

JavaMail

™

 API
Design Specification

Version 1.1

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

Part No.: 8xx-xxxx-xx
Revision 01, August 1998

Send feedback to javamail@sun.com

August 1998

JavaMail API Design Specification

Copyright 1998 Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, California 94303 U.S.A. All rights reserved.

This product or documentation is protected by copyright and
distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of this product or documentation may
be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun
suppliers.

Sun, Sun Microsystems, the Sun logo, Java, JavaSoft, Solaris, JDK,
JavaBeans, and JavaMail are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

The OPEN LOOK and Sun™ Graphical User Interface was
developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and
developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply
with Sun’s written license agreements.

U.S. Government approval required when exporting the product.
Use, duplication, or disclosure by the U.S. Govt is subject to
restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or
DFAR 252.227-7015 (b)(6/95) and DFAR 227.7202-3(a)
DOCUMENTATION IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, ANY KIND OF IMPLIED OR
EXPRESS WARRANTY OF NON-INFRINGEMENT OR THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Copyright 1998 Sun Microsystems, Inc. All rights reserved. Use is
subject to license terms. Third-party software, including font
technology, is copyrighted and licensed from Sun suppliers. Sun,
Sun Microsystems, the Sun Logo, Solaris, Java are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries. Use, duplication, or disclosure by the U.S. Govt is subject
to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87),
or DFAR 252.227-7015 (b)(6/95) and DFAR 227.7202-3(a)

Copyright 1998 Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué
avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou
document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de
ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est
protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Solaris, Java, JavaSoft, JDK,
JavaMail, JavaBeans sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres
pays. L’interface d’utilisation graphique OPEN LOOK et Sun™ a été
développée par Sun Microsystems, Inc. pour ses utilisateurs et
licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la
recherche et le développement du concept des interfaces
d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur
l’interface d’utilisation graphique Xerox, cette licence couvrant
également les licenciés de Sun qui mettent en place l’interface
d’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun. L’accord du gouvernement américain est
requis avant l’exportation du produit.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES
AUTRES CONDITIONS, DÉCLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES
DANS LA MESURE AUTORISÉE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE
RELATIVE À LA QUALITÉ MARCHANDE, À L’APTITUDE À UNE
UTILISATION PARTICULÈRE OU À L’ABSENCE DE
CONTREFAÇON.

Copyright 1998 Sun Microsystems, Inc. Tous droits réservés.
Distribué par des licences qui en restreignent l’utilisation. Le logiciel
détenu par des tiers, et qui comprend la technologie relative aux
polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun. Sun, Sun Microsystems, le logo Sun, Solaris,
Java sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Please
Recycle

iii

Contents

Chapter 1: Introduction 1
Target Audience 1
Acknowledgments 1

Chapter 2: Goals and Design Principles 3

Chapter 3: Architectural Overview 5
JavaMail Layered Architecture 5
JavaMail Class Hierarchy 7
The JavaMail Framework 8
Major JavaMail API Components 10

The Message Class 10
Message Storage and Retrieval 10
Message Composition and Transport 11
The Session Class 11

The JavaMail Event Model 11
Using the JavaMail API 12

Chapter 4: The Message Class 13
The Part Interface 16

Message Attributes 16
The ContentType Attribute 17

The Address Class 18
The BodyPart Class 18
The Multipart Class 19
The Flags Class 22
Message Creation And Transmission 23

Chapter 5: The Mail Session 25
The Provider Registry 26

Resource Files 26
javamail.providers and javamail.default.providers 27
javamail.address.map and javamail.default.address.map 28

Provider 28
Protocol Selection and Defaults 28
Example Scenarios 29
JavaMail API Design Specification August 1998

iv Contents

Managing Security 30
Store and Folder URLs 31

Chapter 6: Message Storage and Retrieval 33
The Store Class 33

Store Events 34
The Folder Class 34

The FetchProfile Method 35
Folder Events 36
The Expunge Process 37

The Search Process 39

Chapter 7: The JavaBeans Activation Framework 41
Accessing the Content 41

Example: Message Output 42
Operating on the Content 43

Example: Viewing a Message 43
Example: Showing Attachments 43

Adding Support for Content Types 44

Chapter 8: Message Composition 45
Building a Message Object 45
Message Creation 45
Setting Message Attributes 46
Setting Message Content 47
 Building a MIME Multipart Message 48

Chapter 9: Transport Protocols and Mechanisms 51
Obtaining the Transport Object 51

Transport Methods 51
Transport Events 52

ConnectionEvent 52
TransportEvent 53

Using The Transport Class 54

Chapter 10: Internet Mail 55
The MimeMessage Class 56
The MimeBodyPart Class 57
The MimeMultipart Class 58
The MimeUtility Class 58
JavaMail API Design Specification August 1998

v Contents

Content Encoding and Decoding 59
Header Encoding and Decoding 59

The ContentType Class 60

Appendix A: Environment Properties 61

Appendix B: Examples Using the JavaMail API 63
Example: Showing a Message 63
Example: Listing Folders 66
Example: Searching a Folder for a Message 68
Example: Monitoring a Mailbox 71
Example: Sending a Message 72

Appendix C: Message Security 75
Overview 75

Displaying an Encrypted/Signed Message 75
MultiPartEncrypted/Signed Classes 75
Reading the Contents 76
Verifying Signatures 76
Creating a Message 77

Encrypted/Signed 77

Appendix D: Part and Multipart Class Diagram 79

Appendix E: MimeMessage Object Hierarchy 81

Appendix F: Features Added in JavaMail 1.1 83
The MessageContext Class and MessageAware Interface 83
The getMessageID Method 83
Additions to the InternetAddress Class 84
Additions to the MimeUtility Class 84
New SearchTerms 84
Additions to the Folder Class 85
New Service Class 85
JavaMail API Design Specification August 1998

vi Contents
JavaMail API Design Specification August 1998

1

Chapter 1:

Introduction

In the few years since its first release, the JavaTM programming language has matured
to become a platform. The Java platform has added functionality, including
distributed computing with RMI and the CORBA bridge, and a component
architecture (JavaBeansTM). Java applications have also matured, and many now need
an addition to the Java platform: a mail and messaging framework. The JavaMailTM
API described in this specification satisfies that need.

The JavaMail API provides a set of abstract classes defining objects that comprise a
mail system. The API defines classes like Message, Store and Transport. The API can
be extended and can be subclassed to provide new protocols and to add functionality
when necessary.

In addition, the API provides concrete subclasses of the abstract classes. These
subclasses, including MimeMessage and MimeBodyPart, implement widely used
Internet mail protocols and conform to specifications RFC822 and RFC2045. They are
ready to be used in application development.

Target Audience
The JavaMail API is designed to serve several audiences:

■ Client, server, or middleware developers interested in building mail and
messaging applications using the Java programming language.

■ Application developers who need to “mail-enable” their applications.

■ Service Providers who need to implement specific access and transfer protocols.
For example; a telecommunications company can use the JavaMail API to
implement a PAGER Transport protocol that sends mail messages to
alphanumeric pagers.

Acknowledgments
The authors of this specification are John Mani, Bill Shannon, Max Spivak, Kapono
Carter and Chris Cotton.

We would like to acknowledge the following people for their comments and feedback
on the initial drafts of this document:
JavaMail API Design Specification August 1998

2 Chapter 1: Introduction
Acknowledgments

■ Terry Cline, John Russo, Bill Yeager and Monica Gaines: Sun Microsystems.

■ Arn Perkins and John Ragan: Novell, Inc.

■ Nick Shelness: Lotus Development Corporation.

■ Juerg von Kaenel: IBM Corporation.

■ Prasad Yendluri, Jamie Zawinski, Terry Weissman and Gena Cunanan: Netscape
Communications Corporation.
JavaMail API Design Specification August 1998

3

Chapter 2:

Goals and Design Principles

The JavaMail API is designed to make adding electronic mail capability to simple
applications easy, while also supporting the creation of sophisticated user interfaces.
It includes appropriate convenience classes which encapsulate common mail
functions and protocols. It fits with other packages for the Java platform in order to
facilitate its use with other Java APIs, and it uses familiar programming models.

The JavaMail API is therefore designed to satisfy the following development and
runtime requirements:

■ Simple, straightforward class design is easy for a developer to learn and
implement.

■ Use of familiar concepts and programming models support code development
that interfaces well with other Java APIs.

■ Uses familiar exception-handling and JDK 1.1 event-handling programming
models.

■ Uses features from the JavaBeans Activation Framework (JAF) to handle
access to data based on data-type and to facilitate the addition of data types
and commands on those data types. The JavaMail API provides convenience
functions to simplify these coding tasks.

■ Lightweight classes and interfaces make it easy to add basic mail-handling tasks
to any application.

■ Supports the development of robust mail-enabled applications, that can handle a
variety of complex mail message formats, data types, and access and transport
protocols.

The JavaMail API draws heavily from IMAP, MAPI, CMC, c-client and other
messaging system APIs: many of the concepts present in these other systems are also
present in the JavaMail API. It is simpler to use because it uses features of the Java
programming language not available to these other APIs, and because it uses the Java
programming language’s object model to shelter applications from implementation
complexity.

The JavaMail API design is driven by the needs of the applications it supports—but it
is also important to consider the needs of API implementors. It is critically important
to enable the implementation of messaging systems written using the Java
programming language that interoperate with existing messaging systems—especially
JavaMail API Design Specification August 1998

4 Chapter 2: Goals and Design Principles

Internet mail. It is also important to anticipate the development of new messaging
systems. The JavaMail API conforms to current standards while not being so
constrained by current standards that it stifles future innovation.

The JavaMail API supports many different messaging system implementations—
different message stores, different message formats, and different message transports.
The JavaMail API provides a set of base classes and interfaces that define the API for
client applications. Many simple applications will only need to interact with the
messaging system through these base classes and interfaces.

JavaMail subclasses can expose additional messaging system features. For instance,
the MimeMessage subclass exposes and implements common characteristics of an
Internet mail message, as defined by RFC822 and MIME standards. Developers can
subclass JavaMail classes to provide the implementations of particular messaging
systems, such as IMAP4, POP3, and SMTP.

The base JavaMail classes include many convenience APIs that simplify use of the
API, but don’t add any functionality. The implementation subclasses are not required
to implement those convenience methods. The implementation subclasses must
implement only the core classes and methods that provide functionality required for
the implementation.

Alternately, a messaging system can choose to implement all of the JavaMail API
directly, allowing it to take advantage of performance optimizations, perhaps through
use of batched protocol requests. The IMAP4 protocol implementation takes
advantage of this approach.

The JavaMail API uses the Java programming language to good effect to strike a
balance between simplicity and sophistication. Simple tasks are easy, and
sophisticated functionality is possible.
JavaMail API Design Specification August 1998

5

Chapter 3:

Architectural Overview

This section describes the JavaMail architecture, defines major classes and interfaces
comprising that architecture, and lists major functions that the architecture
implements.

JavaMail provides elements that are used to construct an interface to a messaging
system, including system components and interfaces. While this specification does not
define any specific implementation, JavaMail does include several classes that
implement RFC822 and MIME Internet messaging standards. These classes are
delivered as part of the JavaMail class package.

JavaMail Layered Architecture
The JavaMail architectural components are layered as shown below:

■ The Abstract Layer declares classes, interfaces and abstract methods intended to
support mail handling functions that all mail systems support. API elements
comprising the Abstract Layer are intended to be subclassed and extended as
necessary in order to support standard data types, and to interface with message
access and message transport protocols as necessary.

■ The internet implementation layer implements part of the abstract layer using
internet standards - RFC822 and MIME.

■ JavaMail uses the JavaBeans Activation Framework (JAF) in order to encapsulate
message data, and to handle commands intended to interact with that data.
Interaction with message data should take place via JAF-aware JavaBeans, which
are not provided by the JavaMail API.
JavaMail API Design Specification August 1998

6 Chapter 3: Architectural Overview
JavaMail Layered Architecture

JavaMail clients use the JavaMail API and Service Providers implement the JavaMail
API. The layered design architecture allows clients to use the same JavaMail API calls
to send, receive and store a variety of messages using different data-types from
different message stores and using different message transport protocols.

FIGURE 3-1

Mail-enabled Application

Java Bean - used to interact and
display message content

JavaMail
Abstract Class Layer

IMAP / POP3 / NNTP implementation Layer

Internet Mail
Implementation Class Layer

JavaMail
API
JavaMail API Design Specification August 1998

7 Chapter 3: Architectural Overview
JavaMail Class Hierarchy

JavaMail Class Hierarchy
The figure below shows major classes and interfaces comprising the JavaMail API. See
“Major JavaMail API Components” on page 10 for brief descriptions of all
components shown on this diagram.

FIGURE 3-2

Part

Message

Multipart
Container
Class

MimePart

Bodypart

MimePart

MimeMessage

MimeBodyPart

MimeMultipart
container
Class

JavaMail Implementation Layer

LEGEND

Extends

ImplementsInterface

Class

Container Class
JavaMail API Design Specification August 1998

8 Chapter 3: Architectural Overview
The JavaMail Framework

The JavaMail Framework
The JavaMail API is intended to perform the following functions, which comprise the
standard mail handling process for a typical client application:

■ Create a mail message consisting of a collection of header attributes and a block
of data of some known data type as specified in the Content-Type header field.
JavaMail uses the Part interface and the Message class to define a mail message.
It uses the JAF-defined DataHandler object to contain data placed in the
message.

■ Create a Session object, which authenticates the user, and controls access to the
message store and transport.

■ Send the message to its recipient list.

■ Retrieve a message from a message store.

■ Execute a high-level command on a retrieved message. High-level commands like
view and print are intended to be implemented via JAF-Aware JavaBeans.

