
1

A Component Based Services Architecture for
Building Distributed Applications
Randall Bramley, Kenneth Chiu, Shridhar Diwan, Dennis Gannon,

Madhusudhan Govindaraju, Nirmal Mukhi, Benjamin Temko, Madhuri Yechuri

Department of Computer Science

Indiana University - Bloomington, IN

Abstract| This paper describes an approach to
building a distributed software component system for
scienti�c and engineering applications that is based on
representing GRID services as application-level soft-
ware components. These GRID services provide tools
such as registry and directory services, event services,
and remote component creation. While a services-
based architecture for Grids and other distributed
systems is not new, this framework provides sever-
al unique features. First, the public interfaces to
each software component are described as XML doc-
uments. This allows many adaptors and user inter-
faces to be generated from the speci�cation dynami-
cally. Second, this system is designed to exploit the re-
sources of existing Grid infrastructures like Globus[7],
[15], Legion[17], [7], and commercial Internet frame-
works like e-speak[11]. Third, and most importan-
t, the component-based design extends throughout
the system. Hence tools such as application builder-
s which allow users to select components, start them
on remote resources, and connect and execute them,
are also interchangeable software components. Conse-
quently, it is possible to build distributed applications
using a graphical \drag-and-drop " interface, a web-
based interface, a scripting language like Python, or
an existing tool such as Matlab.

I. Introduction

Software component architectures have emerged as
a standard design paradigm in many areas of appli-
cation development. Java Beans [22], [5] is a com-
ponent standard for building Java based desktop ap-
plications. COM [19], [4] is Microsoft's ubiquitous
component model that is central to their applica-
tion interoperability. And in July, 1999 the Objec-
t Management Group approved the speci�cation of
the CORBA component model (CCM) [27] which ex-
tends Enterprise Java Beans [23] for applications in
the e-commerce sector. In all cases, the goal of a
component architecture is to simplify the application
design process and to speed application development.
This shifts the traditional focus of scienti�c and en-
gineering computing infrastructure from scaling the
performance of individual applications to exploring
new ways to increase programmer productivity.
Several component systems designed for wide-area,

scienti�c computation have been built and are now in
use. SciRun from Utah [28], [26] provides a powerful

extension to scalable, parallel computation and visu-
alization of a component paradigm used with AVS
and IRIS Explorer [10]. Web
ow from Syracuse [7],
[25] uses CORBA as part of a multi-tiered archi-
tecture for a scienti�c problem solving workbench.
High performance implementations of CORBA exist
and powerful toolkits are also available [29], [1], [8].
Recently, representatives from several DOE national
laboratories, the University of Utah, Indiana Univer-
sity and NCSA have released a preliminary speci�ca-
tion for a component model for distributed and par-
allel scienti�c computing called the Common Com-
ponent Architecture (CCA). Over its two-year devel-
opment, the CCA [2], [16] has closely followed the
evolving design of the OMG CCM and so both share
many design features. There are also signi�cant d-
i�erences. The current version of CCA is speci�ed
from the perspective of the required behavior of soft-
ware components. There is no detailed speci�cation
of the component framework or containment mecha-
nisms. In particular, the CCA speci�cation only pro-
vides standard mechanisms for software components
to name and export their public interfaces. It does
not provide a standard model for how component in-
stances are discovered, created and connected. In ad-
dition, it does not identify a set of standard services
that are made available by the component framework
to each component instance. The reason is that CCA
components may run on massively parallel supercom-
puters or over wide area networks, and any of several
framework services and component containment poli-
cies may be appropriate.
As an experiment, we have designed and built an

implementation of the CCA speci�cation that run-
s over Globus [7], [15] based wide \grids" such as
NASA IPG [13]. The purpose of the experiment is
to test one approach to the design of a service model
for the component framework. As the OMG CCM is
also largely untested, this experiment also validates
several aspects of that design. We have three working
hypotheses:

� The existing CCA architecture is signi�cantly
rich enough that the entire framework and all of

2

the services, containers and component \builder-
s" can themselves be built as components.

