting automatically, so many analyzers just check the remote hostname or typical agent name and filter them from the input. Such processes are done by human operator after probing the log files. As the robot sites are changing their own remote hostname occasionally and temporary robots continually visit the web page, manual fixed filtering cannot catch up all the robots. As a result, the analyzed data or graphs are inevitably distorted by the web robots.
II. Some Rules for Classifying Robots
 There are standards for robot exclusion and they are included in “robots.txt.” If a group of accesses tried to refer the “robots.txt” first, it should be robot accessing except some exceptional cases. Some of rules for indicating robots are as follow:

· Many robots refer “robots.txt” first.

· Some agents denote themselves as robots.

· Many robots refer web pages fast and recursively.

· Some robots do not refer any graphic files.

· A remote site can share to several agents and browsers.

· Some robots do not show their agents.

· Some robots refer “robots.txt” first and continue to access other files for several days.

· Some sites refer the web pages with general browser first and turn on a robot browser. Some of sites show up general browser again.

· Some human browser operations are very fast and many times as a robot does.

· If a site referred the web pages without watching any graphic files, it should use the robot program. However, all such sites are not always used by robots.

· Some robots use ordinary agents but include signs of robot agent. (Some exceptional cases don’t have any sign. I just guess them robots because no reference to graphic files.)

· Some push service references use the same agents as in the above case. (It can be a robot, because it is not operated by a human.)

 As the small number of accesses of a robot does not much effect on the entire analysis, a specific number can be assigned for classifying a robot site. It will reduce the time to analyze the whole log data.

III. Human Expert and Applying Rule to the Expert Systems
Case Study for NPAC Main Web Server Classification:

1. Classification of a human expert

 The previous rules are from an expert for the classification of Robot agents from analyzing each day log files for more than a year. Many Robot agents are already known and those agent data can be used for classifying. The first analysis is based on the list of known Robot agents and it is a real classification of a human expert. However, the human cannot review all the log files that are generally between 60,000 and 150,000 lines per day. Though some statistics tools gives some information like which remote site visited how many times are accessed and how much bytes are transferred, it just give some clues for the large number visiting Robots. If an unknown Robot agent visited, this is not classified as Robot until a human analyzes, detects, and adds that on the Robot list. I used these data from comparing known Robot agent as standard of a human expert and compared to those of expert systems.

2. Rules for Applying to the Expert Systems

 As the expert systems imitate the human experts, the rules should be reorganized to implement the program efficiently. The classification for Robot agents should be not only by the remote host but also the agent. So, compound key of the remote host and the agent is used in this implementation. As announced before, only probing over specific point of number would increase the efficiency and cover most of Robots because they usually emerged as large number of accesses. So, we can get the rule 1.

Rule 1: If the total number of accesses of a Robot agent and an agent is more than a specific number, then the remote host and agent is a large access remote host agent.
Though an ordinary access can visit the Robot exclusion file, we can ignore that case and the reference to “robots.txt” of the large number access can be thought as the Robot.

Rule 2: If a large access remote host agent accessed “robots.txt”, then it is a Robot.

As some Robot agents do not access any graphic file, we can obtain the rule 3. Though a modem user can select the non-graphic access browser, most of them are not large accesses. So, the rule 3 can be survived.

Rule 3: If a large access remote host agent does not read any graphic file, then it is a Robot.

One of rules from previous section produces rule 4.

Rule 4: If a large access remote host agent does not show any referrer, then it is a Robot.

The remaining clue for the Robot agent is fast access. As the rules of previous section shows, a human user can also access so fast. As I invested before, many fast human accesses based a specific subdirectory, familyphoto. As those web pages consist of only photos, users usually click next button fast. Some web pages include many JavaScript files and Java Applets, so they count as many accesses. To avoid human’s fast accesses regarded as Robots, graphic, JavaScript, Java Applets, and the specific subdirectory are not counted within a time period. The peak number of a minute accesses is used on this implementation. Though some Robot agents access very slow as the network delay, many of them can be classified with other rules.

Rule 5: If the maximum number of accesses of a large access remote host agent excluding graphic, JavaScript, Java Applets, and the specific subdirectory accesses within a minute is larger than a specific number, then the remote host agent is a Robot.

IV. Result and Analysis
After classifying Robot accesses, I made some statistical graphs using some statistical graphic generating programs. They originally come from wwwstat version 1.0 [7] and gwstat version 1.12 [8] and are revised much of their codes for the specific target of NPAC.