Note – The JavaMail framework does not define mechanisms that support message
delivery, security, disconnected operation, directory services or filter functionality.
Security, disconnected operation and filtering support will be added in future
releases.
JavaMail API Design Specification August 1998

9 Chapter 3: Architectural Overview
The JavaMail Framework

This figure illustrates the JavaMail message-handling process.

FIGURE 3-3

FOLDERS

MESSAGE

FOLDERSTRANSPORT

Receive a
Message

Send a
Message

Submit a
Message

STORE

MESSAGE

Contains
Messages

Network
Infrastructure
JavaMail API Design Specification August 1998

10 Chapter 3: Architectural Overview
Major JavaMail API Components

Major JavaMail API Components
This section reviews major components comprising the JavaMail architecture.

The Message Class
The Message class is an abstract class that defines a set of attributes and a content for
a mail message. Attributes of the Message class specify addressing information and
define the structure of the content, including the content type. The content is
represented as a DataHandler object that wraps around the actual data.

The Message class implements the Part interface. The Part interface defines
attributes that are required to define and format data content carried by a Message
object, and to interface successfully to a mail system. The Message class adds From,
To, Subject , Reply-To , and other attributes necessary for message routing via a
message transport system. When contained in a folder, a Message object has a set of
flags associated with it. JavaMail provides Message subclasses that support specific
messaging implementations.

The content of a message is a collection of bytes, or a reference to a collection of bytes,
encapsulated within a Message object. JavaMail has no knowledge of the data type or
format of the message content. A Message object interacts with its content through an
intermediate layer—the JavaBeans Activation Framework (JAF). This separation
allows a Message object to handle any arbitrary content and to transmit it using any
appropriate transmission protocol by using calls to the same API methods. The
message recipient usually knows the content data type and format and knows how to
handle that content.

The JavaMail API also supports multipart Message objects, where each Bodypart
defines its own set of attributes and content.

Message Storage and Retrieval
Messages are stored in Folder objects. A Folder object can contain subfolders as
well as messages, thus providing a tree-like folder hierarchy. The Folder class
declares methods that fetch, append, copy and delete messages. A Folder object can
also send events to components registered as event listeners.

The Store class defines a database that holds a folder hierarchy together with its
messages. The Store class also specifies the access protocol that accesses folders and
retrieves messages stored in folders. The Store class also provides methods to
establish a connection to the database, to fetch folders and to close a connection.
Service providers implementing Message Access protocols (IMAP4, POP3 etc.) start
off by subclassing the Store class. A user typically starts a session with the mail
system by connecting to a particular Store implementation.
JavaMail API Design Specification August 1998

11 Chapter 3: Architectural Overview
The JavaMail Event Model
Message Composition and Transport
A client creates a new message by instantiating an appropriate Message subclass. It
sets attributes like the recipient addresses and the subject, and inserts the content into
the Message object. Finally, it sends the Message by invoking the Transport.send
method.

The Transport class models the transport agent that routes a message to its
destination addresses. This class provides methods that send a message to a list of
recipients. Invoking the Transport.send method with a Message object identifies
the appropriate transport based on its destination addresses.

The Session Class
The Session class defines global and per-user mail-related properties that define the
interface between a mail-enabled client and the network. JavaMail system
components use the Session object to set and get specific properties. The Session
class also provides a default authenticated session object that desktop applications can
share. The Session class is a final concrete class. It cannot be subclassed.

The Session class also acts as a factory for Store and Transport objects that
implement specific access and transport protocols. By calling the appropriate factory
method on a Session object, the client can obtain Store and Transport objects
that support specific protocols.

The JavaMail Event Model
The JavaMail event model conforms to the JDK 1.1 event-model specification, as
described in the JavaBeans Specification. The JavaMail API follows the design
patterns defined in the JavaBeans Specification for naming events, event methods and
event listener registration.

All events are subclassed from the MailEvent class. Clients listen for specific events
by registering themselves as listeners for those events. Events notify listeners of state
changes as a session progresses. During a session, a JavaMail component generates a
specific event-type to notify objects registered as listeners for that event-type. The
JavaMail Store , Folder , and Transport classes are event sources. This
specification describes each specific event in the section that describes the class that
generates that event.
JavaMail API Design Specification August 1998

12 Chapter 3: Architectural Overview
Using the JavaMail API
Using the JavaMail API
This section defines the syntax and lists the order in which a client application calls
some JavaMail methods in order to access and open a message located in a folder:

1. A JavaMail client typically begins a mail handling task by obtaining the default
JavaMail Session object.

 Session session = Session.getDefaultInstance(
 props, authenticator);

2. The client uses the Session object’s getStore method to connect to the default
store. The getStore method returns a Store object subclass that supports the
access protocol defined in the user properties object, which will typically contain
per-user preferences.

 Store store = session.getStore();
 store.connect();

3. If the connection is successful, the client can list available folders in the Store, and
then fetch and view specific Message objects.

 // get the INBOX folder
 Folder inbox = store.getFolder("INBOX");

 // open the INBOX folder
 inbox.open(Folder.READ_WRITE);

 Message m = inbox.getMessage(1); // get Message # 1
 String subject = m.getSubject(); // get Subject
 Object content = m.getContent(); // get content
 ...
 ...

4. Finally, the client closes all open folders, and then closes the store.
 inbox.close(); // Close the INBOX
 store.close(); // Close the Store

See “Examples Using the JavaMail API” on page 63 for a more complete example.
JavaMail API Design Specification August 1998

13
Chapter 4:

The Message Class

The Message class defines a set of attributes and a content for a mail message.
Message attributes specify message addressing information and define the structure
of the content, including the content type. The content is represented by a
DataHandler object that wraps around the actual data. The Message class is an
abstract class that implements the Part interface.

Subclasses of the Message classes can implement several standard message formats.
For example, the JavaMail API provides the MimeMessage class, that extends the
Message class to implement the RFC822 and MIME standards. Implementations can
typically construct themselves from byte streams and generate byte streams for
transmission.

A Message subclass instantiates an object that holds message content, together with
attributes that specify addresses for the sender and recipients, structural information
about the message, and the content type of the message body. Messages placed into a
folder also have a set of flags that describe the state of the message within the folder.
JavaMail API Design Specification August 1998

14 Chapter 4: The Message Class
The figure below illustrates the structure of the Message class.

FIGURE 4-1

The Message object has no direct knowledge of the nature or semantics of its content.
This separation of structure from content allows the message object to contain any
arbitrary content.

Message objects are either retrieved from a Folder object or constructed by
instantiating a new Message object of the appropriate subclass. Messages stored
within a Folder object are sequentially numbered, starting at one. An assigned
message number can change when the folder is expunged, since the expunge
operation removes deleted messages from the folder and also renumbers the
remaining messages.

Message Class

Header Attributes

Content Body

Attributes defined by the
Part interface, including
Content-Type .

Attributes added by the
Message Class.

Optional attributes added by
a Message Subclass,
such as MimeMessage.

 Part interface

 DataHandler
Class

 DataHandler Object

Contains data that conforms
to the Content-Type
attribute, together with meth-
ods that provide access to
that data.

JavaBean
queries the
DataHandler
object in order to
view and handle
content body.
JavaMail API Design Specification August 1998

15 Chapter 4: The Message Class
A Message object can contain multiple parts, where each part contains its own set of
attributes and content. The content of a multipart message is a Multipart object that
contains BodyPart objects representing each individual part. The Part interface
defines the structural and semantic similarity between the Message class and the
BodyPart class.

The figure below illustrates a Message instance hierarchy, where the message
contains attributes, a set of flags, and content. See “MimeMessage Object Hierarchy”
on page 81 for an illustration of the MimeMessage object hierarchy.

FIGURE 4-2

The Message class provides methods to perform the following tasks:

■ Get, set and create its attributes and content:
public String getSubject() throws MessagingException;

public void setSubject(String subject)
 throws MessagingException;

public String[] getHeader(String name)
 throws MessagingException;

MessageFlags Attributes

Legend

Contains

Implements

Part

Content

Interface

Class

References
JavaMail API Design Specification August 1998

16 Chapter 4: The Message Class
The Part Interface
public void setHeader(String name, String value)
 throws MessagingException;

public Object getContent()
 throws MessagingException;

public void setContent(Object content, String type)
 throws MessagingException

■ Save changes to its containing folder.

public void saveChanges()
 throws MessagingException;

This method also ensures that the Message header fields are updated to be
consistent with the changed message contents.

■ Generate a bytestream for the Message object.

public void writeTo(OutputStream os)
 throws IOException, MessagingException;

This byte stream can be used to save the message or send it to a Transport object.

The Part Interface
The Part interface defines a set of standard headers common to most mail systems,
specifies the data-type assigned to data comprising a content block, and defines set
and get methods for each of these members. It is the basic data component in the
JavaMail API and provides a common interface for both the Message and BodyPart
classes. See the JavaMail API (Javadoc) documentation for details.

Note – A Message object can not be contained directly in a Multipart object, but
must be embedded in a BodyPart first.

Message Attributes
The Message class adds its own set of standard attributes to those it inherits from the
Part interface. These attributes include the sender and recipient addresses, the
subject, flags, and sent and received dates. The Message class also supports non-
standard attributes in the form of headers. See the JavaMail API (Javadoc)
Documentation for the list of standard attributes defined in the Message class. Not all
messaging systems will support arbitrary headers, and the availability and meaning
of particular header names is specific to the messaging system implementation.
JavaMail API Design Specification August 1998

17 Chapter 4: The Message Class
The Part Interface
The ContentType Attribute
The contentType attribute specifies the data type of the content, following the
MIME typing specification (RFC 2045). A MIME type is composed of a primary type
that declares the general type of the content, and a subtype that specifies a specific
format for the content. A MIME type also includes an optional set of type-specific
parameters.

JavaMail API components can access content via these mechanisms:

The setDataHandler(DataHandler) method specifies content for a new Part
object, as a step toward the construction of a new message. The Part also provides
some convenience methods to set up most common content types.

Part provides the writeTo method that writes its byte stream in mail-safe form
suitable for transmission. This byte stream is typically an aggregation of the Part
attributes and the byte stream for its content.

As an input stream The Part interface declares the getInputStream method that
returns an input stream to the content. Note that Part
implementations must decode any mail-specific transfer
encoding before providing the input stream.

As a DataHandler object The Part interface declares the getDataHandler method that
returns a javax.activation .DataHandler object that wraps
around the content. The DataHandler object allows clients to
discover the operations available to perform on the content, and
to instantiate the appropriate component to perform those
operations. See “The JavaBeans Activation Framework” on
page 41 for details describing the data typing framework

As an object in the Java
programming language

The Part interface declares the getContent method that
returns the content as an object in the Java programming
language. The type of the returned object is dependent on the
content’s data type. If the content is of type multipart, the
getContent method returns a Multipart object, or a
Multipart subclass object. The getContent method returns an
input stream for unknown content-types. Note that the
getContent method uses the DataHandler internally to obtain
the native form.
JavaMail API Design Specification August 1998

18 Chapter 4: The Message Class
The Address Class
The Address Class
The Address class represents email addresses. The Address class is an abstract class.
Subclasses provide implementation-specific semantics.

The BodyPart Class
The BodyPart class is an abstract class that implements the Part interface in order to
define the attribute and content body definitions that Part declares. It does not
declare attributes that set From, To, Subject , ReplyTo , or other address header
fields, as a Message object does.

A BodyPart object is intended to be inserted into a Multipart container, later
accessed via a multipart message.
JavaMail API Design Specification August 1998

19 Chapter 4: The Message Class
The Multipart Class
The Multipart Class
The Multipart class implements multipart messages. A multipart message is a
Message object where the content-type specifier has been set to multipart. The
Multipart class is a container class that contains objects of type Bodypart . A
Bodypart object is an instantiation of the Part interface—it contains either a new
Multipart container object, or a DataHandler object.

The figure below illustrates the structure and content of a multipart message:

FIGURE 4-3

Multipart Object

Header Attributes

Content Body

Attributes defined by the Part
interface only.

Attributes include a second
Content-Type attribute.

The content body itself can be
either a DataHandler object
containing data, or another
Multipart object.

Bodypart Object

A Multipart Message can hold
more than one BodyPart object.

Message

Header Attributes
Normal Message,
includes a Content-
Type attribute
set to ‘Multipart .’.

A multipart message is a simple
message object where the Con-
tent-Type is set to ‘multipart , ‘
and the Content Body carries a
reference to a Multipart
object .

Content Body
Normal Message,
includes a Content
body of type
‘Multipart .’

A Multipart object is a con-
tainer of Bodypart objects,
where each Bodypart can con-
tain either a DataHandler
object, or another Multipart
object.

Bodypart Object
JavaMail API Design Specification August 1998

20 Chapter 4: The Message Class
The Multipart Class
Note that Multipart objects can be nested to any reasonable depth within a
multipart message, in order to build an appropriate structure for data carried in
DataHandler objects. Therefore, it is important to check the ContentType header
for each BodyPart element stored within a Multipart container. The figure below
illustrates a typical nested Multipart message.

FIGURE 4-4

Typically, the client calls the getContentType method to get the content type of a
message. If getContentType returns a MIME-type whose primary type is multipart,
then the client calls getContent to get the Multipart container object.

The Multipart object supports several methods that get, create, and remove
individual BodyPart objects.

public int getCount() throws MessagingException;

public Body getBodyPart(int index)
 throws MessagingException;

Message
Object

Multipart Container
Object

Bodypart object
that carries a
DataHandler
object holding data.

Bodypart object
that holds a DataH-
andler object hold-
ing a Multipart
container object.

Other Optional
Multipart Objects

New bodyparts,
containing a
Datahandler
object.Other Body-

part objects.