� With this \federation of components" design of
the basic framework it should be possible to layer
this architecture on top of several existing dis-
tributed systems including Globus [15], Sun's Ji-
ni [24], HP's e-speak [11], OMG CCM [27] and
Legion [17]

� The resulting component framework achieves the
goal of providing an e�cient, practical founda-
tion for the design of scienti�c problem solving
environments for grid computation, as has been
proposed by the Computing Portals [9] project
of the Java Grande e�ort.

This paper only addresses the �rst hypothesis and
a single instance of the second. In the months a-
head we will research layering the system on top of
other systems. As to the third hypothesis, we are
currently working with two application groups to de-
sign Science Portals based on our implementation.
One group is part of the DOE NGI program working
on X-ray crystallography and the other group is the
NCSA chemical engineering team working on a com-
putational workbench for the simulation of the chip
fabrication processes for copper deposition.

The primary contributions of this paper can be
summarized as follows:

� We illustrate how XML can be used as powerful
interface design language. XML allows greater

exibility in the content of a speci�cation than
does a static CORBA-style IDL solution.

� We demonstrate how the CCA component spec-
i�cation can be used to build a service architec-
ture in which the framework and grid services
act as and are treated identically to other soft-
ware components.

� We brie
y describe the way in which four di�er-
ent \application builder" components are con-
structed.

II. A Brief Introduction to the CCA

Specification

The Common Component Architecture consists of
two type of entities: components and frameworks.
Components are the basic units of software that are
composed together to form applications. Instances of
components are created and managed within a frame-
work which also provides the basic services that com-
ponents use to operate and communicate with other
components. A component might be a computation-
al \engine", such as an equation solver or a graphics
package, or it might be an encapsulated application
such a large SPMD simulation or a database system.
It could also be a desktop application such as Mat-

lab, or the Python interpreter, or some other more
abstract component framework service.

The philosophy of CCA is to precisely de�ne the
rules for constructing components (or, in the case
of existing applications, the software wrapping that
makes them into components) and the speci�cation
of the required behavior that a component must ex-
hibit for it to coexist with other components within a
CCA framework. A CCA framework is a software en-
vironment that allows components to be dynamically
instantiated, coupled together, and have methods in-
voked on them.

Currently, the CCA does not specify how the
framework is constructed or how the user interacts
with the framework to connect components together.
This allows many di�erent frameworks that can be
used in di�erent situations. Some frameworks will be
designed to optimize the use of components that are
distributed across a wide-area Grid. Others will be
designed to optimize the composition of components
that run on a single, massively parallel supercomput-
er.

A. Ports

The port is a fundamental CCA concept. A port
is a public communication interface of a component.
A port can be either a Provides-port or a Uses-port.

A Provides-port is an interface of functions that the
component implements. A component can have zero
or more Provides-Ports. A Provides-port can also
be thought of as functionality that is \provided" to
other components or to the framework. The member
functions of a Provides-port interface may be thought
of as \handler" functions that are executed by the
component on behalf of the component's \users".

Provides-ports may be connected to Uses-ports. A
Uses-port can be viewed as a connection point on
the surface of the component where the framework
can connect references to Provides-ports supplied by
other components or the framework. Viewed from
the inside the component, a Uses-port is an objec-
t that implements functionality the component re-
quires. The component makes calls on a Uses-port
reference to \use" the \provided" functionality. A
component may have zero or more Uses-ports.

Depending on the framework, one or more
Provides-ports may be connected to a single Uses-
port and a Provides-port may be \provided" to one
or more Uses-ports. In general, if a port interface has
a member function that returns a value, the number
of providers will be restricted to be one. In these
cases, there must be a connected provider for the
component to operate correctly.

In the case where two components exist in the

3

same address space, a \direct" connection between
a Provides-port and a Uses-port can be made. This
means that the object that is \used" is the same as
the one \provided". In this case there is only one
function call between a user and a provider. In the
case of two components that are in di�erent address
spaces, the Uses-port is a container that holds prox-
ies to the remote Provides-ports that it is connected
to.

CCA components may be written in Java, Fortran,
C or C++. It is up to the framework to ensure that
the appropriate infrastructure is in place to allow
components from di�erent languages to interoperate.
In the system described here, this is accomplished by
wrapping Fortran and C in C++ and using an im-
plementation of Java RMI over Globus Nexus[6], [3]
which interoperates with a C++ distributed comput-
ing library called HPC++.