 April 30th, 1999 combined access data are used for the experiment and the graphic excluded hourly graph is shown in figure 1. As it includes many Robot accesses, the shape of the graph has some irregular peaks.

[image: image1.png]Hourly Traffc Summary
e St 1942247 €07 038

Figure 1. Hourly access graph excluding graphic file accesses

 Figure 2 shows two graphs excluding Robot accessing. One is generated by applying human expert’s Robot lists and extract non-Robot accesses with checking only the agent information. The other graph is obtained by implementation of the expert systems.

[image: image2.png]5

Hourly Traffc Summary

a

5

Hourly Traffc Summary

Figure 2. Non-Robot hourly graph by only checking agent and by expert systems

[image: image3.png]Traffc Summary by Subdirectory Tres

Figure 3. Subdirectory trees access graph excluding graphic file access

Though it only checks the greater than 100 accesses, the result is very similar to that of known Robot agents. The figure 2 also excluded all graphic file accesses.

 Subdirectory trees can be shown as in figure 3. As some subdirectories have large amount of web pages, Robots usually visit such directories much larger than ordinary web browsing.

[image: image4.png]Traffc Summary by Subdirctory Traes Traffc Summary by Subdirectory Traes

Figure 4. Non-Robot subdirectory tree graph by only checking agent and by expert systems

 Figure 4 denotes the subdirectory trees for the non-Robot accessing by known Robot agent list classifying and by expert systems. The number on largest subdirectory, “User Geoffrey Fox”, is dramatically dropped from total accessing to non-Robot accessing. It is 18350 times in Figure 3, and 4059 and 4361 in Figure 4. This means Robot agents usually visit entire web pages and this result increases the number of accesses of large groups.

 The domain group graphs can be shown on Figure 5 and Figure 6. The result is similar to the previous cases. The spiders label in Figure 5 shows the total number of known spiders which usually refer non graphic files. So, this number of spiders has different meaning of that of this implementation because this experiment considers not only non-graphic access Robots but also graphic reading Robots.

[image: image5.png]Trafic Summary by Country/Domain

Figure 5. Spider and other domain for total accesses

[image: image6.png]Trafic Summary by Country/Domain Trafc Summary by Country/Domain

Figure 6. Non-Robot domains for two methods

V. Conclusion

As shown section 4, the rule-based experts systems simulate a human expert very closely as long as the systems follow the expert’s rule. Though it only checked over 100 accesses in this experiment, it is very similar to the case of that of human analysis. If the number for the checking point comes down, there may be more possible to include human’s fast accesses. However, this would not be big portion but some exceptional cases. I saw once human’s access more than 3000 per day, but it was just an accident because his keyboard was out of order.

 Though the expert systems demand expert’s supporting continually, they surely reduce the human efforts dramatically and even can provide more accurate information.

VI. Reference

1. Joseph Giarratano and Gary Riley, “Expert Systems”, 3rd Edition, 1998, PWS Publishing Company.

2. Clinton Wong, “Web Client Programming with Perl”, 1997, O’reilly.

3. Larry Wall and Randal L. Schwartz, “Programming Perl”, 1991, O’reilly.

4. The Apache FAQ, “How do I add browsers and referrers to my logs?”, Mar. 1999, <URL: http://www.apache.org/docs/misc/FAQ.html>

5. Martijin Koster, “Robots in the Web: threat or treat?”, Apr. 1995, <URL: http://info.webcrawler.com/mak/projects/robots/threat-or-treat.html>

6. Dough Riechen, “Intelligent Agents”, Communications of the ACM Vol. 37 No. 7, Jul. 1994.

7. Roy Fielding, “wwwstat, HTTPd Logfile Analysis Software”, May. 1998<URL: http://www.ics.uci.edu/pub/websoft/wwwstat/>

8. Qiegang Long, “Gwstat”, 1995, <URL: http://dis.cs.umass.edu/stats/gwstat.html>

Appendix

Part of Actual Access Log File

cca2607c.infoseek.com - - [14/Apr/1999:00:00:01 -0400] "GET /users/gcf/cps616javaonebasic98/foilsepfocusimagedir/010IMAGE.html HTTP/1.0" 200 9204