Content body
references a
Multipart
container

Bodypart

Bodypart

Bodypart

Carries
addresses for
the entire tree.
JavaMail API Design Specification August 1998

21 Chapter 4: The Message Class
The Multipart Class
public void addBodyPart(BodyPart part)
 throws MessagingException;

public void removeBodyPart(BodyPart body)
 throws MessagingException;

public void removeBodyPart(int index)
 throws MessagingException;

The Multipart class implements the javax.beans.DataSource interface. It can
act as the DataSource object for javax.beans.DataHandler and
javax.beans.DataContentHandler objects. This allows message-aware content
handlers to handle multipart data sources more efficiently, since the data has already
been parsed into individual parts.

This diagram illustrates the structure of a multipart message, and shows calls from
the associated Message and Multipart objects, for a typical call sequence returning
a BodyPart containing text/plain content.

FIGURE 4-5

In this figure, the ContentType attribute of a Message object indicates that it holds
a multipart content. Use the getContent method to obtain the Multipart object.

Message

Multipart

BodyPart

0... n-1

getContent()

getBodyPart(index)

Legend

extends

contains

getContentType()
multipart/mixed

Text

getContent()

text/plain
getContentType()
JavaMail API Design Specification August 1998

22 Chapter 4: The Message Class
The Flags Class
This code sample below shows the retrieval of a Multipart object. See “Examples
Using the JavaMail API” on page 63 for examples that traverse a multipart message
and examples that create new multipart messages.

The Flags Class
Flags objects carry flag settings that describe the state of a Message object within its
containing folder. The Message.getFlags method returns a Flags object that holds
all the flags currently set for that message.

The setFlags(Flags f, boolean set) method sets the specified flags for that
message. The add(Flags.Flag f) method on a Flags object sets the specified flag;
the contains(Flags. Flag f) method returns whether the specified flag is set.

Note that a folder is not guaranteed to support either standard system flags or
arbitrary user flags. The getPermanentFlags method in a folder returns a Flags
object that contains all the system flags supported by that Folder implementation.
The presence of the special USER flag indicates that the client can set arbitrary user-
definable flags on any message belonging to this folder.

Multipart mp = (Multipart)message.getContent();

int count = mp.getCount();
BodyPart body_part;

for (int i = 0; i < count; i++)
body_part = mp.getBodyPart(i);

ANSWERED Clients set this flag to indicate that this message has been
answered.

DRAFT Indicates that this message is a draft.

FLAGGED No defined semantics. Clients can use this flag to mark a
message in some user-defined manner.

RECENT This message is newly arrived in this folder. This flag is set when
the message is first delivered into the folder and cleared when
the containing folder is closed. Clients cannot set this flag.

SEEN Marks a message that has been opened. A client sets this flag
implicitly when the message contents are retrieved.

DELETED Allows undoable message deletion. Setting this flag for a
message marks it deleted but does not physically remove the
message from its folder. The client calls the expunge method on
a folder to remove all deleted messages in that folder.
JavaMail API Design Specification August 1998

23 Chapter 4: The Message Class
Message Creation And Transmission
Message Creation And Transmission
The Message class is abstract, so an appropriate subclass must be instantiated to
create a new Message object. A client creates a message by instantiating an
appropriate Message subclass.

For example, the MimeMessage subclass handles Internet email messages. Typically,
the client application creates an email message by instantiating a MimeMessage
object, and passing required attribute values to that object. In an email message, the
client defines Subject , From, and To attributes. The client then passes message
content into the MimeMessage object by using a suitably configured DataHandler
object. See “Message Composition” on page 45 for details.

After the Message object is constructed, the client calls the Transport.send
method to route it to its specified recipients. See “Transport Protocols and
Mechanisms” on page 51 for a discussion of the transport process.
JavaMail API Design Specification August 1998

24 Chapter 4: The Message Class
Message Creation And Transmission
JavaMail API Design Specification August 1998

25
Chapter 5:

The Mail Session

A mail Session object manages the configuration options and user authentication
information used to interact with messaging systems.

The JavaMail API supports simultaneous multiple sessions. Each session can access
multiple message stores and transports. Any desktop application that needs to access
the current primary message store can share the default session. Typically the mail-
enabled application establishes the default session, which initializes the
authentication information necessary to access the user’s Inbox folder. Other desktop
applications then use the default session when sending or accessing mail on behalf of
the user. When sharing the session object, all applications share authentication
information, properties, and the rest of the state of the object.

For example,

■ To create a Session using a static factory method:
Session session = Session.getInstance(props, authenticator);

■ To create an unshared session, or to access the default session.
Session defaultSession =

 Session.getDefaultInstance(props, authenticator);

The Properties object that initializes the Session contains default values and other
configuration information. It is expected that clients using the APIs set the values for
the listed properties, especially mail.store.protocol ,
mail.transport.protocol , mail.host , mail.user , and mail.from , since the
defaults are unlikely to work in all cases. See “Environment Properties” on page 61 for
a list of properties used by the JavaMail APIs and their defaults.

Some messaging system implementations can use additional properties. Typically the
properties object contains user-defined customizations in addition to system-wide
defaults. Mail-enabled application logic determines the appropriate set of properties.
Lacking a specific requirement, the application can use the system properties object
retrieved from the System.getPropertie s method.

The Authenticator object controls security aspects for the Session object. The
messaging system uses it as a callback mechanism to interact with the user when a
password is required to login to a messaging system. It indirectly controls access to
the default session, as described below.

Clients using JavaMail can register PasswordAuthentication objects with the
Session object for use later in the session or for use by other users of the same
session. Because PasswordAuthentication objects contain passwords, access to
JavaMail API Design Specification August 1998

26 Chapter 5: The Mail Session
The Provider Registry
this information must be carefully controlled. Applications that create Session
objects must restrict access to those objects appropriately. In addition, the Session
class shares some responsibility for controlling access to the default session object.

The first call to the getDefaultInstance method creates a new Session object
and associates it with the Authenticator object. Subsequent calls to the
getDefaultInstance method compare the Authenticator object passed in with
the Authenticator object saved in the default session. Access to the default session
is allowed if both objects have been loaded by the same class loader. Typically, this is
the case when both the default session creator and the program requesting default
session access are in the same "security domain." Also, if both objects are null , access
is allowed. Using null to gain access is discouraged, because this allows access to the
default session from any security domain.

A mail-enabled client uses the Session object to retrieve a Store or Transport
object in order to read or send mail. Typically, the client retrieves the default Store or
Transport object based on properties loaded for that session:

The client can override the session defaults and access a Store or Transport object
that implements a particular protocol.

See “The Provider Registry” on page 26 for details.

Implementations of Store and Transport objects will be told the session to which
they have been assigned. They can then make the Session object available to other
objects contained within this Store or Transport objects using application-
dependent logic.

The Provider Registry
The Provider Registry allows providers to register their protocol implementations to
be used by JavaMail APIs. It provides a mechanism for discovering available protocol,
for registering new protocols, and for specifying default implementations.

Resource Files
The providers for JavaMail APIs are configured using the following files:

■ javamail.providers and javamail.default.providers
■ javamail.address.map and javamail.default.address.map

Each javamail.X resource file is searched in the following order:

1. java.home/lib/javamail.X

2. META-INF/javamail.X

3. META-INF/javamail.default.X

Store store = session.getStore();

Store store = session.getStore("imap");
JavaMail API Design Specification August 1998

27 Chapter 5: The Mail Session
The Provider Registry
The first method allows the user to include their own version of the resource file by
placing it in the lib directory where the java.home property points. The second
method allows an application that uses the JavaMail APIs to include their own
resource files in their application’s or jar file’s META-INF directory. The
javamail.default.X default files are part of the JavaMail mail.jar file.

File location depends upon how the ClassLoader.getResource method is
implemented. Usually, the getResource method searches through CLASSPATH until
it finds the requested file and then stops. JDK 1.1 has a limitation that the number of
files of each type that will be found in the CLASSPATH is limited to one. However, this
only affects method two, above; method one is loaded from a specific location (if
allowed by the SecurityManager) and method three uses a different name to
ensure that the default resource file is always loaded successfully.

The ordering of entries in the resource files matters. If multiple entries exist, the first
entries take precedence over the latter entries as the initial defaults. For example, the
first IMAP provider found will be set as the default IMAP implementation until
explicitly changed by the application.

The user- or system-supplied resource files augment, they do not override, the default
files included with the JavaMail APIs. This means that all entries in all files loaded
will be available.

javamail.providers and
javamail.default.providers
These resource files specify the stores and transports that are available on the system,
allowing an application to "discover" what store and transport implementations are
available. The protocol implementations are listed one per line. The file format defines
four attributes that describe a protocol implementation. Each attribute is an "="-
separated name-value pair with the name in lowercase. Each name-value pair is semi-
colon (";") separated.

TABLE 5-1 Protocol Attributes

Name Description

protocol Name assigned to protocol. For example, ’smtp’ for Transport.

type Valid entries are “store” and “transport.”

class Class name that implements this protocol.

vendor Optional string identifying the vendor.

version Optional string identifying the version.
JavaMail API Design Specification August 1998

28 Chapter 5: The Mail Session
The Provider Registry
Here’s an example of META-INF/javamail.default.providers file contents:

javamail.address.map and
javamail.default.address.map
These resource files map transport address types to the transport protocol. The
javax.mail.Address.getType() method returns the address type. The
javamail.address.map file maps the transport type to the protocol. The file format
is a series of name-value pairs. Each key name should correspond to an address type
that is currently installed on the system; there should also be an entry for each
javax.mail.Address implementation that is present if it is to be used. For example,
javax.mail.internet.InternetAddress.getType() returns rfc822. Each
referenced protocol should be installed on the system. For the case of news, below, the
client should install a Transport provider supporting the nntp protocol.

Here are the typical contents of a javamail.address.map file.

Provider
Provider is a class that describes a protocol implementation. The values come from
the javamail.providers and javamail.default.providers resource files.

Protocol Selection and Defaults
The constructor for the Session object initializes the appropriate variables from the
resource files. The order of the protocols in the resource files determines the initial
defaults for protocol implementations. The methods, getProviders() ,
{getProvider() and setProvider() allow the client to discover the available
(installed) protocol implementations, and to set the protocols to be used by default.

At runtime, an application may set the default implementation for a particular
protocol. It can set the mail.protocol .class property when it creates the Session
object. This property specifies the class to use for a particular protocol. The
getProvider() method consults this property first.

The code can also call setProviders() passing in a Provider that was returned by
the discovery methods. A Provider object cannot be explicitly created; it must be
retrieved using the getProviders() method.

protocol=imap; type=store;
class=com.sun.mail.imap.IMAPStore;
vendor=SunMicrosystems,Inc;
protocol=smtp; type=transport;
class=com.sun.mail.smtp.SMTPTransport;

rfc822=smtp
news=nntp
JavaMail API Design Specification August 1998

29 Chapter 5: The Mail Session
The Provider Registry
In either case, the provider specified must be one of the ones configured in the
resource files. Note that the methods described here allow the client to choose from
among preconfigured implementations, but doesn’t allow it to configure a new
implementation.

Example Scenarios
Scenario 1: The client application invokes the default protocols:
class Application1 {
 init() {
 // application properties include the JavaMail
 // required properties: mail.store.protocol,
 // mail.transport.protocol, mail.host, mail.user
 Properties props = loadApplicationProps();
 Session session = Session.getInstance(props, null);

 // get the store implementation of the protocol
 // defined in mail.store.protocol; the implementation
 // returned will be defined by the order of entries in
 // javamail.providers & javamail.default.providers
 try {
 Store store = session.getStore();
 store.connect();
 } catch (MessagingException mex) {}
 ...
 }
}

Scenario 2: The client application presents available implementations to the user and
then sets the user’s choice as the default implementation:
class Application2 {
 init() {
 // application properties include the JavaMail
 // properties: mail.store.protocol,
 // mail.transport.protocol, mail.host, mail.user
 Properties props = loadApplicationProps();
 Session session = Session.getInstance(props, null);

 // find out which implementations are available
 Provider[] providers = session.getProviders();

 // ask the user which implementations to use
 // user’s response may include a number of choices,
 // i.e. imap & nntp store providers & smtp transport
 Provider[] userChosenProviders =
 askUserWhichProvidersToUse(providers);

 // set the defaults based on users response
 for (int i = 0; i < userChosenProviders.length; i++)
 session.setProvider(userChosenProviders[i]);
JavaMail API Design Specification August 1998

30 Chapter 5: The Mail Session
Managing Security
 // get the store implementation of the protocol
 // defined in mail.store.protocol; the implementation
 // returned will be the one configured previously
 try {
 Store store = session.getStore();
 store.connect();
 } catch (MessagingException mex) {}
 ...
 }
}

Scenario 3: Application wants to specify an implementation for a given protocol:
class Application3 {
 init() {
 // application properties include the JavaMail
 // required properties: mail.store.protocol,
 // mail.transport.protocol, mail.host, mail.user
 Properties props = loadApplicationProps();

 // hard-code an implementation to use
 // "com.acme.SMTPTRANSPORT"

 props.put("mail.smtp.class", "com.acme.SMTPTRANSPORT");
 Session session = Session.getInstance(props, null);

 // get the smtp transport implementation; the
 // implementation returned will be com.acme.SMTPTRANSPORT
 // if it was correctly configured in the resource files.
 // If com.acme.SMTPTRANSPORT can’t be loaded, a
 // MessagingException is thrown.
 try {
 Transport transport = session.getTransport("smtp");
 } catch (MessagingException mex) {
 quit();
 }
 }
 ...
}

Managing Security
The Session class allows messaging system implementations to use the
Authenticator object that was registered when the session was created. The
Authenticator object is created by the application and allows interaction with the
user to obtain a user name and password. The user name and password is returned in
a PasswordAuthentication object. The messaging system implementation can ask
the session to associate a user name and password with a particular message store
using the setPasswordAuthentication method. This information is retrieved
using the getPasswordAuthentication method. This avoids the need to ask the
JavaMail API Design Specification August 1998

31 Chapter 5: The Mail Session
Store and Folder URLs
user for a password when reconnecting to a Store that has disconnected, or when a
second application sharing the same session needs to create its own connection to the
same Store .