Additional information about CCA may be found
at the web site[16] and in the HPDC99 proceed-
ings[2].

III. The Service Architecture of the CCAT

Framework

Our implementation of CCA is called the CCA
Toolkit (CCAT). It has been designed to operate over
a number of di�erent Grid middleware systems in-
cluding Globus[15], Legion[17] and other distributed
computing and e-commerce technologies such as Ji-
ni[24] and e-speak[11]. This is accomplished by ab-
stracting the core services needed to authenticate,
discover, launch, connect and monitor user applica-
tions and encapsulating them as components. We
have designed and built �ve CCA framework service
components.

� A Directory Service. The Directory Service pro-
vides the ability for any other component con-
nected to it to search databases and remote
repositories for other components with needed
behaviors and required interfaces, and to add
their own descriptions to these repositories.

� A Registry Service. This Registry Service can
be used by any other component instance to ad-
vertise its existence and to search for other ad-
vertised instances. Designed primarily as means
to advertise well-known service components, the
registry is also a core part of our collaboration
framework.

� A Creation service. This component can be used
by another component to create a running in-
stance of a third. This is the essential \boot
strap" component in the framework.

� A Connection service. In both the CCA and the
CORBA component models, components have

two primary types of interfaces: those that a
component \provides" to others and those that
a component \uses" from others. In this mod-
el, if a component needs functionality provided
by another component, and the uses-port and
provides-port interfaces are type-compatible, the
two may be connected, i.e. \uses" may call the
interface \provided" by the other. The connec-
tion service enables that linkage either by a di-
rectly connecting them or establishing a remote
invocation pathway.

� An Event Service. The Event Service acts as a
\channel" for a publish-subscribe event model.
This is used by components that wish to sub-
scribe to event streams such as those generated
by component creation, component connection,
registry updates and application events.

The �rst version of the CCAT is based on an imple-
mentation over Globus, but work is underway to add
additional functionality.

The advantage to encapsulating the framework ser-
vices as application level components is two-fold.
First, it makes it possible to easily swap in a new ver-
sion of a service without changing applications or the
basic framework. For example, changing the directo-
ry service to support LDAP discovery instead of our
current WEBDAV [12] based protocol can be done
by either extending the current service or replacing
the directory component with one based wholly on
LDAP. The key is that the information service port
that the service provides to other components does
not need to change. The second important advan-
tage of this design is that other, higher level frame-
work activities can now be built as application level
components that use these services. We will return
to this topic in the last section of this paper.

IV. An XML-based Information Directory

Service.

One of the main contributions of this project is to
show how XML can be used to extend the concept of
an Interface De�nition Language (IDL) as an exten-
sible mechanism for describing software components.

Prior to instantiating components a user must lo-
cate and gather information about the components
to be used. The user may be interested in choosing
from a range of solvers for a particular problem, or
in a solver from a particular author or a combina-
tion of the two. The user may even be interested in
the locations of the installations of the components
to be used. The Information Directory Service (IDS)
ful�lls the need for identifying the components that
matches the interests of the user.

The Information Directory is an abstract concept;

4

the IDS component implements an interface which in-
cludes the speci�ed functionality. A storage-speci�c
implementation of an IDS is called a context. The C-
CAT implements two Directory Contexts, one which
uses the local �le system and another which uses a
WEBDAV server for storage. This model closely fol-
lows the JNDI [20] scheme of storing and looking up
information, wherein any number of service providers
can be plugged in as a backend, and the actual stor-
age mechanism and protocols used are hidden from
the user of the service.

The component descriptions themselves are XM-
L documents that follow a prescribed but extensi-
ble XML schema de�nition language. The descrip-
tion includes such information as the component's
name, author, purpose, available ports and the meth-
ods that can be invoked on them, etc. Another vital
section of the description is installation information.
Once a component has been written, the componen-
t developer then makes available at least one pub-
licly accessible installation, so that collaborators can
then also instantiate the component. The installa-
tion information includes such things as the location
of the executable and the environment needed to s-
tart up an instantiation. It is important to note that
while the information is in XML text format, CCAT
does not expect the application to parse the text in-
formation. Instead, the IDS makes the information
available to the developer through a hierarchical da-
ta structure accessible using keys. There is a one-one
correspondence between an XML document and this
data structure.

