CHAPTER 1

XML

 The Extensible Markup Language (XML) is a standard document specification, a subset of Standard Generalized Markup Language (SGML) format [1]. Though SGML is powerful enough to have been used by the U.S. government and publishing companies for making documents, its implementation is known to be very difficult and complex. The Hypertext Markup Language (HTML) is another application of SGML, but HTML only presents the shape of the documents on the Web. The tags of HTML are fixed and the HTML has no mechanism for the data validation. Those features limit HTML to Web information manipulation and led to the advent of the XML.

 XML consists of a well-formed structure, based on a prolog, one or more elements including balanced start- and end-tags with attributes, and miscellaneous optional features including comments, processing instructions, and white space. A typical example of the prolog as follow:

 <?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
This shows that this is an XML document and the version number is “1.0.” The other attributes, “encoding” and “standalone,” are optional. The encoding denotes that this document used Unicode Transformation Format 8-bit (UTF-8) encoding. As XML is designed to support the International code, the encoding names can be any if the parser supports, but the name is recommended to be registered with Internet Assigned Numbers Authority. Unlike other characters, the encoding names are case-insensitive. The standalone document declaration is also an optional attribute and it indicates whether the XML document is affected by an external markup declaration like DTD and XML schema.

 An element forms a root of a hierarchical tree structure for an XML document. Other elements can be added and should be nested within each other. If there is no content in an element, the empty-element tag, “<tag-name/>,” can be used instead of a pair of tags. Those tags are user-defined and that feature makes XML big different from HTML. Attributes are used to attach additional information of an element. They are located in start-tags or empty-element tags. Using attributes of type ID, IDREF or IDREFS [2], XML elements can be uniquely identified and form links. This linking mechanism makes XML able to present graph-structured information as well as tree-structured. In CDATA sections, any markup data are interpreted as text data.

Figure 1. A car description in XML.

 Figure 1 shows an example of the XML document. The first line stands for the prolog. The version attribute should be declared and the value is “1.0” as the current version is so. The optional attributes encoding and standalone show that the code for this XML document is “UTF-8” without any schema (“standalone” is “yes”). The second line is empty and XML allows the empty line for the good format. The third line is encoded as a comment, which does not present any meaning in the XML structure. The comment only provides optional information to readers. There is only one root element named “car” in the document and other elements are nested in the root element. The car element has two attributes. The id attribute identifies a specific car and the state attribute means the registered state of the car. The each element opens with start-tag “<TAG-NAME>” and closes with end-tag “</TAG-NAME>” and there is no overlapped tags. So, this XML example said to be well-formed.

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>

<!- This is an example car.->

<car id=”J544XD” state=”NY”>

 <company> Toyota </company>

 <model> Corolla </model>

 <type> DX </type>

 <year> 1996 </year>

 <color> white </color>

</car>

PAGE
3