Messaging system implementations can register PasswordAuthentication objects
with the Session object for use later in the session or for use by other users of the
same session. Because PasswordAuthentication objects contain passwords, access
to this information must be carefully controlled. Applications that create Session
objects must restrict access to those objects appropriately. In addition, the Session
class shares some responsibility for controlling access to the default Session object.

The first call to getDefaultInstance creates a new Session object and associates
the Authenticator object with the Session object. Later calls to
getDefaultInstance compare the Authenticator object passed in, to the
Authenticator object saved in the default session. If both objects have been loaded
by the same class loader, then getDefaultInstance will allow access to the default
session. Typically, this is the case when both the creator of the default session and the
code requesting access to the default session are in the same "security domain." Also,
if both objects are null, access is allowed. This last case is discouraged because setting
objects to null allows access to the default session from any security domain.

In the future, JDK 1.2 security Permissions could control access to the default session.
Note that the Authenticator and PasswordAuthentication classes and their
use in JavaMail is similar to the classes with the same names provided in the
java.net package in JDK 1.2. As new authentication mechanisms are added to the
system, new methods can be added to the Authenticator class to request the
needed information. The default implementations of these new methods will fail, but
new clients that understand these new authentication mechanisms can provide
implementations of these methods. New classes other than
PasswordAuthentication could be needed to contain the new authentication
information, and new methods could be needed in the Session class to store such
information. JavaMail design evolution will be patterned after the corresponding JDK
classes.

Store and Folder URLs
To simplify message folder naming and to minimize the need to manage Store and
Transport objects, folders can be named using URLNames. URLNames are similar
to URLs except they only include the parsing of the URL string. The Session class
provides methods to retrieve a Folder object given a URLName:

or

Folder f = session.getFolder(URLName);

Store s = session.getStore(URLName);
JavaMail API Design Specification August 1998

32 Chapter 5: The Mail Session
Store and Folder URLs
JavaMail API Design Specification August 1998

33
Chapter 6:

Message Storage and Retrieval

This section describes JavaMail message storage facilities supported by the Store
and Folder classes.

Messages are contained in Folders . New messages are usually delivered to folders
by a transport protocol or a delivery agent. Clients retrieve messages from folders
using an access protocol.

The Store Class
The Store class defines a database that holds a Folder hierarchy and the messages
within. The Store also defines the access protocol used to access folders and retrieve
messages from folders. Store is an abstract class. Subclasses implement specific
message databases and access protocols.

Clients gain access to a Message Store by obtaining a Store object that implements
the database access protocol. Most message stores require the user to be authenticated
before they allow access. The connect method performs that authentication.

For many message stores, a host name, user name, and password are sufficient to
authenticate a user. The JavaMail API provides a connect method that takes this
information as input parameters. Store also provides a default connect method. In
either case, the client can obtain missing information from the Session object’s
properties, or by interacting with the user by accessing the Session ’s
Authenticator object.

The default implementation of the connect method in the Store class uses these
techniques to retrieve all needed information and then calls the protocolConnect
method. The messaging system must provide an appropriate implementation of this
method. The messaging system can also choose to directly override the connect
method.

By default, Store queries the following properties for the user name and host name:

■ mail.user property, or user.name system property (if mail.user is not set)
■ mail.host

These global defaults can be overridden on a per-protocol basis by the properties:

■ mail.protocol.user
■ mail.protocol.host
JavaMail API Design Specification August 1998

34 Chapter 6: Message Storage and Retrieval
The Folder Class
Note that passwords can not be specified using properties.

The Store presents a default namespace to clients. Store implementations can also
present other namespaces. The getDefaultFolder method on Store returns the
root folder for the default namespace.

Clients terminate a session by calling the close method on the Store object. Once a
Store is closed (either explicitly using the close method; or externally, if the Mail
server fails), all Messaging components belonging to that Store become invalid.
Typically, clients will try to recover from an unexpected termination by calling
connect to reconnect to the Store object, and then fetching new Folder objects and
new Message objects.

Store Events
Store sends the following events to interested listeners:

The Folder Class
The Folder class represents a folder containing messages. Folders can contain
subfolders as well as messages, thus providing a hierarchical structure. The getType
method returns whether a Folder can hold subfolders, messages, or both. Folder is
an abstract class. Subclasses implement protocol-specific Message Folders.

The getDefaultFolder method for the corresponding Store object returns the
root folder of a user’s default folder hierarchy. The list method for a Folder
returns all the subfolders under that folder. The getFolder (String name) method
for a Folder object returns the named subfolder. Note that this subfolder need not
exist physically in the store. The exists method in a folder indicates whether this
folder exists. A folder is created in the store by invoking its create method.

ConnectionEvent Generated when a connection is successfully made to the Store ,
or when an existing connection is terminated or disconnected.

StoreEvent Communicates alerts and notification messages from the Store
to the end user. The getMessageType method returns the event
type, which can be one of: ALERT or NOTICE. The client must
display ALERT events in some fashion that calls the user’s
attention to the message.

FolderEvent Communicates changes to any folder contained within the Store .
These changes include creation of a new Folder , deletion of an
existing Folder , and renaming of an existing Folder .
JavaMail API Design Specification August 1998

35 Chapter 6: Message Storage and Retrieval
The Folder Class
A closed Folder object allows certain operations, including deleting the folder,
renaming the folder, listing subfolders, creating subfolders and monitoring for new
messages. The open method opens a Folder object. All Folder methods except
open , delete , and renameTo are valid on an open Folder object. Note that the
open method is applicable only on Folder objects that can contain messages.

The messages within a Folder are sequentially numbered, from 1 through the total
number of messages. This ordering is referred to as the “mailbox order” and is
usually based on the arrival time of the messages in the folder. As each new message
arrives into a folder, it is assigned a sequence number that is one higher than the
previous number of messages in that folder. The getMessageNumber method on a
Message object returns its sequence number.

The sequence number assigned to a Message object is valid within a session, but only
as long as it retains its relative position within the Folder . Any change in message
ordering can change the Message object’s sequence number. Currently this occurs
when the client calls expunge to remove deleted messages and renumber messages
remaining in the folder.

A client can reference a message stored within a Folder either by its sequence
number, or by the corresponding Message object itself. Since a sequence number can
change within a session, it is preferable to use Message objects rather than sequence
numbers as cached references to messages. Clients extending JavaMail are expected to
provide light-weight Message objects that get filled ’on-demand’, so that calling the
getMessages method on a Folder object is an inexpensive operation, both in terms
of CPU cycles and memory. For instance, an IMAP implementation could return
Message objects that contain only the corresponding IMAP UIDs.

The FetchProfile Method
The Message objects returned by a Folder object are expected to be light-weight
objects. Invoking getxxx methods on a Message cause the corresponding data items
to be loaded into the object on demand. Certain Store implementations support
batch fetching of data items for a range of Messages. Clients can use such
optimizations, for example, when filling the header-list window for a range of
messages. The FetchProfile method allows a client to list the items it will fetch in
a batch for a certain message range.

The following code illustrates the use of FetchProfile when fetching Messages
from a Folder . The client fills its header-list window with the Subject , From, and
X-mailer headers for all messages in the folder.

Message[] msgs = folder.getMessages();
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.Item.ENVELOPE);
fp.add("X-mailer");
folder.fetch(msgs, fp);
for (int i = 0; i < folder.getMessageCount(); i++) {

display(msgs[i].getFrom());
display(msgs[i].getSubject());
display(msgs[i].getHeader("X-mailer"));

}

JavaMail API Design Specification August 1998

36 Chapter 6: Message Storage and Retrieval
The Folder Class
Folder Events
Folders generate events to notify listeners of any change in either the folder or in its
Messages list. The client can register listeners to a closed Folder , but generates a
notification event only after that folder is opened.

Folder supports the following events:

ConnectionEvent This event is generated when a Folder is opened or closed.

When a Folder closes (either because the client has called close
or from some external cause), all Messaging components belonging
to that Folder become invalid. Typically, clients will attempt to
recover by reopening that Folder , and then fetching Message
objects.

FolderEvent This event is generated when the client creates, deletes or renames
this folder. Note that the Store object containing this folder can
also generate this event.

MessageCountEvent This event notifies listeners that the message count has changed.
The following actions can cause this change:
• Addition of new Messages into the Folder, either by a delivery

agent or because of an append operation. The new Message
objects are included in the event.

• Removal of existing messages from this Folder . Removed
messages are referred to as expunged messages. The
isExpunged method returns true for removed Messages and the
getMessageNumber method returns the original sequence
number assigned to that message. All other Message methods
throw a MessageRemovedException . See “The Folder Class” on
page 34 for a discussion of removing deleted messages in shared
folders. The expunged Message objects are included in the event.
An expunged message is invalid and should be pruned from the
client’s view as early as possible. See “The Expunge Process” on
page 37 for details on the expunge method.
JavaMail API Design Specification August 1998

37 Chapter 6: Message Storage and Retrieval
The Folder Class
The Expunge Process
Deleting messages from a Folder is a two-phase operation. Setting the DELETED flag
on messages marks them as deleted, but it does not remove them from the Folder. The
deleted messages are removed only when the client invokes the expunge method on
that Folder pbject. The Folder object then notifies listeners by firing an appropriate
MessageEvent . The MessageEvent object contains the expunged Message objects.
Note that the expunge method also returns the expunged Message objects. The
Folder object also renumbers the messages falling after the expunged messages in
the message list. Thus, when the expunge method returns, the sequence number of
those Message objects will change. Note, however, that the expunged messages still
retain their original sequence numbers.

Since expunging a folder can remove some messages from the folder and renumber
others, it is important that the client synchronize itself with the expunged folder as
early as possible. The next sections describe a set of recommendations for clients
wanting to expunge a Folder :

■ Expunge the folder; close it; and then reopen and refetch messages from that
Folder. This ensures that the client was notified of the updated folder state. In
fact, the client can just issue the close method with the expunge parameter set
to true to force an expunge of the Folder during the close operation, thus even
avoiding the explicit call to expunge .

■ The previous solution might prove to be too simple or too drastic in some
circumstances. This paragraph describes the scenario of a more complex client
expunging a single access folder; for example, a folder that allows only one read-
write connection at a time. The recommended steps for such a client after it issues
the expunge command on the folder are:

■ Update its message count, either by decrementing it by the number of
expunged messages, or by invoking the getMessageCount method on the
Folder .

■ If the client uses sequence numbers to reference messages, it must account for
the renumbering of Message objects subsequent to the expunged messages.
Thus if a folder has 5 messages as shown below, (sequence numbers are
within parenthesis), and if the client is notified that messages A and C are
removed, it should account for the renumbering of the remaining messages as
shown in the second figure.
JavaMail API Design Specification August 1998

38 Chapter 6: Message Storage and Retrieval
The Folder Class
FIGURE 6-1

.

■ The client should prune expunged messages from its internal storage as early as
possible.

■ The expunge process becomes complex when dealing with a shared folder that
can be edited. Consider the case where two clients are operating on the same
folder. Each client possesses its own Folder object, but each Folder object actually
represents the same physical folder.

If one client expunges the shared folder, any deleted messages are physically removed
from the folder. The primary client can probably deal with this appropriately since it
initiated this process and is ready to handle the consequences. However, secondary
clients are not guaranteed to be in a state where they can handle an unexpected
Message removed event—especially if the client is heavily multithreaded or if it uses
sequence numbers.

To allow clients to handle such situations gracefully, the JavaMail API applies
following restrictions to Folder implementations:

■ A Folder can remove and renumber its Messages only when it is explicitly
expunged using the expunge method. When the folder is implicitly expunged, it
marks any expunged messages as expunged, but it still maintains access to those
Message objects. This means that the following state is maintained when the
Folder is implicitly expunged:

■ getMessages returns expunged Message objects together with valid
message objects. However; an expunged message can throw the
MessageExpungedException if direct access is attempted.

■ The messages in the Folder should not be renumbered.

■ The implicit expunge operation can not change the total Folder message
count.

A Folder can notify listeners of “implicit” expunges by generating appropriate
MessageEvents . However, the removed field in the event must be set to false to
indicate that the message is still in the folder. When this Folder is explicitly
expunged, then the Folder must remove all expunged messages, renumber its
internal Message cache, and generate MessageEvents for all the expunged messages,
with each removed flag set to true .

A (1) B (2) C (3) D (4) E (5)

D (2) E (3)B (1)
JavaMail API Design Specification August 1998

39 Chapter 6: Message Storage and Retrieval
The Search Process
The recommended set of actions for a client under the above situation is as follows:

■ Multithreaded clients that expect to handle shared folders are advised not to use
sequence numbers.

■ If a client receives a MessageEvent indicating message removal, it should check
the removed flag. If the flag is false, this indicates that another client has removed
the message from this folder. This client might want to issue an expunge request
on the folder object to synchronize it with the physical folder (but note the
caveats in the previous section about using a shared folder). Alternatively, this
client might want to close the Folder object (without expunging) and reopen it
to synchronize with the physical folder (but note that all message objects would
need to be refreshed in this case). The client may also mark the expunged
messages in order to notify the end user.

■ If the removed flag was set to true , the client should follow earlier
recommendations on dealing with explicit expunges.

The Search Process
Search criteria are expressed as a tree of search-terms, forming a parse tree for the
search expression. The SearchTerm class represents search terms. This is an abstract
class with a single method:

Subclasses implement specific matching algorithms by implementing the match
method. Thus new search terms and algorithms can be easily introduced into the
search framework by writing the required code using the Java programming
language.