The XML text below represents part of the speci-
�cation of a linear algebra solver package called Su-
perLU. In addition to the obvious �elds like name,
authors and description, it describes the ports this
component has: a Provides-port used to load a lin-
ear system into the component and a Uses-port that
is called when the solution is ready. (The Port type
interface details are also provided in the speci�ca-
tion, but not listed here. Including these interface
type details in the speci�cation was a design error.
That is because these interfaces are shared by many
components ports. In the next version of CCAT, the
port-type �elds will be links to the XML �les that
contain these interface speci�cations.)

In addition to standard ports, one additional
Provides-port that is often included with a compo-
nent is called the parameter port. This port is a CCA
Provides-Port which can be used to change internal
parameter values of the component. The speci�ca-
tion of a parameter port also includes default values
and the path for the class which encapsulates these
parameters.

Finally, the XML speci�cation contains informa-
tion about how the component can be launched. In
this case we show the information about how Globus
GRAM can launch the component. Often a com-
ponent has many di�erent installations and launch
mechanisms. Hence this information should probably
be available via an XML X-link from the description
rather than directly embedded here.

The use of XML as a speci�cation medium is not
limited to components. Registry instances, which
contain the remote reference proxies to instantiat-
ed components are represented as XML documents.
This allows them to be passed easily from one ap-
plication to another. A user can even email a proxy
representing a live component to another user. Also,
in the next version of the CCAT system, XML will
be used to de�ne and encode the event streams.

V. Building Builders as Components

Most complete component architecture systems
provide a tool that allows a user to select compo-
nents, connect them together and test or execute
them. Often, as with most Java Bean systems, this
\builder" is a graphical programming tool. CCAT
also has such a graphical builder as shown in �gure
2.

In the CCAT a builder is actually another CCA
component which is connected to the Provides-ports
of the core Services (information, creation, connec-
tion and events), and is used to present some sort of
interface to the user for invoking these services. Con-
sequently, its design is made relatively simple by the
component nature of the architecture. In scienti�c
computing, one often needs to run a distributed com-
putation multiple times with minor variations. This
makes a script language interface for building such
applications invaluable. To accomplish this, we de-
veloped a simple component that wrapped JPython
to allow it to operate as a component builder. To
illustrate how the script code looks to a Python [14],
[18] programmer we have included a script that build-
s a simple distributed PDE solver below. (This is
the same application as constructed in the graphical
builder �gure 2.)

To extend this scripted composition and execution
sequence one step further we turned to another fa-
vorite tool of the computational scientist, Matlab.
Once again, it was not hard to use the java plugin
for Matlab to turn it into a component. The actual
Matlab script is similar to the python script.

It should be noted that the example above only
utilized the core Service components. Python and
Matlab can also be used to write components, for
example, the \assemble" component is a wrapped in-

5

stance of Matlab.

One last example illustrates another kind of builder
interface. A simple Java CCAT component can also
be a Servlet[21] in an http web server. Figure 3
illustrates a web interface that has the same access
to the framework services as do the other builders
described above.

VI. Conclusion

This paper has described an implementation of
the DOE Common Component Architecture that has
been implemented on top of the Globus Grid frame-
work. Two primary contributions of this work have
been described here. First we have illustrated how
XML can be used as an extensible and powerful
tool to describe software components and running in-
stances of these components. Our information direc-
tory service is capable of parsing the XML and deliv-
ering details about component functionality, param-
eter settings, interfaces and execution environments
to any client including other components.

The second contribution of the work has been to
show how one may build the component framework
as a collection of \service components". These ser-
vice components can easily be replaced or extended
and they provide a common gateway by which an
application component can easily access a wide vari-
ety of services. To illustrate this we described four
di�erent builder components: a Graphical User In-
terface, a Python interface, a Matlab interface, and
a web-based interface.

References

[1] Aniruddha Gokhale and Douglas Schmidt. Principles for
Optimizing CORBA Internet Inter-ORB Protocol Perfor-
mance. In 31th Hawaii International Conference on Sys-
tem Sciences, Jan 1998.