163.244.3.118 - - [14/Apr/1999:00:00:02 -0400] "GET /users/gcf/cps713montecarlo/p_montecarlo.html HTTP/1.1" 304 -

lincsun03.cacs.usl.edu - - [14/Apr/1999:00:00:02 -0400] "GET /users/gcf/arldatabase/arljdbc/seporgimagedir/044.jpg HTTP/1.0" 200 242865

cca2607c.infoseek.com - - [14/Apr/1999:00:00:04 -0400] "GET /users/gcf/cps616vrml2scriptmar98/foilsepfocusimagedir/027IMAGE.html HTTP/1.0" 200 9489

cca2607c.infoseek.com - - [14/Apr/1999:00:00:04 -0400] "GET /users/gcf/cps616vrml2scriptmar98/addon/framesaddon28.html HTTP/1.0" 200 589

cca2607c.infoseek.com - - [14/Apr/1999:00:00:07 -0400] "GET /users/gcf/cps616appl96/foilsepimagedir/041IMAGE.html HTTP/1.0" 200 2010

cca2607c.infoseek.com - - [14/Apr/1999:00:00:07 -0400] "GET /users/gcf/npacscreendumps97/foilsepimagedir/180GIF.html HTTP/1.0" 200 3145

compconn-instant.peopleslink.org - brett mccluske [14/Apr/1999:09:22:46 -0400] "GET /restricted/projects/bh/NewsLetters/ HTTP/1.0" 401 844

Part of Actual Agent Log File

[14/Apr/1999:00:00:01 -0400] InfoSeek Sidewinder/0.9

[14/Apr/1999:00:00:02 -0400] Mozilla/4.0 (compatible; MSIE 4.01; MSIECrawler; Windows NT)

[14/Apr/1999:00:00:02 -0400] Mozilla/4.51 [en] (X11; U; SunOS 5.6 sun4u)

[14/Apr/1999:00:00:04 -0400] InfoSeek Sidewinder/0.9

[14/Apr/1999:00:00:04 -0400] InfoSeek Sidewinder/0.9

[14/Apr/1999:00:00:07 -0400] InfoSeek Sidewinder/0.9

[14/Apr/1999:00:00:07 -0400] InfoSeek Sidewinder/0.9

Part of Actual Referer Log File

[14/Apr/1999:00:00:01 -0400] - -> /users/gcf/cps616javaonebasic98/foilsepfocusimagedir/010IMAGE.html

[14/Apr/1999:00:00:02 -0400] - -> /users/gcf/cps713montecarlo/p_montecarlo.html

[14/Apr/1999:00:00:02 -0400] http://www.npac.syr.edu/users/gcf/arldatabase/arljdbc/foilsepimagedir/044IMAGE.html#buttons -> /users/gcf/arldatabase/arljdbc/seporgimagedir/044.jpg

[14/Apr/1999:00:00:04 -0400] - -> /users/gcf/cps616vrml2scriptmar98/foilsepfocusimagedir/027IMAGE.html

[14/Apr/1999:00:00:04 -0400] - -> /users/gcf/cps616vrml2scriptmar98/addon/framesaddon28.html

[14/Apr/1999:00:00:07 -0400] - -> /users/gcf/cps616appl96/foilsepimagedir/041IMAGE.html

[14/Apr/1999:00:00:07 -0400] - -> /users/gcf/npacscreendumps97/foilsepimagedir/180GIF.html

Part of Combined Log File

cca2607c.infoseek.com - - [14/Apr/1999:00:00:01 -0400] "GET /users/gcf/cps616javaonebasic98/foilsepfocusimagedir/010IMAGE.html HTTP/1.0" 200 9204 "-" "InfoSeek

Sidewinder/0.9"

163.244.3.118 - - [14/Apr/1999:00:00:02 -0400] "GET /users/gcf/cps713montecarlo/p_montecarlo.html HTTP/1.1" 304 - "-" "Mozilla/4.0 (compatible; MSIE 4.01; MSIECrawler; Windows NT)"

lincsun03.cacs.usl.edu - - [14/Apr/1999:00:00:02 -0400] "GET /users/gcf/arldatabase/arljdbc/seporgimagedir/044.jpg HTTP/1.0" 200 242865 "http://www.npac.syr.edu

/users/gcf/arldatabase/arljdbc/foilsepimagedir/044IMAGE.html#buttons" "Mozilla/4.51 [en] (X11; U; SunOS 5.6 sun4u)"

cca2607c.infoseek.com - - [14/Apr/1999:00:00:04 -0400] "GET /users/gcf/cps616vrml2scriptmar98/foilsepfocusimagedir/027IMAGE.html HTTP/1.0" 200 9489 "-" "InfoSeek Sidewinder/0.9"

cca2607c.infoseek.com - - [14/Apr/1999:00:00:04 -0400] "GET /users/gcf/cps616vrml2scriptmar98/addon/framesaddon28.html HTTP/1.0" 200 589 "-" "InfoSeek Sidewinder/0.9"