The search package provides a set of standard search terms that implement specific
match criteria on Message objects. For example, SubjectTerm pattern-matches the
given String with the subject header of the given message.

public boolean match(Message msg);

public final class SubjectTerm extends StringTerm {
public SubjectTerm(String pattern);
public boolean match(Message m);

}

JavaMail API Design Specification August 1998

40 Chapter 6: Message Storage and Retrieval
The Search Process
The search package also provides a set of standard logical operator terms that can be
used to compose complex search terms. These include AndTerm, OrTerm and
NotTerm .

The Folder class supports searches on messages through these search method
versions:

These methods return the Message objects matching the specified search term. The
default implementation applies the search term on each Message object in the
specified range. Other implementations may optimize this; for example, the IMAP
Folder implementation maps the search term into an IMAP SEARCH command that
the server executes.

final class AndTerm extends SearchTerm {
public AndTerm(SearchTerm t1, SearchTerm t2);
public boolean match(Message msg) {

// The AND operator
for (int i=0; i < terms.length; i++)
if (!terms[i].match(msg))

return false;
return true;

}
}

public Message[] search(SearchTerm term)
public Message[] search(SearchTerm term, Message[] msgs)
JavaMail API Design Specification August 1998

41
Chapter 7:

The JavaBeans Activation Framework

JavaMail relies heavily on the JavaBeans Activation Framework (JAF) to determine
the MIME data type, to determine the commands available on that data, and to
provide a software component corresponding to a particular behavior. The JAF
specification is part of the "Glasgow" JavaBeans specification. More details can be
obtained from http://java.sun.com/beans/glasgow/jaf.html

This section explains how the JavaMail and JAF APIs work together to manage
message content. It describes how clients using JavaMail can access and operate on
the content of Messages and BodyPart s. This discussion assumes you are familiar
with the JAF specification posted at http://java.sun.com.

Accessing the Content
For a client using JavaMail, arbitrary data is introduced to the system in the form of
mail messages. The javax.mail.Part interface allows the client to access the
content. Part consists of a set of attributes and a "content". The Part interface is the
common base interface for Messages and BodyPart s. A typical mail message has
one or more body parts, each of a particular MIME type.

Anything that deals with the content of a Part will use the Part ’s DataHandler .
The content is available through the DataHandler s either as an InputStream or as
an object in the Java programming language. The Part also defines convenience
methods that call through to the DataHandler . For example: the Part.getContent
method is the same as calling Part.getDataHandler().getContent() and the
Part.getInputStream method is the same as
Part.getDataHandler().getInputStream() .

The content returned (either via an InputStream or an object in the Java
programmin language) depends on the MIME type. For example: a Part that contains
textual content returns the following:

■ The Part.getContentType method returns text/plain

■ The Part.getInputStream method returns an InputStream containing the
bytes of the text

■ The Part.getContent method returns a java.lang.String object
JavaMail API Design Specification August 1998

42 Chapter 7: The JavaBeans Activation Framework
Accessing the Content
Content is returned either as an input stream, or as an object in the Java programming
language.

■ When an InputStream is returned, any mail-specific encodings are decoded
before the stream is returned.

■ When an object in the Java programming language is returned using the
getContent method, the type of the returned object depends upon the content
itself. In the JavaMail API, any Part with a main content type set to
“multipart/ ” (any kind of multipart) should return a
javax.mail.Multipart object from the getContent method. A Part with a
content type of message/rfc822 returns a javax.mail.Message object from
the getContent method.

Example: Message Output
This example shows how you can traverse Part s and display the data contained in a
message.

public void printParts(Part p) {
Object o = p.getContent();
if (o instanceof String) {

System.out.println("This is a String");
System.out.println((String)o);

} else if (o instanceof Multipart) {
System.out.println("This is a Multipart");
Multipart mp = (Multipart)o;
int count = mp.getCount();
for (int i = 0; i < count; i++) {

printParts(mp.getBodyPart(i));
}

} else if (o instanceof InputStream) {
 System.out.println("This is just an input stream");
 InputStream is = (InputStream)o;
 int c;
 while ((c = is.read()) != -1)

System.out.write(c);
}

}

JavaMail API Design Specification August 1998

43 Chapter 7: The JavaBeans Activation Framework
Operating on the Content
Operating on the Content
The DataHandler allows clients to discover the operations available on the content
of a Message , and to instantiate the appropriate JavaBeans to perform those
operations. The most common operations on Message content are view, edit and print.

Example: Viewing a Message
Consider a Message “Viewer” Bean that presents a user interface that displays a mail
message. This example shows how a viewer bean can be used to display the content
of a message (that usually is text/plain , text/html , or multipart/mixed).

Note – Perform error checking to ensure that a valid Component was created.

Example: Showing Attachments
In this example, the user has selected an attachment and wishes to display it in a
separate dialog. The client locates the correct viewer object as follows.

See “Setting Message Content” on page 47 for examples that construct a message for a
send operation.

// message passed in as parameter
void setMessage(Message msg) {

DataHandler dh = msg.getDataHandler();
CommandInfo cinfo = dh.getCommand("view");
Component comp = dh.getBean(cinfo);
this.setMainViewer(comp);

}

// Retrieve the BodyPart from the current attachment
BodyPart bp = getSelectedAttachment();

DataHandler dh = bp.getDataHandler();
CommandInfo cinfo = dh.getCommand("view");
Component comp = dh.getBean(cinfo);

// Add viewer to dialog Panel
MyDialog myDialog = new MyDialog();
myDialog.add(viewer);

// display dialog on screen
myDialog.show();
JavaMail API Design Specification August 1998

44 Chapter 7: The JavaBeans Activation Framework
Adding Support for Content Types
Adding Support for Content Types
Support for commands acting on message data is an implementation task left to the
client. JavaMail and JAF APIs intend for this support to be provided by a JAF-Aware
JavaBean. Almost all data will require edit and view support.

Currently, the JavaMail API does not provide viewer JavaBeans. The JAF does provide
two very simple JAF-aware viewer beans: A Text Viewer and Image Viewer. These
beans handle data where content-type has been set to text/plain or image/gif .

Developers writing a JavaMail client need to write additional viewers that support
some of the basic content types—specifically message/rfc822 , multipart/mixed ,
and text/plain . These are the usual content-types encountered when displaying a
Message , and they provide the look and feel of the application.

Content developers providing additional data types should refer to the JAF
specification, that discusses how to create DataContentHandlers and Beans that
operate on those contents.
JavaMail API Design Specification August 1998

45
Chapter 8:

Message Composition

This section describes the process used to instantiate a message object, add content to
that message, and send it to its intended list of recipients.

The JavaMail API allows a client program to create a message of arbitrary complexity.
Messages are instantiated from the Message subclass. The client program can
manipulate any message as if it had been retrieved from a Store .

Building a Message Object
To create a message, a client program instantiates a Message object, sets appropriate
attributes, and then inserts the content.

■ The attributes specify the message address and other values necessary to send,
route, receive, decode and store the message. Attributes also specify the message
structure and data content type.

■ Message content is carried in a DataHandler object, that carries either data or a
Multipart object. A DataHandler carries the content body and provides
methods the client uses to handle the content. A Multipart object is a container
that contains one or more Bodypart objects, each of which can in turn contain
DataHandler objects.

Message Creation
javax.mail.Message is an abstract class that implements the Part interface.
Therefore, to create a message object, select a message subclass that implements the
appropriate message type.

For example, to create a Mime message, a JavaMail client instantiates an empty
javax.mail.internet.MimeMessage object passing the current Session object
to it:

Message msg = new MimeMessage(session);
JavaMail API Design Specification August 1998

46 Chapter 8: Message Composition
Setting Message Attributes
Setting Message Attributes
The Message class provides a set of methods that specify standard attributes
common to all messages. The MimeMessage class provides additional methods that
set MIME-specific attributes. The client program can also set non-standard attributes
(custom headers) as name-value pairs.

The methods for setting standard attributes are listed below:

The Part interface specifies the following method, that sets custom headers:

The setRecipients method takes a RecipientType as its first parameter, which
specifies which recipient field to use. Currently, Message.RecipientType.TO ,
Message.RecipientType.CC , and Message.RecipientType.BCC are defined.
Additional RecipientType s may be defined as necessary.

The Message class provides two versions of the of the setFrom method:

■ setFrom(Address addr) specifies the sender explicitly from an Address
object parameter.

■ setFrom retrieves the sender’s username from the local system.

The code sample below sets attributes for the MimeMessage just created. First, it
instantiates Address objects to be used as To and From addresses. Then, it calls set
methods, which equate those addresses to appropriate message attributes:

public class Message {
public void setFrom(Address addr);
public void setFrom(); // retrieves from system
public void setRecipients(RecipientType type, Address[] addrs);
public void setReplyTo(Address[] addrs);
public void setSentDate(Date date);
public void setSubject(String subject);
...

}

public void setHeader(String name, String value)

toAddrs[] = new InternetAddress[1];
toAddrs[0] = new InternetAddress("luke@rebellion.gov");
Address fromAddr =
 new InternetAddress("han.solo@smuggler.com");

msg.setFrom(fromAddr);
msg.setRecipients(Message.RecipientType.TO, toAddrs);
msg.setSubject("Takeoff time.");
msg.setSentDate(new Date());
JavaMail API Design Specification August 1998

47 Chapter 8: Message Composition
Setting Message Content
Setting Message Content
The Message object carries content data within a DataHandler object. To add
content to a Message , a client creates content, instantiates a DataHandler object,
places content into that DataHandler object, and places that object into a Message
object that has had its attributes defined.

The JavaMail API provides two techniques that set message content. The first
technique uses the setDataHandler method. The second technique uses the
setContent method.

Typically, clients add content to a DataHandler object by calling
setDataHandler(DataHandler) on a Message object. The DataHandler is an
object that encapsulates data. The data is passed to the DataHandler constructor as
either a DataSource (a stream connected to the data) or as an object in the Java
programming language. The InputStream object creates the DataSource . See “The
JavaBeans Activation Framework” on page 41 for additional information.

The code sample below shows how to place text content into an InternetMessage.
First, create the text as a string object. Then, pass the string into a DataHandler
object, together with its MIME type. Finally, add the DataHandler object to the
message object:

Alternately, setContent implements a simpler technique that takes the data object
and its MIME type. setContent creates the DataHandler object automatically:

public class DataHandler {
DataHandler(DataSource dataSource);
DataHandler(Object data, String mimeType);

}

// create brief message text
String content = "Leave at 300.";

// instantiate the DataHandler object

DataHandler data = new DataHandler(content, "text/plain");

// Use setDataHandler() to insert data into the
// new Message object

 msg.setDataHandler(data);

// create the message text
String content = "Leave at 300.";

// call setContent to pass content and content type
// together into the message object

msg.setContent(content, "text/plain");
JavaMail API Design Specification August 1998

48 Chapter 8: Message Composition
Building a MIME Multipart Message
When the client calls Transport.send() to send this message, the recipient will
receive the message below, using either technique:

 Building a MIME Multipart Message
Follow these steps to create a MIME Multipart Message:

1. Instantiate a new MimeMultipart object, or a subclass.

2. Create MimeBodyParts for the specific message parts. Use the setContent
method or the setDataHandler method to create the content for each
Bodypart , as described in the previous section.

Note – The default subtype for a MimeMultipart object is mixed. It can be set to other
subtypes as required. MimeMultipart subclasses might already have their subtype
set appropriately.

Date: Wed, 23 Apr 1997 22:38:07 -0700 (PDT)
From: han.solo@smuggler.com
Subject: Takeoff time
To: luke@rebellion.gov

Leave at 300.
JavaMail API Design Specification August 1998

49 Chapter 8: Message Composition
Building a MIME Multipart Message
3. Insert the Multipart object into the Message object by calling
setContent(Multipart) within a newly-constructed Message object.

The example below creates a Multipart object and then adds two message parts
to it. The first message part is a text string, “Spaceport Map,” and the second
contains a document of type “application/postscript.” Finally, this multipart
object is added to a MimeMessage object of the type described above.

After all message parts are created and inserted, call the saveChanges methodto
ensure that the client writes appropriate message headers. This is identical to the
process followed with a single part message. Note that the JavaMail API calls the
saveChanges method implicitly during the send process, so invoking it is
unnecessary and expensive if the message is to be sent immediately.

// Instantiate a Multipart object
MimeMultipart mp = new MimeMultipart();

// create the first bodypart object
MimeBodyPart b1 = new MimeBodyPart();

// create textual content
// and add it to the bodypart object
b1.setContent("Spaceport Map","text/plain");
mp.addBodyPart(b1);

// Multipart messages usually have more than
// one body part. Create a second body part
// object, add new text to it, and place it
// into the multipart message as well. This
// second object holds postscript data.

MimeBodyPart b2 = new MimeBodyPart(); b2.setContent(map,"application/
postscript");
mp.addBodyPart(b2);

// Create a new message object as described above,
// and set its attributes. Add the multipart
// object to this message and call saveChanges()
// to write other message headers automatically.

Message msg = new MimeMessage(session);

// Set message attrubutes as in a singlepart
// message.

msg.setContent(mp); // add Multipart
msg.saveChanges(); // save changes
JavaMail API Design Specification August 1998

50 Chapter 8: Message Composition
Building a MIME Multipart Message
JavaMail API Design Specification August 1998

51
Chapter 9:

Transport Protocols and Mechanisms

The Transport abstract class defines the message submission and transport protocol.
Subclasses of the Transport class implement SMTP and other transport protocols.

Obtaining the Transport Object
The Transport object is seldom explicitly created. The getTransport method
obtains a Transport object from the Session factory. The JavaMail API provides
three versions of the getTransport method:

■ getTransport(Address address) returns the implementation of the
transport class based on the address type. A user-extensible map defines which
transport type to use for a particular address. For example, if the address is an
InternetAddress , and InternetAddress is mapped to a protocol that
supports SMTP then SMTPTransport can be returned.