[2] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,
L. McInnes, S. Parker, and B. Smolinski. Toward a Com-
mon Component Architecture for High-Performance Sci-
enti�c Computing. In Proceedings of the 8th IEEE In-
ternational Symposium on High Performance Distributed
Computation, August 1999.

[3] Fabian Breg and Dennis Gannon. Compiler support for
an rmi implementation using nexusjava. Technical Re-
port 500, Extreme Computing Lab, Indiana University,
Bloomington, Indiana, 1997.

[4] David Chappell. Understanding ActiveX and OLE. Mi-
crosoft Press, 1997.

[5] Robert Englander. Developing Java Beans. O'Reilly,
1997.

[6] I. Foster, C. Kesselman, and S. Tuecke. The Nexus Ap-
proach to Integrating Multithreading and Communica-
tion. J. Parallel and Distributed Computing, 37:70{82,
1996.

[7] Ian Foster and Carl Kesselman. The GRID: Blueprint
for a New Computing Infrastructure. Morgan-Kaufmann,
1998.

[8] A. Gokhale, D.C. Schmidt, T. Harrison, and G. Parulka-
r. Towards real-time CORBA. IEEE Communications
Magazine, 14(2), Feb 1997.

[9] Java Grande. Computing Portals, visited 02-19-00.
http://www.computingportals.org.

[10] Numerical Algorithms Group. IRIS Explorer, visited 8-
20-97. http://www.nag.co.uk/Welcome IEC.html.

[11] Hewlett-Packard. E-Speak, visited 1-10-2000.
http://www.e-speak.hp.com/.

[12] IETF. WebDav, visited 8-20-99.
http://www.ics.uci.edu/ ejw/authoring/.

[13] William E. Johnston, Dennis Gannon, and Bill Nitzberg.
Grids as production computing environments: The engi-
neering aspects of nasa's information power grid. In Pro-
ceedings of Eight IEEE International Symposium on High
Performance Distributed Computing Conference, Redon-
do Beach, California, August 3-6 1999.

[14] jpython.org. JPython, visited 3-1-00.
http://www.jpython.org.

[15] Argonne National Lab. Globus, visited 7-15-99.
http://www.globus.org.

[16] Argonne National Laboratory, Indiana Univeristy, The
Advanced Computing Laboratory at Los Alamos Nation-
al Laboratory, Lawrence Livermore National Lab, and U-
niveristy of Utah. Common Component Architecture, vis-
ited 1-10-2000. http://z.ca.sandia.gov/ cca-forum see also
http://www.extreme.indiana.edu/ccat.

[17] Michael J. Lewis and Andrew Grimshaw. The Core Le-
gion Object Model. In Proceedings of the Fifth IEEE In-
ternational Symposium on High Performance Distributed
Computing. IEEE Computer Society Press, August 1996.

[18] M. Lutz. Programming Python. O'Reilly and Associates,
1996.

[19] Microsoft. COM, visited 7-22-99.
http://www.microsoft.com/com.

[20] SUN Microsystems. JNDI, visited 3-7-2000.
http://java.sun.com/products/jndi/.

[21] Sun Microsystems. Servlets, visited 3-7-2000.
http://java.sun.com/products/servlet.

[22] SUN Microsystems. Java Beans, visited 7-11-99.
http://java.sun.com/beans/.

[23] Sun Microsystems. EJB, visited 7-15-99.
http://java.sun.com/products/ejb/index.html.

[24] Sun Microsystems. Jini, visited 7-15-99.
http://www.sun.com/jini.

[25] NPCA. WebFlow, visited 8-20-99.
http://osprey7.npac.syr.edu:1998/iwt98/products/web
ow/.

[26] University of Utah. SCIRun, visited 7-10-99.
http://www.cs.utah.edu/sci/scirun/.

[27] OMG. Corba Component Model, visited 1-11-2000.
http://www.omg.org/cgi-bin/doc?orbos/97-06-12.

[28] S.G. Parker and C.R. Johnson. SCIRun: A scienti�c pro-
gramming environment for computational steering. In
Supercomputing `95. IEEE Press, 1995.

[29] Douglas C. Schmidt. Lessons learned building reusable oo
frameworks for distributed software. Communications of
the ACM Special Issue on OO Application Frameworks,
40(10), October 1997.