1cust74.tnt2.indio.ca.da.uu.net - - [14/Apr/1999:00:01:10 -0400] "GET /textbook/kidsweb/ HTTP/1.1" 200 11901 "http://search.yahoo.com/search?p=Kids+Web+sites&a=fe&o=1&m=i&h=s&b=36" "Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)"

Robot agent filtering program by known Robot lists

#!/usr/local/bin/perl

###

Filter_combine perl program

Filtering robot access from combined log file and printing access

log which has no robot access.

#

Usage: ./filter_combine.pl a_robot_agent_file a_combined_log_file

A robot agent file has the list (part) of robot agents and each line

has one agent name.

#

Open robot agent file.

open(ROBOT, $ARGV[0]) || die "Can't open $ARGV[0]: $!\n";

$_ = <ROBOT>;

/(.*)$/;

$compare = $1;

Making a compare variable which includes all the robot agents.

while ($_ = <ROBOT>) {

 /(.*)$/;

 $input = $1;

 $compare = $compare . "|" . $input;

}

Open a combined log file.

open(COMBINE, $ARGV[1]) || die "Can't open $ARGV[1]: $!\n";

Extract access log part and compare the agent part to the list

of robot agents.

while ($_ = <COMBINE>) {

 /(.*) (\".*\") (\".*\")$/;

 $access_log = $1;

 $referer = $2;

 $agent = $3;

 if ($3 !~ /$compare/) {

 print $access_log, "\n";

 }

}

List of known Robot agent pattern

ArchitextSpider

MOMspider

Lycos_Spider

Robot

AltaVista Intranet

Scooter

InfoSeek Sidewinder

Harvest

Slurp

Gulliver

Arachnoidea

AnzwersCrawl

Crescent

Java

httpdown

Phantom

libwww-

NPACagent

ExtractorPro

MSIECrawler

NetCache

Wget

ia_archiver

GETWWW-ROBOT

NetAttache

Teleport

WebZIP

LinkSweeper

Autonomy

AvantGo

KIT-Fireball

EmailSiphon

Agentware

Fspider

BackRub

Netscape-Proxy

ExtractorPro

Googlebot

EchO

Net Vampire

w3mir

WebSurfer

Mercator

Internet Search Engine

HTTPClient

Ultraseek

Enhanced NCSA Mosaic

Robot agent filtering program by expert systems

#!/usr/local/bin/perl

###

Filter_robots perl program

Filtering Robot access from combined log file and printing the only

fast access characteristic Robot and the result of filtered Robot

remote host names and their agents. The large number accesses which

are not Robots are also printed. The filtered access log file will

be saved as in the file whose name is designated in the second

parameter.

#

Usage: ./filter_expert a_combined_log_file a_filtered_access_log_file

Checking only over Max_access.

$Max_access = 100;

Checking fast accesses per minute only over Max_fast_access

$Max_fast_access = 30;

Open combined log file.

open(COMBINE, $ARGV[0]) || die "Can't open $ARGV[0]: $!\n";

Getting information from combined log file and checking referring

Robot exclusion. (Rule 2)

while ($_ = <COMBINE>) {

 /(.*) \"(.*)\" \"(.*)\"$/;

 $access_log = $1;

 $referer = $2;

 $agent = $3;

 $access_log =~ /(.*) (.*) (.*) \[(.*)\] \"(.*) (.*) (.*)\" (.*) (.*)$/;

 $remote = $1;

 $page = $6;

 # keyword for unique group of accessing.

 $remoteagent = $remote . "##" . $agent;

 $hostfile{$remoteagent}++;

 if ($page eq "/robots\.txt") {

 $hasrobots{$remoteagent} = 1;

 }

}

Collecting large access remote host agent group except known

Robot accesses. (Rule 1)

foreach $remoteagent (sort keys(hostfile)) {

 $number = $hostfile{$remoteagent};

 if ($number > $Max_access) {

 $largeaccess{$remoteagent} = $number;

 if ($hasrobots{$remoteagent} == 1) {

 $robot{$remoteagent} = $number;

 delete $largeaccess{$remoteagent};

 }

 }

}

Checking graphic file accesses.

