CHAPTER 3

Metadata Support

 There have been many efforts to extract useful information through the Web. Especially, the search engines devised various technologies to find the exact location of the desired information, but in practice many of them also show useless information. Moreover, they only reach less than one percent of the whole Web. That is because the scale of the Web is so huge, and keyword spamming is very widespread. Though some Web directory sites categorize the information manually. This is not for the machine-oriented system.

 Metadata is “structured data about data.” This could include catalogs of libraries, author lists of books, ranking of Web pages by frequency of reference, or the relations between indexes. Both human and machine generated information can be metadata.

RDF

 The Resource Description Framework (RDF) is a W3C recommendation for a standard representation of metadata [5]. This framework is described in XML format. RDF has an innate function for machine-oriented data exchanging between applications because of its XML features. XML and RDF provide semantic interoperability in the current Web domain, but XML only describes the document structure. RDF emphasizes semantic meaning on the Web resources by adding a capability as a data model for knowledge representation.

 The basic block of RDF consists of three object types - resources, properties, and statements. A resource is anything that can be written as a Uniform Resource Identifier (URI) in the RDF expression. It can be not only a Web page but also an XML element. Anything written in URI could be a resource. A property is a specific characteristic, attribute, or relation of the resource - for example, “owner.” Each property has a specific meaning, which can be classified by a schema related to the name of the property. A statement is a combination of a resource, a property, and a value. Each part of a statement is also known as the subject, the predicate, and the object. The object can be another resource or a literal, which might be any string or XML. Figure 4 presents an example of RDF graph for the Web page of the University.

Figure 4. An example of RDF graph

 In the figure, the oval shape node denotes a subject, the arc denotes a named property, and the rectangular shape is a node, which represents a literal. The graph represents the following statement:

 “Florida State University is the owner of the resource http://www.fsu.edu/.”

It also can be read as:

 “http://www.fsu.edu/ has owner Florida State University.”

The statement can be written in the XML format:

 <?xml version=”1.0”>

 <rdf:RDF

 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-synfax-ns#”

 xmlns:s=”http://description.org/schema/”>

 <rdf:Description about=”http://www.fsu.edu/”>

 <s:owner>Florida State University</s:owner>

 </rdf:Description>

 </rdf:RDF>

The RDF XML syntax has a root element, <RDF>, but this element is optional when the description is known to be RDF from the application content. In RDF element, the namespace attributes designate the location of the declarations of the RDF elements with the prefix “rdf:”, and the location of the schema declaration associating with the prefix “s:”. The namespace declaration can alternatively appear in a specific description element, or even in property elements. The description element has the subject; the child elements describe the properties and the objects. In this example, “<s:owner>” and “</s:owner>” - a pair of tags - show the property. The object is “Florida State University.”

 As in XML Schema for XML document, RDF Schema provides a vocabulary constraint facility for RDF document. In RDF Schema, the classes of the resources are defined. The classes have the same role as in the object-oriented programming models. The classes have hierarchical structures and they are extended with subclass refinement. The terms such as “Class,” “subPropertyOf,” and “subClassOf” are used for the basic type system for RDF to define such classes. By using class concepts, the reusability of metadata can be increased because sharing schemas and adding subclasses to the existing schemas will produce sufficient mechanisms in many schema specifications.

 From the viewpoint of semantic interoperability, RDF is better than XML. RDF vocabularies are simple enough to manipulate huge number of data. Meanwhile, XML often regards ordered elements as important and has complex structure. Those features make it difficult for XML to handle large amount of data. Additional data conversion is not necessary in RDF because RDF presents domain models naturally with defining objects and relations. Another benefit of RDF is independency on the XML. In XML document, the schema change may cause invalidity for the query based on current documents. RDF presenting semantic tree is parsed with only usable set of triples and the data not to be interpreted are ignored [6].

XLink, XPointer, and XPath

 As in hyperlinks of HTML documents, XML documents can be linked to other XML documents by using XML Linking Language (XLink) [7], XML Pointer Language (XPointer) [8], and XML Path Language (XPath) [9]. The XLink describes links between resources. The XPointer points the reference through URI. The XPath presents the location of specific parts of an XML document. Currently (March 2001), the XPointer and the XLink (proposed recommendation) are still working in draft and the XPath is recommended by the W3C.