6

<!-- XML specification for a linear algebra solver:SuperLU -->

<component-info>

<component-name>/ccat/XML/new/SuperLU</component-name>

<author-list>

<author>Xiaoye S. Li</author>

<author>Bramley (mods)</author>

</author-list>

<component-description> Solves sparse linear ... </component-description>

...

<port-list>

<port>

<port-name>inputSLS</port-name>

<my-port-type>SparseLinearSystem_idl</my-port-type>

<port-dir>provides</port-dir>

<port-description>

This port receives the linear system

</port-description>

</port>

<port>

<port-name>outputSV</port-name>

<my-port-type>SolutionVector_idl</my-port-type>

<port-dir>uses</port-dir>

<port-description>

This port sends the solution vector

</port-description>

</port>

</port-list>

<parameter-block>

<parameter-port-name>inputSuperLUParms</parameter-port-name>

<parameter-class>idl.superLUParms.SuperLUParms</parameter-class>

<parameter-port-class>SuperLUParms_idl</parameter-port-class>

<method-name>sendSuperLUParms</method-name>

<parameters>

<name>FactorizationJob</name>

<default-value>3</default-value>

</parameters>

<parameters>

<name>panelSize</name>

<default-value>8</default-value>

</parameters>

<parameters>

<name>MarkovitzParameter</name>

<default-value>0.01</default-value>

</parameters>

...

</parameter-block>

<installation>

<host-name>caledonia.cs.indiana.edu</host-name>

<creation-info>

<creation-method>gram</creation-method>

<creation-env>

<name-value-pair>

<name>globus-run-script-path</name>

<value>/u/lib/bin/caledoniaGlobusRun.sh</value>

7

</name-value-pair>

...

</creation-env>

</creation-info>

</installation>

</component-info>

<!-- End of XML specification for a linear algebra solver:SuperLU -->

Jini Discovery Service

WebDav

Grid events

CORBA events

Jini & JNDI events

Graphical
composition
user
interface
component

Python or
Matlab
script
interface
component

J2EE Messaging Services

Directory/
Registry
Services

Regular ComponentsRegular Components Standard ServicesStandard Services

Creation
 Service

Connection
 Service

Event
 Service

Grid GIS/LDAP

CCAT Container (Process)CCAT Container (Process)

Globus Gram
Other Invocation Services

Fig. 1. Each CCAT Container process contains both user components and one instance of each of the Service Components.
Many of the Service Components act as gateways to external wide-area services.

The following is a Python script

to build a simple distributed

PDE application

import ccat

Create component models for the components

TimeGen, Discretizer, BasicInfo, Splib, and Assemble.

timegen = ccat.createComponent ('TimeGen')

discretizer = ccat.createComponent ('Discretizer')

splib = ccat.createComponent ('Splib')

assemble = ccat.createComponent ('Assemble')

ccat.setMachineName (timegen, 'baldy.extreme.indiana.edu')

ccat.setCreationMechanism (timegen, 'gram')

ccat.setMachineName (discretizer, 'baldy.extreme.indiana.edu')

ccat.setCreationMechanism (discretizer, 'gram')

ccat.setMachineName (assemble, 'baldy.extreme.indiana.edu')

ccat.setCreationMechanism (assemble, 'gram')

ccat.setMachineName (splib, 'baldy.extreme.indiana.edu')

ccat.setCreationMechanism (splib, 'gram')

ccat.createInstance (timegen)

ccat.createInstance (discretizer)

ccat.createInstance (assemble)

ccat.createInstance (splib)

ccat.connectPorts (timegen, 'outputTimeStep', discretizer, 'inputTimeStep')

ccat.connectPorts (discretizer, 'outputGeometry', assemble, 'inputGeometry')

8

ccat.connectPorts (discretizer, 'outputSLS', splib, 'inputSLS')

ccat.connectPorts (splib, 'outputSV', assemble, 'inputSV')

ccat.connectPorts (assemble, 'outputRunItAgain', timegen, 'inputRunItAgain')

ccat.setParams (timegen) # uses defaults

ccat.execute (timegen) # timegen calls the others

End of Python script

Fig. 2. CCAT session with java GUI

9

Fig. 3. CCAT session with servlet interface

