CHAPTER 2

DTD and XML Schema

 Document Type Definition (DTD) and XML Schema are ways to define the structure of XML documents. DTD has been used in SGML for over twenty years and XML is specified newly by the World Wide Web Consortium (W3C) [3]. The goal is to make rules to construct XML documents. For many purposes, user-defined tags alone don’t provide a sufficiently rigorous structure for the XML information exchanges. By requiring the same DTD or XML Schema, two different applications can agree on a particular structure for an XML document. If a well-formed XML document satisfies a DTD or XML Schema, the document said to be valid.

 The XML Schema specification reflects the demands of users, who have found DTD too limited. The schema has many improved features over DTD. Before defining XML Schema, there were several attempts to improve the functionality of the schema language for XML documents; some examples are Document Definition Markup Language (DDML), Document Content Description (DCD), Schema for Object-Oriented XML (SOX), and Microsoft’s XML-Data for BizTalk. The W3C consortium activity for the new schema, XML Schema, considered those schemas in producing their design. The main differences between DTD and XML Schema will be presented in the XML Schema section.

DTD

 DTD format is very different from XML. A DTD is usually included in the prolog part of an XML document using the “!DOCTYPE” tag. The DTD can be defined externally in a separate file, designated with a file name or a Uniform Resource Identifier (URI). The typical blocks of a DTD are elements and attributes. BNF syntax can be shown as follow:

 <!ELEMENT> <element-name> <element-type>

 <!ATTLIST> <attribute-name> <attribute-type> <attribute-option>

 Figure 2 shows an example DTD for the car document of Figure 1. In the example, the “car” element is non-terminal and the other elements are terminal. The non-terminal element, “car,” has five sub-elements: company, model, type, year, and color in that order. It is called a sequence, which restricts the order of sub-elements present. Choice is another group option for the sub-elements and it gives a list of alternatives for them. The vertical bar (“|”) is used as the delimiter for choices, and the comma for sequences.

Figure 2. DTD for a car document

 In the sequence of the example, all but type element will appear exactly once. The type element can be included optionally. This is indicated by the suffix, “?.” Other allowed suffixes include “+,” which means one or more elements can appear, and “*,” which means zero or more can appear.

 “#PCDATA” in terminal elements stands for parsed character data, which denotes text that has no markup. That is the only way to represent text in DTD, and this was one of motivations for the invention of XML Schema. The element content can also be empty or any. The empty element has no content but may have attributes. The any element has no restriction for that element.

 The “car” element in the example has two attributes, which are declared in the DTD. The order of the attributes is not constrained. Both of the attributes have the same data type, character data (CDATA). Other attribute types like ID, IDREF, and IDREFS are also very useful and have key roles in representing a graph structures in XML format. The final term is an attribute description specifies whether this attribute is optional or required. The option for the attribute “id” is “#REQUIRED,” and this attribute must be appeared in the every defined element. “#IMPLIED” in “state” means the attribute can be optional. Other option is “#FIXED” and this type attribute should have a default value. The fixed value cannot be changeable by the user.

XML Schema

 While DTD is written in the syntax of Extended Backus Naur Form (EBNF), XML Schema uses XML document syntax. By supporting namespaces, XML Schema allows several sources of document definitions to be used in a single document. In DTD, a new DTD is needed to combine multiple DTDs. The XML Schema supports 44 datatypes including string, decimal, time and date, whereas DTD only provides 9 XML-related primitive types. Inheritance is another major feature of XML Schema, which is not present in DTD. This allows reusing existing structures by extending or restricting the base types.

 Figure 3 includes an example of XML Schema, which reproduces the schema presented in Figure 2 in DTD format.

Figure 3. XML Schema for a car document

 The car schema has one schema element with sub-elements element and complexType. In the schema element, a namespace has been declared. The prefix “xsd:” associated with the namespace is used on each of the elements. The prefix name of a namespace can be an arbitrary value and different namespaces from different sources can be used. In the multiple namespaces, the different prefix names specify the meanings of elements and attributes, which are followed by the prefix. In this example, the association forces the elements and simple types to be identified with the XML Schema language. In XML Schema, elements may have simple types or complex types. The simpleType, which does not include elements, defined in the XML Schema. The complex type has elements and carry attributes optionally. The type of car element is defined as a complex type, CarType, in the example. As in the DTD example, the elements of a complex type can be ordered with sequence tag. All the elements except year element have a string type. This is declared in the type attribute. The decimal type in the year element is a number. If the year needs to be restricted to four-digit number for example, another simple type, gYear, already defined in XML Schema, and the declaration can be changed as follow:

 <xsd:element name=”year” type=”xsd:gYear”/>

If the state attribute has to be two capital letters, a new simple type can be defined as follow:

 <xsd:simpleType name=”StateType”>

 <xsd:restriction base=”xsd:string”>

 <xsd:pattern value=”[A-Z]{2}”/>

 </xsd:restriction>

 </xsd:simpleType>

The equivalence of optional elements in DTD can be expressed in XML Schema using “minOccur” and “maxOccurs” attributes. Additionally to the three restrictions of DTD (*, +, and ?), XML Schema can designate any minimum and maximum occurrences – for example, between 15 and 30. The fixed attribute is used when the values of elements and attributes set the specific values. For example, I may add another attribute country in the “car” element. The state name used in the attribute from United States and the fixed value the country could be “US.” The definition of the attribute as follow:

 <xsd:attribute name=”country” type=”xsd:string” fixed=”US”/>

In the case of the attribute, the attribute may be appeared at most once. The “use” attribute designates the attribute usage one of required, optional, and prohibited.

<!ELEMENT car(company, model, type?, year, color)>

<!ATTLIST car

 id CDATA #REQUIRED

 state CDATA #IMPLIED>

<!ELEMENT company (#PCDATA)>

<!ELEMENT model (#PCDATA)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT color (#PCDATA)>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”car” type=”CarType”/>

<xsd:complexType name=”CarType”>

 <xsd:sequence>

 <xsd:element name=”company” type=”xsd:string”/>

 <xsd:element name=”model” type=”xsd:string”/>

 <xsd:element name=”type” type=”xsd:string”

 minOccurs=”0” maxOccurs=”1”/>

 <xsd:element name=”year” type=”xsd:decimal”/>

 <xsd:element name=”color” type=”xsd:string”/>

 </xsd:sequence>

 <xsd:attribute name=”id” type=”xsd:string” use=”required”/>

 <xsd:attribute name=”state” type=”xsd:string”/>

</xsd:complexType>

</xsd:schema>

PAGE
5