&get_graph_access;

Non-graphic and Non-referer file access group moves

from large access to Robot group. (Rule 3, Rule 4)

foreach $remoteagent (sort keys(largeaccess)) {

 local($number);

 $number = $hostfile{$remoteagent};

 if (!$graphaccess{$remoteagent} || !$referer{$remoteagent}) {

 $robot{$remoteagent} = $number;

 delete $largeaccess{$remoteagent};

 }

}

Checking fast accesses.

&check_fast_access;

Printing fast access only Robots and adding on Robot group.

foreach $remoteagent (sort keys(maxminute)) {

 local($number);

 $number = $hostfile{$remoteagent};

 if ($maxminute{$remoteagent} > $Max_fast_access) {

 print $remoteagent, " | ", $maxminute{$remoteagent},

 " | ", $currentminute{$remoteagent},

 " | ", $accessminute{$remoteagent}, "\n";

 $robot{remoteagent} = $number;

 delete $largeaccess{$remoteagent};

 }

}

Printing Robot remote host, agent and number of accesses.

print "--\n";

print " Robots list\n";

print "--\n";

print " Remote host | Agent | No. of access\n";

print "--\n";

foreach $remoteagent (sort keys(robot)) {

 local($host, $agent, $number);

 $host = &get_remote($remoteagent);

 $agent = &get_agent($remoteagent);

 $number = $robot{$remoteagent};

 print $host, " | ", $agent, " | ", $number, "\n";

}

Printing non-Robot large access remote host, agent and number of

accesses.

print "\n";

print "==\n";

print " Large Access list\n";

print "--\n";

print " Remote host | Agent | No. of access\n";

print "--\n";

foreach $remoteagent (sort keys(largeaccess)) {

 local($host, $agent, $number);

 $host = &get_remote($remoteagent);

 $agent = &get_agent($remoteagent);

 $number = $largeaccess{$remoteagent};

 print $host, " | ", $agent, " | ", $number, "\n";

}

Writing non-Robot access logs.

&write_non_robot_access_logs;

Getting remote host name from remote host and agent key.

sub get_remote

{

 local($string) = @_;

 if ($string =~ /(.+)##(.+)/) {

 return $1;

 }

 else {

 return "";

 }

}

Getting agent name from remote host and agent key.

sub get_agent

{

 local($string) = @_;

 if ($string =~ /(.+)##(.+)/) {

 return $2;

 }

 else {

 return "";

 }

}

Getting the number of graphic file accesses.

sub get_graph_access

{

 local($remoteagent, $remote, $agent, $status);

 local($count) = 0;

 local($access_log, $referer, $page);

 open(COMBINE, $ARGV[0]) || die "Can't open $ARGV[0]: $!\n";

 while ($_ = <COMBINE>) {

 /(.*) \"(.*)\" \"(.*)\"$/;

 $access_log = $1;

 $referer = $2;

 $agent = $3;

 $access_log =~ /(.*) (.*) (.*) \[(.*)\] \"(.*) (.*) (.*)\" (.*) (.*)$/;

 $remote = $1;

 $page = $6;

 $status = $8;

 $remoteagent = $remote . "##" . $agent;

 if ($largeaccess{$remoteagent} && $status >= 200 && $status <= 400) {

 if ($page =~ /.+\.(gif|GIF|jpg|xbm)$/) {

 $graphaccess{$remoteagent}++;

 }

 if ($referer ne "-") {

 $referer{$remoteagent}++;

 }

 }

 }

}

Checking the fast accesses per minute. Only checking the peak.

sub check_fast_access

{

 local($remoteagent, $remote, $agent, $status);

 local($time, $minute);

 local($count) = 0;

 local($access_log, $referer, $page);

 open(COMBINE, $ARGV[0]) || die "Can't open $ARGV[0]: $!\n";

 while ($_ = <COMBINE>) {

 /(.*) \"(.*)\" \"(.*)\"$/;

 $access_log = $1;

 $referer = $2;

 $agent = $3;

 $access_log =~ /(.*) (.*) (.*) \[(.*)\] \"(.*) (.*) (.*)\" (.*) (.*)$/;

 $remote = $1;

 $time = $4;

 $page = $6;

 $time =~ /(.+)\/(\w+)\/(.+):(\d+):(\d+):(\d+) (.+)/;

 $minute = $5;

 $remoteagent = $remote . "##" . $agent;

 if ($largeaccess{$remoteagent} &&

 $page !~ /.+\.(gif|GIF|jpg|xbm|js|class)$/ &&

 $page !~ /.+\/familyphotos\/.*/) {

 if (!$currentminute{$remoteagent} || !$maxminute{$remoteagent}) {

 $currentminute{$remoteagent} = $minute;