 XLink is able to link not only documents but also resources, which include documents, audio, video, database data, and anything addressable information or services. While HTML links need to edit the resource for additional links, XLink don’t require any write permission to edit the source. The XLink can simply set the URI with the starting and ending point for the linking. The XLink also provides multidirectional links (extended links) as well as the unidirectional link (simple link) – the traditional link on the Web. The links can be stored externally (extended link) of the documents, they address with URI, and they can be inline. Traversal of “A” link usually replaces the document currently viewed. The user may initiate traversal with clicking on the links, or the document retrieving does.

 XPointer is used to identify specific fragments in XML documents via a URI. XPointer selects with the basis of IDs, hierarchical structure from XPath, or an arbitrary user designation on a specific point or range. The range can be specified with two points, as:

 xpointer(id(“start”)/range-to(id(“end”)))

That XPointer locates the range between the start point for the element with ID “start” and the end point for the element with ID “end”. The XPointer is complex enough to present most usages.

 XPath provides an extended addressing syntax that defines a compact notation for node location in the XML document tree. XPath does not use XML syntax but it is a string-based language. The Extensible Stylesheet Language Transformations (XSLT) and the XPointer use the functionality of the XPath.

 Figure 5 shows an example, which includes the features of XLink and XPointer. In the example, “<doc xmlns:xlink = “http://www.w3.org/1999/xlink”>” denotes the XLink namespace definition with the URI. The extendedlink element is a kind of extended links, which have full XLink functionality such as arcs (inbound and third-party) and links with arbitrary resources. The other type for the link is the simple link, which has only two participated resources. In the extendedlink element, three sub-elements are embedded and they are two locator elements (XLink type) and an arc element (XLink type).

 The locator type element designates remote resources, whose location is denoted with the locator attribute, “href”. The arc type elements represent the link traversal, which is usually a pair of start (from) and end (to) resources.

Figure 5. An example for the XML document with XLink expressions.

 The locator labeled “seaplace” has the XPointer and this points to the first place element of the second sentence in the first animal element of the body element. The expression in the parentheses of this XPointer is also the XPath expression. The “seareference” locator links to the first “places” element, which has the attribute id named as “sea.”

 The arc element in the example has two remote resources for the traverse and it is called a third-party arc. If the arc from local to remote, it is the outbound arc. Or, the inbound arc in vice versa. The traversal attributes, “from” and “to,” are for the start and the end points of the traversal. The show and actuate attributes represent the behavior of the link. They designate the behavior of the ending resource of the arc. In the figure, the “new” value for the show attribute will open a new window when the traversal event has been requested – the actuate attribute sets “onRequest.”

http://www.fsu.edu/

Florida State University

Owner

<?xml version=”1.0”?>

<doc xmlns:xlink=”http://www.w3.org/1999/xlink”>

<head>

<title> Animals </title>

<extendedlink xlink:type=”extended”>

 <loc xlink:type=”locator”

 xlink:label=”seaplace”

 xlink:href=”#xpointer(//body/animal[1]/sentence[2]/place[1])”/>

 <loc xlink:type=”locator”

 xlink:label=”seareference”

 xlink:href=”#sea”/>

 <arc xlink:type=”arc”

 xlink:from=”seaplace”

 xlink:to=”seareference”

 xlink:show=”new”

 xlink:actuate=”onRequest”/>

</extendedlink>

</head>

<body>

<animal name=”whale”>

<sentence>Whales are mammals.</sentence>

<sentence>Whales live in the

 <place>sea</place>.</sentence>

</animal>

<animal name=”horse”>

<sentence>Horses are mammals.</sentence>

<sentence>Horses live in the

 <place>land</place>.</sentence>

</animal>

</body>

<tail>

<reference>

<places id=”sea”>

 Sea is the continuous body of salt water covering the earth.

</places>

<places id=”land”>

 Land is the part of the earth not covered by water.

</places>

</reference>

</tail>

</doc>

PAGE
5