■ The client can also call getTransport("SMTP") to request SMTP, or another
transport implementation protocol.

■ getTransport() returns the transport specified in the
mail.transport.protocol property.

See “The Mail Session” on page 25 for details.

Transport Methods
The Transport class provides the connect and protocolConnect methods,
which operate similarly to those on the Store class. See “The Store Class” on page 33
for details.

A Transport object generates a ConnectionEvent to notify its listeners of a
successful or a failed connection. A Transport object can throw an IOException if
the connection fails.

public class Session {
public Transport getTransport(Address address);
public Transport getTransport(String protocol);
public Transport getTransport();

}

JavaMail API Design Specification August 1998

52 Chapter 9: Transport Protocols and Mechanisms
Transport Events
Transport implementations should ensure that the message specified is of a known
type. If the type is known, then the Transport object sends the message to its
specified destinations. If the type is not known, then the Transport object can
attempt to reformat the Message object into a suitable version using gatewaying
techniques, or it can throw a MessagingException , indicating failure. For example,
the SMTP transport implementation recognizes MimeMessages . It invokes the
writeTo method on a MimeMessage object to generate a RFC822 format byte stream
that is sent to the SMTP host.

The message is sent using the Transport.send static method or the sendMessage
instance method. The Transport.send method is a convenience method that
instantiates the transports necessary to send the message, depending on the
recipients’ addresses, and then passes the message to each transport’s sendMessage
method. Alternatively, the client can get the transport that implements a particular
protocol itself and send the message using the sendMessage method. This adds the
benefit of being able to register as event listeners on the individual transports.

Note that the Address[] argument passed to the send and sendMessage methods
do not need to match the addresses provided in the message headers. Although these
arguments usually will match, the end-user determines where the messages are
actually sent. This is useful for implementing the Bcc: header, and other similar
functions.

Transport Events
Clients can register as listeners for events generated by transport implementations.
(Note that the abstract Transport class doesn’t fire any events, only particular
protocol implementations generate events). There are two events generated:
ConnectionEvent and TransportEvent .

ConnectionEvent
If the transport connects successfully, it will fire the ConnectionEvent with the type
set to OPENED. If the connection times out or is closed, ConnectionEvent with type
CLOSED is generated.
JavaMail API Design Specification August 1998

53 Chapter 9: Transport Protocols and Mechanisms
Transport Events
TransportEvent
The sendMessage method generates a TransportEvent to its listeners. That event
contains information about the method’s success or failure. There are three types of
TransportEvent: MESSAGE_DELIVERED, MESSAGE_NOT_DELIVERED,
MESSAGE_PARTIALLY_DELIVERED. The event contains three arrays of addresses:
validSent[], validUnsent[] and invalid[] that list the valid and invalid
addresses for this message and protocol.

Transport Event Description

MESSAGE_DELIVERED When the message has been successfully sent to all
recipients by this transport. validSent[] contains all
the addresses. validUnsent[] and invalid[] are
null.

MESSAGE_NOT_DELIVERED When ValidSent[] is null, the message was not
successfully sent to any recipients. validUnsent[] may
have addresses that are valid. invalidSent[] may
contain invalid addresses.

MESSAGE_PARTIALLY_DELIVERED Message was successfully sent to some recipients but not
to all. ValidSent[] holds addresses of recipients to
whom the message was sent. validUnsent[] holds valid
addresses but the message wasn’t sent to them.
invalid[] holds invalid addresses.
JavaMail API Design Specification August 1998

54 Chapter 9: Transport Protocols and Mechanisms
Using The Transport Class
Using The Transport Class
The code segment below sends a MimeMessage using a Transport class
implementing the SMTP protocol. The client creates two InternetAddress objects
that specify the recipients and retrieves a Transport object from the default
Session that supports sending messages to Internet addresses. Then the Session
object uses a Transport object to send the message.

// Get a session
Session session = Session.getInstance(props, null);

// Create an empty MimeMessage and its part
Message msg = new MimeMessage(session);
... add headers and message parts as before

// create two destination addresses
Address[] addrs = {new InternetAddress("mickey@disney.com"),
 new InternetAddress("goofy@disney.com")};

// get a transport that can handle sending message to
// InternetAddresses. This will probably map to a transport
// that supports SMTP.
Transport trans = session.getTransport(addrs[0]);

// add ourselves as ConnectionEvent and TransportEvent listeners
trans.addConnectionListener(this);
trans.addTransportListener(this);

// connect method determines what host to use from the
// session properties
trans.connect();

// send the message to the addresses we specified above
trans.sendMessage(msg, addrs);
JavaMail API Design Specification August 1998

55
Chapter 10:

Internet Mail

The JavaMail specification does not define any implementation. However, the API
does include a set of classes that implement Internet Mail standards. Although not
part of the specification, these classes can be considered part of the JavaMail package.
They show how to adapt an existing messaging architecture to the JavaMail
framework.

These classes implement the Internet Mail Standards defined by the RFCs listed
below:

■ RFC822 (Standard for the Format of Internet Text Messages)
■ RFC2045, RFC2046, RFC2047 (MIME)

RFC822 describes the structure of messages exchanged across the Internet. Messages
are viewed as having a header and contents. The header is composed of a set of
standard and optional header fields. The header is separated from the content by a
blank line. The RFC specifies the syntax for all header fields and the semantics of the
standard header fields. It does not however, impose any structure on the message
contents.

The MIME RFCs 2045, 2046 and 2047 define message content structure by defining
structured body parts, a typing mechanism for identifying different media types, and
a set of encoding schemes to encode data into mail-safe characters.

The Internet Mail package allows clients to create, use and send messages conforming
to the standards listed above. It gives service providers a set of base classes and
utilities they can use to implement Stores and Transports that use the Internet mail
protocols. See “MimeMessage Object Hierarchy” on page 81 for a Mime class and
interface hierarchy diagram.

The JavaMail MimePart interface models an entity as defined in RFC2045, Section 2.4.
MimePart extends the JavaMail Part interface to add MIME-specific methods and
semantics. The MimeMessage and MimeBodyPart classes implement the MimePart
interface. The following figure shows the class hierarchy of these classes.
JavaMail API Design Specification August 1998

56 Chapter 10: Internet Mail
The MimeMessage Class
FIGURE 10-1

The MimeMessage Class
The MimeMessage class extends Message and implements MimePart . This class
implements an email message that conforms to the RFC822 and MIME standards.

The MimeMessage class provides a default constructor that creates an empty
MimeMessage object. The client can fill in the message later by invoking the parse
method on an RFC822 input stream. Note that the parse method is protected, so that
only this class and its subclasses can use this method. Service providers implementing
’light-weight’ Message objects that are filled in on demand can generate the
appropriate byte stream and invoke the parse method when a component is
requested from a message. Service providers that can provide a separate byte stream
for the message body (distinct from the message header) can override the
getContentStream method.

The client can also use the default constructor to create new MimeMessage objects for
sending. The client sets appropriate attributes and headers, inserts content into the
message object, and finally calls the send method for that MimeMessage object.

MimePartMessage

MimeMessage

MimePartBodyPart

MimeBodyPart

Legend

Extends

Implements
JavaMail API Design Specification August 1998

57 Chapter 10: Internet Mail
The MimeBodyPart Class
This code sample creates a new MimeMessage object for sending. See “Message
Composition” on page 45 and “Transport Protocols and Mechanisms” on page 51 for
details.

The MimeMessage class also provides a constructor that uses an input stream to
instantiate itself. The constructor internally invokes the parse method to fill in the
message. The InputStream object is left positioned at the end of the message body.

MimeMessage implements the writeTo method by writing an RFC822-formatted
byte stream of its headers and body. This is accomplished in two steps: First, the
MimeMessage object writes out its headers; then it delegates the rest to the
DataHandler object representing the content.

The MimeBodyPart Class
The MimeBodyPart class extends BodyPart and implements the MimePart
interface. This class represents a Part inside a Multipart . MimeBodyPart
implements a BodyPart as defined by RFC2045, Section 2.5.

The getBodyPart(int index) returns the MimeBodyPart object at the given
index. MimeMultipart also allows the client to fetch MimeBodyPart objects based
on their Content-IDs.

The addBodyPart method adds a new MimeBodyPart object to a MimeMultipart
as a step towards constructing a new multipart MimeMessage.

MimeMessage m = new MimeMessage(session);
// Set FROM:
m.setFrom(new InternetAddress("jmk@Sun.COM"));
// Set TO:
InternetAddress a[] = new InternetAddress[1];
a[0] = new InternetAddress("javamail@Sun.COM");
m.setRecipients(Message.RecipientType.TO, a);
// Set content
m.setContent(data, "text/plain");
// Send message
m.send();

InputStream in = getMailSource(); // a stream of mail messages
MimeMessage m = null;
for (; ;) {

try {
m = new MimeMessage(session,in);

} catch (MessagingException ex) {
// reached end of message stream
break;

}
}

JavaMail API Design Specification August 1998

58 Chapter 10: Internet Mail
The MimeMultipart Class
The MimeMultipart Class
The MimeMultipart class extends Multipart and models a MIME multipart
content within a message or a body part.

A MimeMultipart is obtained from a MimePart containing a ContentType
attribute set to multipart , by invoking that part’s getContent method.

The client creates a new MimeMultipart object by invoking its default constructor.
To create a new multipart MimeMessage, create a MimeMultipart object (or its
subclass); use set methods to fill in the appropriate MimeBodyParts ; and finally, use
setContent(Multipart) to insert it into the MimeMessage.

MimeMultipart also provides a constructor that takes an input stream positioned at
the beginning of a MIME multipart stream. This class parses the input stream and
creates the child body parts.

The getSubType method returns the multipart message MIME subtype. The subtype
defines the relationship among the individual body parts of a multipart message.
More semantically complex multipart subtypes are implemented as subclasses of
MimeMultipart , providing additional methods that expose specific functionality.

Note that a multipart content object is treated like any other content. When parsing a
MIME Multipart stream, the JavaMail implementation uses the JAF framework to
locate a suitable DataContentHandler for the specific subtype and uses that handler to
create the appropriate Multipart instance. Similarly, when generating the output
stream for a Multipart object, the appropriate DataContentHandler is used to
generate the stream.

The MimeUtility Class
MimeUtility is a utility class that provides MIME-related functions. All methods in
this class are static methods. These methods currently perform the functions listed
below:
JavaMail API Design Specification August 1998

59 Chapter 10: Internet Mail
The MimeUtility Class
Content Encoding and Decoding
Data sent over RFC 821/822-based mail systems are restricted to 7-bit US-ASCII bytes.
Therefore, any non-US-ASCII content needs to be encoded into the 7-bit US-ASCII
(mail-safe) format. MIME (RFC 2045) specifies the “base64” and “quoted-printable”
encoding schemes to perform this encoding. The following methods support content
encoding:

■ The getEncoding method takes a DataSource object and returns the Content-
Transfer-Encoding that should be applied to the data in that DataSource object
to make it mail-safe.

■ The encode method wraps an encoder around the given output stream based on
the specified Content-Transfer-Encoding. The decode method decodes the given
input stream, based on the specified Content-Transfer-Encoding.

Header Encoding and Decoding
RFC 822 restricts the data in message headers to 7bit US-ASCII characters. MIME
(RFC 2047) specifies a mechanism to encode non 7bit US-ASCII characters so that they
are suitable for inclusion in message headers. This section describes the methods that
enable this functionality.

The header-related methods (getHeader, setHeader) in Part and Message operate on
Strings. String objects contain (16 bit) Unicode characters.

Since RFC 822 prohibits non US-ASCII characters in headers, clients invoking the
setHeader() methods must ensure that the header values are appropriately
encoded if they contain non US-ASCII characters.

The encoding process (based on RFC 2047) consists of two steps:

1. Convert the Unicode String into an array of bytes in another charset. This step is
required because Unicode is not yet a widely used charset. Therefore, a client
must convert the Unicode characters into a charset that is more palatable to the
recipient.

2. Apply a suitable encoding format that ensures that the bytes obtained in the
previous step are mail-safe.

The encodeText method combines the two steps listed above to create an encoded
header. Note that as RFC 2047 specifies, only “unstructured” headers and user-
defined extension headers can be encoded. It is prudent coding practice to run such
header values through the encoder to be safe. Also note that the encodeText method
encodes header values only if they contain non US-ASCII characters.

The reverse of this process (decoding) needs to be performed when handling header
values obtained from a MimeMessage or MimeBodyPart using the getHeader set of
methods, since those headers might be encoded as per RFC 2047. The decodeText
method takes a header value, applies RFC 2047 decoding standards, and returns the
JavaMail API Design Specification August 1998

60 Chapter 10: Internet Mail
The ContentType Class
decoded value as a Unicode String. Note that this method should be invoked only on
“unstructured” or user-defined headers. Also note that decodeText attempts
decoding only if the header value was encoded in RFC 2047 style. It is advised that
you always run header values through the decoder to be safe.

The ContentType Class
The ContentType class is a utility class that parses and generates MIME content-
type headers.

To parse a MIME content-Type value, create a ContentType object and invoke the
toString method.

The ContentType class also provides methods that match Content-Type values.

The following code fragment illustrates the use of this class to extract a MIME
parameter.
String type = part.getContentType();
ContentType cType = new ContentType(type);

if (cType.match("application/x-foobar"))
iString color = cType.getParameter("color");

This code sample uses this class to construct a MIME Content-Type value:
ContentType cType = new ContentType();
cType.setPrimaryType("application");
cType.setSubType("x-foobar");
cType.setParameter("color", "red");

String contentType = cType.toString();
JavaMail API Design Specification August 1998

61
Appendix A:

Environment Properties

This section lists the environment properties that are used by the JavaMail APIs.

Note that Applets can not determine some defaults listed in this Appendix. When
writing an applet, you must specify the properties you require.