 $maxminute{$remoteagent} = 1;

 $accessminute{$remoteagent} = 1;

 }

 elsif ($currentminute{$remoteagent} == $minute) {

 $accessminute{$remoteagent}++;

 }

 elsif ($accessminute{$remoteagent} > $maxminute{$remoteagent}) {

 $maxminute{$remoteagent} = $accessminute{$remoteagent};

 $accessminute{$remoteagent} = 1;

 $currentminute{$remoteagent} = $minute;

 }

 else {

 $accessminute{$remoteagent} = 1;

 $currentminute{$remoteagent} = $minute;

 }

 }

 }

}

Writing the result of Robot filtered access log.

sub write_non_robot_access_logs

{

 local($remoteagent, $remote, $agent);

 local($access_log);

 open(COMBINE, $ARGV[0]) || die "Can't open $ARGV[0]: $!\n";

 open(NONROBOT, "> " . $ARGV[1]) || die "Can't open $ARGV[1]: $!\n";

 while ($_ = <COMBINE>) {

 /(.*) \"(.*)\" \"(.*)\"$/;

 $access_log = $1;

 $agent = $3;

 $access_log =~ /(.*) (.*) (.*) \[(.*)\] \"(.*) (.*) (.*)\" (.*) (.*)$/;

 $remote = $1;

 $remoteagent = $remote . "##" . $agent;

 if (!$robot{$remoteagent}) {

 $access_log .= "\n";

 print NONROBOT $access_log;

 }

 }

 close(COMBINE);

 close(NONROBOT);

}

Print result from Robot agent filtering program by expert systems

--

 Robots list

--

 Remote host | Agent | No. of access

--

195.121.147.51 | Java1.2 | 216

207-172-61-185.s185.tnt1.rcm.va.dialup.rcn.com | Enhanced NCSA Mosaic/1.02_Win32 | 2661

207-172-62-95.s95.tnt2.rcm.va.dialup.rcn.com | Enhanced NCSA Mosaic/1.02_Win32 | 2116

209.172.28.30 | Mozilla/4.0 (compatible; MSIE 4.01; MSIECrawler; Windows 95) | 2710

access2.med.no.unipmn.it | - | 143

aetos.it.teithe.gr | Wget/1.5.3 | 1263

brillo.av.pa-x.dec.com | Scooter/2.0 G.R.A.B. V1.1.0 | 183

c2.googlebot.com | Googlebot/1.0 (googlebot@googlebot.com http://googlebot.com/) | 4308

c3.googlebot.com | Googlebot/1.0 (googlebot@googlebot.com http://googlebot.com/) | 3672

c4.googlebot.com | Googlebot/1.0 (googlebot@googlebot.com http://googlebot.com/) | 3504

cca2607c.infoseek.com | InfoSeek Sidewinder/0.9 | 6613

cde2cbc2.infoseek.com | InfoSeek Sidewinder/0.9 | 1809

crawl3.atext.com | ArchitextSpider | 117

green.alexa.com | ia_archiver | 1476

lsvgb104-17.splitrock.net | Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; formatnec) | 215

mercator.pa-x.dec.com | Mercator-1.0 | 165

miraculix.sda.t-online.de | InfoSeek Sidewinder/0.9 | 520

scooter.pa-x.dec.com | Scooter/2.0 G.R.A.B. V1.1.0 | 659

spider.easyresults.com | Mozilla/2.0 (compatible; EZResult -- Internet Search Engine) | 285

spy1.ny.rubis.net | EchO!/2.0 | 437

spy2.ny.rubis.net | EchO!/2.0 | 458

tcp-relay-2.adobe.com | Mozilla/4.0 (Windows NT 4.0;US) Opera 3.60b3 [en] | 137

==

 Large Access list

--

 Remote host | Agent | No. of access

--

133.11.91.73 | Mozilla/4.0 (compatible; MSIE 4.01; Windows NT) | 103

138.26.144.38 | Mozilla/4.5 [en] (Win95; I) | 249

148.183.82.86 | Mozilla/4.51 [en] (WinNT; I) | 260

149.156.14.215 | Mozilla/4.5 [en] (Win95; I) | 126

158.70.48.170 | Mozilla/3.0 (Win95; U) | 160

162.105.181.213 | Mozilla/4.0 (compatible; MSIE 4.01; Windows 95) | 361

168.188.62.169 | Mozilla/4.5 [en] (Win95; I) | 190

193.189.189.245 | Mozilla/4.5 [en] (Win98; I) | 112

193.243.162.105 | Mozilla/4.5 [de] (WinNT; I) | 115

193.250.211.36 | Mozilla/4.0 (compatible; MSIE 4.01; Windows 98) | 101

198.138.215.223 | Mozilla/4.0 (compatible; MSIE 4.01; Windows NT) | 166

198.36.22.217 | Mozilla/4.51 [en] (WinNT; I) | 166

1cust107.tnt4.long-beach.ca.da.uu.net | Mozilla/4.0 (compatible; MSIE 4.01; MSN 2.6; Windows 98) | 109

1cust254.tnt1.den1.da.uu.net | Mozilla/4.0 (compatible; MSIE 5.0; MSN 2.5; Windows 98; DigExt) | 115

1cust40.tnt24.nyc3.da.uu.net | Mozilla/4.0 (compatible; MSIE 5.0; MSN 2.6; Windows 98) | 409

200.241.150.38 | Mozilla/4.0 (compatible; MSIE 4.01; Windows NT) | 368

200.245.224.11 | Mozilla/4.03 [en] (Win95; I) | 138

202.103.32.72 | Mozilla/4.0 (compatible; MSIE 5.0; Windows 98) | 105

202.159.85.48 | Mozilla/4.01 [en] (Win95; I) | 142

206.231.46.64 | Mozilla/4.04 [en] (Win95; U) | 164

208.157.48.20 | Webster Pro beta 928 Win32 | 146

208.243.227.42 | Mozilla/2.0 (compatible; MSIE 3.01; Windows 95) | 297

63.65.15.131 | Mozilla/4.04 [en] (Win95; U) | 109

98cabc3a.ipt.aol.com | Mozilla/4.0 (compatible; MSIE 4.01; Windows 95) | 102

ait-mac90.ait.nrl.navy.mil | Mozilla/4.05 (Macintosh; U; PPC) | 105

annex47.scu.edu.au | Mozilla/4.5 [en] (Win98; I) | 104

argus.cse.psu.edu | Mozilla/4.05 [en] (X11; U; SunOS 5.5.1 sun4u) | 175

as08.asbank.com | Mozilla/4.0 (compatible; MSIE 5.0; Windows 95; DigExt) | 132

as5200-8.sl005.cns.vt.edu | Mozilla/4.0 (compatible; MSIE 4.01; Windows 98) | 142

ascmax13-port-20.agt.net | Mozilla/4.0 (compatible; MSIE 4.01; Windows 95) | 210

bess-proxy.puyallup.k12.wa.us | Mozilla/4.0 (compatible; MSIE 4.01; Windows 95) | 145

bufw722.neca.org | Mozilla/4.0 (compatible; MSIE 4.01; Windows 95) | 108

dhcp-74-182.cc.gettysburg.edu | Mozilla/4.04 [en] (WinNT; I) | 180

dom3.resnet.cornell.edu | Mozilla/4.05 [en] (Win95; I) | 376

door.enea.se | Mozilla/4.5 [en] (WinNT; I) | 121

dysprosium.chem.ucl.ac.uk | Mozilla/4.07 [en] (X11; I; Linux 2.0.36 i686) | 196

empc17.ece.uiuc.edu | Mozilla/4.51 [en] (Win98; I) | 219

epicon.epicon.com | Mozilla/4.5 [en] (WinNT; I) | 123

ethz-proxy1.ethz.ch | Mozilla/3.04Gold (X11; U; SunOS 5.4 sun4m) | 273

foxhome5.npac.syr.edu | Mozilla/4.0 (compatible; MSIE 4.01; Windows NT) | 189

foxhome5.npac.syr.edu | Mozilla/4.5 [en] (WinNT; I) | 180

gamma.nsf.gov | Mozilla/4.04 (Macintosh; I; PPC) | 137

gate.interclear.net | Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; Inter Clear Service Ltd) | 245

gateway.kwantlen.bc.ca | Mozilla/4.01 [en] (Win95; U) via proxy gateway CERN-HTTPD/3.0 libwww/2.17 | 161

gc094.ece.gatech.edu | Mozilla/4.51 [en] (Win98; U) | 145

giant.jpl.nasa.gov | Mozilla/4.07C-SGI [en] (X11; I; IRIX64 6.5 IP28) | 131

hera.npac.syr.edu | Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; AtlaVista 1.00.03; DigExt) | 216