Property Description Default Value

mail.store.protocol Specifies the default Message Access
Protocol. The Session.getStore()
method returns a Store object that
implements this protocol. The client can
override this property and explicitly
specify the protocol with the
Session.getStore(String
protocol) method.

The first appropriate
protocol in the config
files

mail.transport.protocol Specifies the default Transport Protocol.
The Session.getTransport() method
returns a Transport object that
implements this protocol. The client can
override this property and explicitly
specify the protocol by using
Session.getTransport(String
protocol) method.

The first appropriate
protocol in the config
files

mail.host Specifies the default Mail server. The
Store and Transport object’s connect
methods use this property, if the protocol-
specific host property is absent, to locate
the target host.

The local machine

mail.user Specifies the username to provide when
connecting to a Mail server. The Store
and Transport object’s connect
methods use this property, if the protocol-
specific username property is absent, to
obtain the username.

user.name
JavaMail API Design Specification August 1998

62 Appendix A: Environment Properties
mail. protocol .host Specifies the protocol-specific default Mail
server. This overrides the mail.host
property.

mail.host

mail. protocol .user Specifies the protocol-specific default
username for connecting to the Mail
server. This overrides the mail.user
property.

mail.user

mail.from Specifies the return address of the current
user. Used by the
InternetAddress.getLocalAddress
method to specify the current user’s email
address.

username@host

mail.debug Specifies the initial debug mode. Setting
this property to true will turn on debug
mode, while setting it to false turns
debug mode off.

Note that the Session.setDebug
method also controls the debug mode.

false

Property Description Default Value
JavaMail API Design Specification August 1998

63
Appendix B:

Examples Using the JavaMail API

Following are some example programs that illustrate the use of the JavaMail APIs.
These examples are also included in the JavaMail implementation.

Example: Showing a Message
import java.util.*;
import java.io.*;
import javax.mail.*;
import javax.mail.internet.*;

/*
 * Demo app that exercises the Message interfaces.
 * Show information about and contents of messages.
 *
 * msgshow protocol host user password mailbox msgnum
 */

public class msgshow {

public static void main(String argv[]) {
try {

if (argv.length != 6) {
System.out.println(

"usage: msgshow protocol host user “ +
“password mailbox msgnum");

System.exit(1);
}

boolean debug = false;

String protocol = argv[0];
String host = argv[1];
String user = argv[2];
String password = argv[3];
String mbox = argv[4]; // mailbox name

// which message number to retrieve
int msgnum = Integer.parseInt(argv[5]);

// Get a Session object
Properties props = System.getProperties();
Session session = Session.getDefaultInstance(props, null);
JavaMail API Design Specification August 1998

64 Appendix B: Examples Using the JavaMail API
Example: Showing a Message
// Get a Store object
Store store = session.getStore(protocol);
store.connect(host, user, password);

// Open the Folder
Folder folder = store.getDefaultFolder();
if (folder == null) {

System.out.println("No default folder");
System.exit(1);

}

folder = folder.getFolder(mbox);
if (folder == null) {

System.out.println("Invalid folder");
System.exit(1);

}

folder.open(Folder.READ_WRITE);
int totalMessages = folder.getMessageCount();

int newMessages = folder.getNewMessageCount();
System.out.println("Total messages = " + totalMessages);
System.out.println("New messages = " + newMessages);
System.out.println("-------------------------------");

if (msgnum == -1) {
// Attributes & Flags for all messages ..
Message[] msgs = folder.getMessages();

// Use a suitable FetchProfile
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.Item.ENVELOPE);
fp.add(FetchProfile.Item.FLAGS);
fp.add("X-Mailer");
folder.fetch(msgs, fp);

for (int i = 0; i < msgs.length; i++) {
System.out.println("--------------------------");
System.out.println("MESSAGE #" + (i + 1) + ":");
dumpEnvelope(msgs[i]);

}
} else {

System.out.println("Getting message number: " +
msgnum);

Message m = folder.getMessage(msgnum);

dumpPart(m);
}

folder.close(false);
store.close();

} catch (Exception ex) {
ex.printStackTrace();
JavaMail API Design Specification August 1998

65 Appendix B: Examples Using the JavaMail API
Example: Showing a Message
}
}

public static void dumpPart(Part p) throws Exception {
if (p instanceof Message)

dumpEnvelope((Message)p);

System.out.println("CONTENT-TYPE: " + p.getContentType());

Object o = p.getContent();
if (o instanceof String) {

System.out.println("This is a String");
System.out.println((String)o);

} else if (o instanceof Multipart) {
System.out.println("This is a Multipart");
Multipart mp = (Multipart)o;
int count = mp.getCount();
for (int i = 0; i < count; i++)

dumpPart(mp.getBodyPart(i));
} else if (o instanceof InputStream) {

System.out.println("This is just an input stream");
InputStream is = (InputStream)o;
int c;
while ((c = is.read()) != -1)

System.out.write(c);
}

}

public static void dumpEnvelope(Message m) throws Exception {
Address[] a;

if ((a = m.getFrom()) != null) {
for (int j = 0; j < a.length; j++)

System.out.println("FROM: " + a[j].toString());
}

if ((a = m.getRecipients(Message.RecipientType.TO)) != null) {
for (int j = 0; j < a.length; j++)

System.out.println("TO: " + a[j].toString());
}

System.out.println("SUBJECT: " + m.getSubject());

Date d = m.getSentDate();
System.out.println("SendDate: " +

(d != null ? d.toString() : "UNKNOWN"));

Flags flags = m.getFlags();
StringBuffer sb = new StringBuffer();
Flags.Flag[] sf = flags.getSystemFlags();
boolean first = true;
for (int i = 0; i < sf.length; i++) {

String s;
JavaMail API Design Specification August 1998

66 Appendix B: Examples Using the JavaMail API
Example: Listing Folders
Flags.Flag f = sf[i];
if (f == Flags.Flag.ANSWERED)

s = "\\Answered";
else if (f == Flags.Flag.DELETED)

s = "\\Deleted";
else if (f == Flags.Flag.DRAFT)

s = "\\Draft";
else if (f == Flags.Flag.FLAGGED)

s = "\\Flagged";
else if (f == Flags.Flag.RECENT)

s = "\\Recent";
else if (f == Flags.Flag.SEEN)

s = "\\Seen";
else

continue; // skip it
if (first)

first = false;
else

sb.append(' ');
sb.append(s);

}
String[] uf = flags.getUserFlags(); // get user-flag strings
for (int i = 0; i < uf.length; i++) {

if (first)
first = false;

else
sb.append(' ');

sb.append(uf[i]);
}
System.out.println("FLAGS = " + sb.toString());

Example: Listing Folders

import java.util.Properties;
import javax.mail.*;

/**
 * Demo app that exercises the Message interfaces.
 * List information about folders.
 */

public class listfolders {
public static void main(String argv[]) throws Exception {

String protocol = argv[0];
String host = argv[1];
String user = argv[2];
String password = argv[3];
String root = argv[4];
String pattern = argv[5]; // normally "%"
JavaMail API Design Specification August 1998

67 Appendix B: Examples Using the JavaMail API
Example: Listing Folders
boolean recursive = Boolean.valueOf(argv[6]).booleanValue();

// Get a Session object
Session session = Session.getDefaultInstance(

System.getProperties(), null);
session.setDebug(true);

// Get a Store object
Store store = session.getStore(protocol);
store.connect(host, user, password);

// Open a Folder
Folder folder = store.getFolder(argv[3]);
if (folder == null || !folder.exists()) {

System.out.println("Invalid folder");
System.exit(1);

}

// List namespace
Folder rf;
if (root.length() != 0)

rf = store.getFolder(root);
else

rf = store.getDefaultFolder();
Folder[] f = rf.list(pattern);
for (int i = 0; i < f.length; i++)

dumpFolder(f[i], "", recursive);
}

static void dumpFolder(Folder folder, String tab,
boolean recurse) throws Exception {

System.out.println(tab + "Name: " + folder.getName());
System.out.println(tab + "Full Name: " +

folder.getFullName());

if (!folder.isSubscribed())
System.out.println(tab + "Not Subscribed");

if (((folder.getType() & Folder.HOLDS_MESSAGES) != 0) &&
folder.hasNewMessages())
System.out.println(tab + "Has New Messages");

if ((folder.getType() & Folder.HOLDS_FOLDERS) != 0) {
System.out.println(tab + "Is Directory");
if (recurse) {

Folder[] f = folder.list();
for (int i=0; i < f.length; i++)

dumpFolder(f[i], tab + "", recurse);
}

}
}

}

JavaMail API Design Specification August 1998

68 Appendix B: Examples Using the JavaMail API
Example: Searching a Folder for a Message
Example: Searching a Folder for a Message

import javax.mail.*;
import javax.mail.internet.*;
import javax.mail.search.*;
import java.util.Date;

/*
 * Search the given folder for messages matching the given
 * criteria.
 */

public class searchmessages {

public static void main(String argv[]) {

if (argv.length != 8) {
 System.out.println(
 "Usage: monitor <protocol> <host> <user> “ +

“<password> <mbox> " +
 "<subject> <from> and|or");

 System.exit(1);
}

String protocol = argv[0];
String host = argv[1];
String user = argv[2];
String password = argv[3];
String mbox = argv[4];
String subject = argv[5];
String from = argv[6];
boolean or = argv[7].equalsIgnoreCase("or");

try {
// Get a Session object
Session session = Session.getDefaultInstance(

System.getProperties(), null);
session.setDebug(true);

// Get a Store object
Store store = session.getStore(protocol);
store.connect(host, user, password);

// Open the Folder
Folder folder = store.getDefaultFolder();
if (folder == null) {

System.out.println("No default folder");
System.exit(1);

}

JavaMail API Design Specification August 1998

69 Appendix B: Examples Using the JavaMail API
Example: Searching a Folder for a Message
folder = folder.getFolder(mbox);
if (folder == null) {

System.out.println("Invalid folder");
System.exit(1);

}

folder.open(Folder.READ_ONLY);
SearchTerm term = null;

if (subject.length() != 0)
term = new SubjectTerm(subject);

if (from.length() != 0) {
FromTerm fromTerm =

new FromTerm(new InternetAddress(from));
if (term != null) {

if (or)
term = new OrTerm(term, fromTerm);

else
term = new AndTerm(term, fromTerm);

}
else

term = fromTerm;
}

Message[] msgs = folder.search(term);
if (msgs != null)

System.out.println("FOUND " + msgs.length +
" MESSAGES");

else {
System.out.println(" NO MATCHES");
System.exit(1);

}

// Use a suitable FetchProfile
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.Item.ENVELOPE);
folder.fetch(msgs, fp);

for (int i = 0; i < msgs.length; i++) {
System.out.println("--------------------------");
System.out.println("MESSAGE #" + (i + 1) + ":");
dumpMessage(msgs[i]);

}

folder.close(false);
store.close();

} catch (Exception ex) {
ex.printStackTrace();

}

System.exit(1);
}

JavaMail API Design Specification August 1998

70 Appendix B: Examples Using the JavaMail API
Example: Searching a Folder for a Message
public static void dumpMessage(Message m) throws Exception {
Address[] a;
if ((a = m.getFrom()) != null) {

for (int j = 0; j < a.length; j++)
System.out.println("FROM: " + a[j].toString());

}

if ((a = m.getRecipients(Message.RecipientType.TO)) != null) {
for (int j = 0; j < a.length; j++)

System.out.println("TO: " + a[j].toString());
}

System.out.println("SUBJECT: " + m.getSubject());

Date d = m.getSentDate();
if (d == null) {

System.out.println("SendDate: UNKNOWN");
} else {

System.out.println("SendDate: " +
 d.toString());

}

Flags flags = m.getFlags();
StringBuffer sb = new StringBuffer();
Flags.Flag[] sf = flags.getSystemFlags();
boolean first = true;
for (int i = 0; i < sf.length; i++) {

String s;
Flags.Flag f = sf[i];
if (f == Flags.Flag.ANSWERED)

s = "\\Answered";
else if (f == Flags.Flag.DELETED)

s = "\\Deleted";
else if (f == Flags.Flag.DRAFT)

s = "\\Draft";
else if (f == Flags.Flag.FLAGGED)

s = "\\Flagged";
else if (f == Flags.Flag.RECENT)

s = "\\Recent";
else if (f == Flags.Flag.SEEN)

s = "\\Seen";
else

continue; // skip it
if (first)

first = false;
else

sb.append(' ');
sb.append(s);

}
String[] uf = flags.getUserFlags(); // get the user flag strings
for (int i = 0; i < uf.length; i++) {

if (first)
JavaMail API Design Specification August 1998

71 Appendix B: Examples Using the JavaMail API
Example: Monitoring a Mailbox
first = false;
else

sb.append(' ');
sb.append(uf[i]);

}
System.out.println("FLAGS = " + sb.toString());

Example: Monitoring a Mailbox

import java.io.*;
import javax.mail.*;
import javax.mail.event.*;

/* Monitors given mailbox for new mail */

public class monitormailbox {

public static void main(String argv[])
{

if (argv.length != 6) {
 System.out.println(
 "Usage: monitor <protocol> <host> <user> “ +

“<password> <mbox> <freq>");
 System.exit(1);
}

String protocol = argv[0];
String host = argv[1];
String user = argv[2];
String password = argv[3];
String mbox = argv[4];
String freqarg = argv[5];

System.out.println("\nTesting monitor\n");
try {

// Get a Session object
Session session = Session.getDefaultInstance(

System.getProperties(), null);
session.setDebug(true);

// Get a Store object
Store store = session.getStore(protocol);

 // Connect
store.connect(host, user, password);

 // Open a Folder
Folder folder = store.getFolder(mbox);
if (folder == null || !folder.exists()) {

System.out.println("Invalid folder");
JavaMail API Design Specification August 1998

72 Appendix B: Examples Using the JavaMail API
Example: Sending a Message
System.exit(1);
}

folder.open(Folder.READ_WRITE);

// Add messageCountListener to listen for new messages
folder.addMessageCountListener(new MessageCountAdapter() {

public void messagesAdded(MessageCountEvent ev) {
Message[] msgs = ev.getMessages();
System.out.println("Got " + msgs.length +

" new messages");

// Just dump out the new messages
for (int i = 0; i < msgs.length; i++) {

try {
msgs[i].writeTo(System.out);

} catch (Exception ex) {
ex.printStackTrace();

}
}

}
});

 // Check mail once in "freq" MILLIseconds
int freq = Integer.parseInt(freqarg);

while (true) {
Thread.sleep(freq); // sleep for freq milliseconds

// This is to force the IMAP server to send us
// EXISTS notifications.

folder.getMessageCount();
}

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

Example: Sending a Message

import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;

/**
 * usage: sendmessage to from smtphost multipart
 *
JavaMail API Design Specification August 1998

73 Appendix B: Examples Using the JavaMail API
Example: Sending a Message
 * Send a simple text/plain message to the "to"
 * address, from the "from" address, using the
 * smtphost as the machine with the smtp server
 * running.
 *
 * if multipart is "true" send a multipart message
 * else if multipart is "false" send a text/plain
 * message.
 */

public class sendmessage {

public static void main(String[] args) {
if (args.length != 4) {

System.out.println(
“usage: sendmessage <to> <from> <smtphost>” +
“<true|false>”);

System.exit(1);
}

boolean debug = false; // change to get more information
String msgText = "A body.\nthe second line.";
String msgText2 = "Another body.\nmore lines";
boolean sendmultipart =

Boolean.valueOf(args[3]).booleanValue();

// set the host
Properties props = new Properties();
props.put("mail.smtp.host", args[2]);

// create some properties and get the default Session
Session session = Session.getDefaultInstance(props, null);
session.setDebug(debug);

try {
// create a message
Message msg = new MimeMessage(session);

// set the from
InternetAddress from = new InternetAddress(args[1]);
msg.setFrom(from);

InternetAddress[] address =
{new InternetAddress(args[0])};

msg.setRecipients(Message.RecipientType.TO, address);
msg.setSubject("JavaMail APIs Test");

if (!sendmultipart) {
// send a plain text message
msg.setContent(msgText, "text/plain");

} else {
// send a multipart message
JavaMail API Design Specification August 1998

74 Appendix B: Examples Using the JavaMail API
Example: Sending a Message
// create and fill the first message part
MimeBodyPart mbp1 = new MimeBodyPart();
mbp1.setContent(msgText, "text/plain");

// create and fill the second message part
MimeBodyPart mbp2 = new MimeBodyPart();
mbp2.setContent(msgText2, "text/plain");

// create the Multipart and its parts to it
Multipart mp = new MimeMultipart();
mp.addBodyPart(mbp1);
mp.addBodyPart(mbp2);

// add the Multipart to the message
msg.setContent(mp);

}

Transport.send(msg);
} catch (MessagingException mex) {

mex.printStackTrace();
}

}
}

JavaMail API Design Specification August 1998

75
Appendix C:

Message Security

Overview
This is not a full specification of how Message Security will be integrated into the
JavaMail system. This is a description of implementation strategy. The purpose of this
section is to declare that it is possible to integrate message security, not to define how
it will be integrated. The final design for Message Security will change based on
feedback and finalization of the S/MIME IETF specification.

This section discusses encrypting/decrypting messages, and signing/verifying
signatures. It will not discuss how Security Restrictions on untrusted or signed
applets will work, nor will it discuss a general authentication model for Stores (For
example; a GSS API in the Java platform.)

Displaying an Encrypted/Signed Message
Displaying an encrypted or signed message is the same as displaying any other
message. The client uses the DataHandler for that encrypted message together with
the "view" command. This returns a bean that displays the data. There will be both a
multipart/signed and multipart/encrypted viewer bean (can be the same bean). The
beans will need to be aware of the MultiPartSigned/MultiPartEncrypted classes.

MultiPartEncrypted/Signed Classes
The JavaMail API will probably add two new content classes:
MultiPartEncrypted and MultiPartSigned . They subclass the MultiPart class
and handle the MIME types multipart/encrypted and multipart/signed. There are
many possible "protocols" that specify how a message has been encrypted and/or
signed. The MPE/MPS classes will find all the installed protocols. The
ContentType ’s protocol parameter determines which protocol class to use. There
needs to be a standard registration of protocol objects or a way to search for valid
packages and instantiate a particular class. The MultiPart classes will hand off the
control information, other parameters, and the data to be manipulated (either the
signed or encrypted block) through some defined Protocol interface.
JavaMail API Design Specification August 1998

76 Appendix C: Message Security
Overview
Reading the Contents
There will be times when an applet/application needs to retrieve the content of the
message without displaying it. The code sample below shows one possible technique
with a message containing encrypted content:

The getContent method returns a MultiPartEncrypted object. There will be
methods on this class to decrypt the content. The decryption could either determine
which keys needed to be used, use the defaults (maybe the current user’s keys) or
explicitly pass which keys/certificates to use.

Verifying Signatures
Applications/applets will need to verify the validity of a signature. The code sample
below shows how this might be done:

If the signature is invalid, the application can still access the data. There will be
methods in MultiPartSigned that allow the setting of which keys or certificates to
use when verifying the signature.

Message msg = // message gotten from some folder.
if (msg.isMimeType("multipart/encrypted")) {

Object o = msg.getContent();
if (o instanceof MultiPartEncrypted) {

MultiPartEncrypted mpe = (MultiPartEncrypted) o;
mpe.decrypt();
 // use the default keys/certs from the user.
 // We should alsobe able to determine
 // whether or not to interact with the user

// should then be able to use the multipart methods to
// get any contained blocks }
}

}

Message msg = // message gotten from some folder
if (msg.isMimeType("multipart/signed")) {

Object o = msg.getContent();
if (o instanceof MultiPartSigned) {

MultiPartSigned mps = (MultiPartSigned) o;
boolean validsig = mps.verifySignature();

// could already get the other blocks
// even if it wasn't a valid signature
}

}

JavaMail API Design Specification August 1998

77 Appendix C: Message Security
Overview
Creating a Message
There are two methods for creating an Encrypted/Signed message. Users will
probably see an editor bean for the content types multipart/signed and multipart/
encrypted. These beans would handle the UI components to allow the user to select
how they want to encrypt/sign the message. The beans could be integrated into an
application’s Message Composition window.

Encrypted/Signed
The non-GUI method of creating the messages involves using the
MultiPartEncrypted/Signed classes. The classes can be created and used as the
content for a message. The following code shows how might work:

The message will be encrypted when the message is sent. There will be other methods
that allow the setting of which encryption scheme shall be used, and the keys
involved.

Creating a Multipart Signed message is very similar to creating a Multipart Encrypted
message, except that a Multipart Signed object is created instead.

MultiPartEncrypted mpe = new MultiPartEncrypted();
// Can setup parameters for how you want to encrypt the
// message; otherwise, it will use the user's preferences.
// Set the content you wish to encrypt (to encrypt multiple
// contents a multipart/mixed block should be used)
String ourContent = "Please encrypt me!";
mpe.setContent(ourContent);

MimeMessage m = new MimeMessage(session);
m.setContent(mpe);
JavaMail API Design Specification August 1998

78 Appendix C: Message Security
Overview
JavaMail API Design Specification August 1998

79
Appendix D:

Part and Multipart Class Diagram

This appendix illustrates relationships between Part interfaces and Message classes.

FIGURE D-1
JavaMail API Design Specification August 1998

80 Appendix D: Part and Multipart Class Diagram
JavaMail API Design Specification August 1998

81
Appendix E:

MimeMessage Object Hierarchy

This appendix illustrates the object hierarchy.

FIGURE E-1

<address of message sender>

(0)

(1)

(2)
JavaMail API Design Specification August 1998

82 Appendix E: MimeMessage Object Hierarchy
JavaMail API Design Specification August 1998

83
Appendix F:

Features Added in JavaMail 1.1

This appendix summarizes the features added to JavaMail 1.1. For more information
about each item, refer to the appropriate Javadoc documentation.

The MessageContext Class and MessageAware Interface
In some cases it is desirable for the object representing the content of a BodyPart
object to know something about the context in which it is operating. For example, the
content-object might need to know what other data is contained in the same
Multipart object, who sent the message containing the data, and so forth. This
allows for more interesting content types that know more about the message
containing them and the mail system in general.

Some uses of the multipart/related object might require these capabilities. For
instance, the handler for a text/html body part contained in a multipart/
related object might need to know about the containing object in order to find the
related image data needed to display the HTML document. (Note that JavaMail
provides no direct support for multipart/related messages.)

To deal with these issues, the MessageContext class and MessageAware interface
have been added in JavaMail 1.1.

The MessageContext class provides the basic information about the context in
which a content object is operating. Given a MessageContext object , it is
possible to navigate through a message’s body structure. The MessageAware
interface is an optional interface, implemented by DataSources that have the
capability of providing a suitable MessageContext object. The
MimePartDataSource implements the MessageAware interface, making this
capability available to all MIME messages.

The getMessageID Method
The getMessageID method has been added to the MimeMessage class. This
method returns the value of RFC822 Message-ID field.
JavaMail API Design Specification August 1998

84 Appendix F: Features Added in JavaMail 1.1
Additions to the InternetAddress Class
Additions to the InternetAddress Class
The encodedPersonal protected field has been added to the
javax.mail.internet.InternetAddress class.

The toString(Address[], int) method has also been added to this class

Additions to the MimeUtility Class
Two static methods have been added to the javax.mail.internet.MimeUtility
class:

■ String mimeCharset(String charset)
■ String getDefaultJavaCharset()

The mimeCharset method returns the MIME name of the given JDK™ charset.

The getDefaultJavaCharset method returns the default JDK charset for the
platform’s locale.

New SearchTerms
The current address related search terms: AddressTerm , FromTerm and
RecipientTerm , are limited in that they operate on Address objects, not Strings .
These terms use the equals methd to compare the addresses, which is not useful for
the common case of substring comparisons.

Hence three new SearchTerms have been introduced:

■ AddressStringTerm
■ FromStringTerm
■ RecipientStringTerm

These terms operate on Address Strings , rather than Address objects.

These new terms correspond to the capabilities provided by the IMAP protocol. The
older terms were not supported by IMAP and thus resulted in client-side searches.
JavaMail API Design Specification August 1998

85 Appendix F: Features Added in JavaMail 1.1
Additions to the Folder Class
Additions to the Folder Class
Two methods have been added to the javax.mail.Folder class:

■ int getMode()
■ URLName getURLName()

The getMode method returns the mode in which the Folder object was opened.

The getURLName method returns the URLName value of the folder.

New Service Class
To emphasize the commonality in behavior between the Store and Transport
classes, and to simplify maintenance of these classes, a new superclass,
javax.mail.Service , has been introduced for the Store and Transport classes.
JavaMail API Design Specification August 1998

86 Appendix F: Features Added in JavaMail 1.1
New Service Class
JavaMail API Design Specification August 1998

	JavaMail™ API Design Specification
	Contents
	Chapter 1: Introduction
	Target Audience
	Acknowledgments

	Chapter 2: Goals and Design Principles
	Chapter 3: Architectural Overview
	JavaMail Layered Architecture
	JavaMail Class Hierarchy
	The JavaMail Framework
	Major JavaMail API Components
	The Message Class
	Message Storage and Retrieval
	Message Composition and Transport
	The Session Class

	The JavaMail Event Model
	Using the JavaMail API

	Chapter 4: The Message Class
	The Part Interface
	Message Attributes
	The ContentType Attribute

	The Address Class
	The BodyPart Class
	The Multipart Class
	The Flags Class
	Message Creation And Transmission

	Chapter 5: The Mail Session
	The Provider Registry
	Resource Files
	Provider
	Protocol Selection and Defaults
	Example Scenarios

	Managing Security
	Store and Folder URLs

	Chapter 6: Message Storage and Retrieval
	The Store Class
	Store Events

	The Folder Class
	The FetchProfile Method
	Folder Events
	The Expunge Process

	The Search Process

	Chapter 7: The JavaBeans Activation Framework
	Accessing the Content
	Example: Message Output

	Operating on the Content
	Example: Viewing a Message
	Example: Showing Attachments

	Adding Support for Content Types

	Chapter 8: Message Composition
	Building a Message Object
	Message Creation
	Setting Message Attributes
	Setting Message Content
	Building a MIME Multipart Message

	Chapter 9: Transport Protocols and Mechanisms
	Obtaining the Transport Object
	Transport Methods

	Transport Events
	ConnectionEvent
	TransportEvent

	Using The Transport Class

	Chapter 10: Internet Mail
	The MimeMessage Class
	The MimeBodyPart Class
	The MimeMultipart Class
	The MimeUtility Class
	Content Encoding and Decoding
	Header Encoding and Decoding

	The ContentType Class

	Appendix A: Environment Properties
	Appendix B: Examples Using the JavaMail API
	Example: Showing a Message
	Example: Listing Folders
	Example: Searching a Folder for a Message
	Example: Monitoring a Mailbox
	Example: Sending a Message

	Appendix C: Message Security
	Overview
	Displaying an Encrypted/Signed Message
	MultiPartEncrypted/Signed Classes
	Reading the Contents
	Verifying Signatures
	Creating a Message

	Appendix D: Part and Multipart Class Diagram
	Appendix E: MimeMessage Object Hierarchy
	Appendix F: Features Added in JavaMail 1.1
	The MessageContext Class and MessageAware Interface
	The getMessageID Method
	Additions to the InternetAddress Class
	Additions to the MimeUtility Class
	New SearchTerms
	Additions to the Folder Class
	New Service Class