hygeia.svec.uh.edu | Mozilla/4.0 (compatible; MSIE 4.01; Windows 95) | 541

inetcafe.com | Mozilla/4.0 (compatible; MSIE 4.01; Windows 98) | 190

iofw.i-o.com | Mozilla/4.0 (compatible; MSIE 4.01; Windows 95) | 104

jota.inln.cnrs.fr | Mozilla/4.5 [en] (X11; I; HP-UX B.10.20 9000/712) | 167

jplaxd.jpl.nasa.gov | Mozilla/4.0 (compatible; MSIE 4.01; Mac_PowerPC) | 117

khaesad.kmitl.ac.th | Mozilla/4.0 (compatible; MSIE 5.0; Windows 98) | 120

kopernik.npac.syr.edu | Mozilla/4.5 [en] (X11; I; IRIX64 6.2 IP25) | 310

lab1c02.midlab.lsu.edu | Mozilla/4.05 [en] (WinNT; I) | 230

leath3.rutgers.edu | Mozilla/3.0 (X11; I; SunOS 5.5.1 sun4u) | 135

mail.eci-esyst.com | Mozilla/4.08 [en] (WinNT; I) | 681

mathb10pc6.cc.purdue.edu | Mozilla/4.05 [en] (Win95; I) | 177

motnt02-172.postnet.com | Mozilla/4.0 (compatible; MSIE 4.01; Windows 98) | 119

nx7.hrz.uni-dortmund.de | Mozilla/4.04 [en] (WinNT; I) | 123

p150.austin.isd.tenet.edu | Mozilla/4.07 [en] (Win95; I ;Nav) | 104

pb129.wroclaw.ppp.tpnet.pl | Mozilla/4.0 (compatible; MSIE 4.01; Windows 95) | 158

pern.cis.ohio-state.edu | Mozilla/3.01Gold (X11; I; HP-UX A.09.05 9000/715) | 172

pmate01.oci.utoronto.ca | Mozilla/4.5 [en] (WinNT; I) | 114

ppp-79-130.oysterbay.nais.com | Mozilla/4.0 (compatible; MSIE 4.01; Windows 95) | 137

ppp023-lk.zamnet.zm | Mozilla/4.0 (compatible; MSIE 4.01; Windows 95) | 808

ppp062-lk.zamnet.zm | Mozilla/4.0 (compatible; MSIE 4.01; Windows 95) | 666

proxy01.spidernet.net | Mozilla/4.0 (compatible; MSIE 4.01; Windows 98) | 288

pwolken.jpl.nasa.gov | Mozilla/3.01 (Win95; I) | 211

rat.npac.syr.edu | Mozilla/3.0 (X11; I; SunOS 5.6 sun4u) | 120

rcde02.arc.unm.edu | Mozilla/4.06 [en] (X11; U; Linux 2.0.34 i686) | 110

runner.erc.msstate.edu | Mozilla/4.5 [en] (X11; U; SunOS 5.6 sun4u) | 195

sdu240-74.ppp.algonet.se | Mozilla/4.5 [en] (X11; I; Linux 2.0.36 i586) | 487

ss05.co.us.ibm.com | Mozilla/4.51 [en] (WinNT; U) | 112

svetl.kw.ukrtel.net | Teleport Pro/1.29 | 119

swbcs003.sbc.com | Mozilla/4.05 [en] (WinNT; I ;Nav) | 142

t1o61p24.telia.com | Mozilla/4.51 (Macintosh; I; PPC) | 117

tac.crcssd1.calgary.ab.ca | Mozilla/3.04 (Win95; I) | 354

tntlim9-104.abo.wanadoo.fr | Mozilla/4.0 (compatible; MSIE 4.01; Windows 98) | 107

ubppp233-37.dialin.buffalo.edu | Mozilla/4.51 [en] (Win95; I) | 208

utgw2.aici.com | Mozilla/4.0 (compatible; MSIE 4.01; Windows NT) via proxy gateway CERN-HTTPD/3.0 libwww/2.17 | 202

w3cache.polsl.gliwice.pl | Teleport Pro/1.29 via Harvest Cache version 1.4pl3 | 239

websurfer.agcs.com | Mozilla/4.5 [en] (WinNT; U) | 117

xcellenet.com | Mozilla/4.0 (compatible; MSIE 4.01; Windows NT) | 278

yggdrasil.geofys.uu.se | Mozilla/4.05 [en] (X11; I; SunOS 5.6 sun4u) | 301

