
CRPC

Outline

1. Introduction to Data-Parallelism
2. Fortran 90 Features
3. HPF Parallel Features
4. HPF Data Mapping Features
5. Parallel Programming in HPF
6. HPF Version 2.0

CRPC

Plan of Attack

• Four algorithms
– Jacobi Iteration

– Gaussian Elimination

– Conjugate Gradient

– Irregular Mesh Relaxation

• For each one, look at
– The algorithm

– Parallelism

– Data distribution

– Resulting HPF program

CRPC

A Simple Model for Programs

Ttotal = Tseq +
T par

P
+ Tcomm

Ttotal = Total execution time

T seq = Sequential execution time

T par = Total parallel computation time

P = Number of processors

Tcomm = Communication / synchronization time

CRPC

Jacobi Iteration: The Algorithm

• The Problem
– Given a partial differential

equation & boundary conditions

– Find the solution

• The Approach
– Divide (continuous) space into a

(discrete) grid

– Guess a solution on the grid

– Update the solution at every grid
point

– Repeat update until solution
doesn't change

∂ 2u
∂x 2 + ∂ 2u

∂y 2 = −2x 2 + 2x − 2y 2 + 2y

u = 0 if x = 0,x = 1,y = 0, or y = 1

x

y
0

0
.2

5

0
.5

0
.7

5

1

x

0

0.5

1

y

x

y

- 0 . 0 8

- 0 . 0 6

- 0 . 0 4

- 0 . 0 2

0

u

x

y

CRPC

Jacobi Iteration:
Equations and Pictures

Discretized
Equations

4u1,1-u2,1-u1,2=-0.00220

4u1,2-u2,2-u1,1-u1,3=-0.00293

4u1,3-u2,3-u1,2=-0.00220

4u2,1-u1,1-u3,1-u2,2=-0.00293

4u2,2-u1,2-u3,2-u2,1-u2,3=-0.00391

4u2,3-u1,3-u3,3-u2,2=-0.00293

4u3,1-u2,1-u3,2=-0.00220

4u3,2-u2,2-u3,1-u3,3=-0.00293

4u3,3-u2,3-u3,2=-0.00220

Reordered
Equations

u1,1=(u2,1+u1,2-0.00220)/4

u1,2=(u2,2+u1,1+u1,3-0.00293)/4

u1,3=(u2,3+u1,2-0.00220)/4

u2,1=(u1,1+u3,1+u2,2-0.00293)/4

u2,2=(u1,2+u3,2+u2,1+u2,3-0.00391)/4

u2,3=(u1,3+u3,3+u2,2-0.00293)/4

u3,1=(u2,1+u3,2-0.00220)/4

u3,2=(u2,2+u3,1+u3,3-0.00293)/4

u3,3=(u2,3+u3,2-0.00220)/4

0 0 0 0 0

0 X X X 0

0 X X X 0

0 X X X 0

0 0 0 0 0

UI,J UI,J+1

UI-1,J

UI+1,J

UI,J-1

CRPC

Jacobi Iteration: Parallelism

• Each Jacobi iteration uses all the data computed in the
previous step

– No parallelism at this level

– (We won't try other iterative schemes to avoid this)

• All updated elements within an iteration can be updated
in parallel

– unew(i,j)=(u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1)+f(i,j))/4

– These are independent because unew u and unew f

– This is a classic data-parallel operation

• Testing for convergence can be done in parallel
– Convergence criteria: Largest element in array

– Searching for the maximum is a data-parallel reduction

CRPC

Jacobi Iteration: Data Mapping

• Convergence test requires a whole-array reduction

– Any distribution ⇒ parallel, with communication

• Element updates require local value and nearest neighbors

– BLOCK ⇒ least communication volume

– CYCLIC ⇒ communicate entire array

– (BLOCK,*) ⇒ move u(i-1,j), u(i+1,j) ∀ j

– (*,BLOCK) ⇒ move u(i,j-1), u(i,j+1) ∀ i

– (BLOCK,BLOCK) ⇒ move u(ILOW-1,j), u(IHIGH+1,j) ∀ j,
u(i,JLOW-1), u(i,JHIGH+1) ∀ i

• Computation is static and homogenous

– No load balancing issues

• The bottom line

– (BLOCK,*) or (*,BLOCK) on high-latency machines or small
problem sizes

– (BLOCK,BLOCK) on low-latency machines

CRPC

Jacobi Iteration: Partitioning

• At the most abstract level, Jacobi iteration is a
sequential process.

• However, each step in the process is itself
composed of many smaller operations.

• Conclusion: Jacobi iteration has plenty of data
parallelism

Update
grid

Check
conv.

CRPC

Jacobi Iteration: Communication

• Element updates:
– Each requires 4 values from previous update step

– Static, local communication

– Generally, the second-fastest kind (after no communication)

• Convergence test:
– Uses all values from latest update step

– Static, global communication

– Reduction operation

– Efficient methods known, encapsulated in libraries

CRPC

Jacobi Iteration: Agglomeration

• Element updates require nearest neighbors
– CYCLIC ⇒ communicate entire array

– BLOCK ⇒ least communication volume

– (BLOCK,*) ⇒ move u(i-1,j), u(i+1,j) ∀ j

– (BLOCK,BLOCK) ⇒ move u(ILOW-1,j), u(IHIGH+1,j)
∀ j, u(i,JLOW-1), u(i,JHIGH+1) ∀ i

• Convergence test requires a whole-array
reduction

– Any distribution ⇒ static, structured communication

• The bottom line
– (BLOCK,*) on high-latency machines or small problem sizes

– (BLOCK,BLOCK) on low-latency machines

CRPC

Jacobi Iteration: HPF Program

REAL u(0:nx,0:ny), unew(0:nx,0:ny), f(0:nx,0:ny)

!HPF$ DISTRIBUTE u(BLOCK,*)

!HPF$ ALIGN (:,:) WITH u(:,:) :: unew, f

dx = 1.0/nx; dy = 1.0/ny; err = tol * 1e6

FORALL (i=0:nx, j=0:ny)

f(i,j) = -2*(dx*i)**2+2*dx*i-2*(dy*j)**2+2*dy*j

END FORALL

u = 0.0; unew = 0.0

DO WHILE (err > tol)

FORALL (i=1:nx-1, j=1:ny-1) &

unew(i,j) = (u(i-1,j)+u(i+1,j)+u(i,j-1)+ &

u(i,j+1)+f(i,j))/4

err = MAXVAL(ABS(unew-u))

u = unew

END DO

CRPC

Jacobi Iteration: Mapping

• This program is a piece of cake for the
compiler.

– Allocate portion of array on each processor based on
DISTRIBUTE

– Apply owner-computes rule analytically based on left-hand side

– Detect shift communication from dependence analysis of
subscripts or pattern matching

– Recognize MAXVAL intrinsic as reduction communication

– Place all communication directly outside parallel construct
where it occurs

– Number processors so that shifts do not cause contention

CRPC

2.00 x
1
+ 1.00 x

2
+ 0.50 x

3
+ 0.25 x

4
= 3.75

2.00 x
1
+ 2.00 x

2
+ 2.00 x

3
+ 2.00 x

4
= 8.00

2.00 x
1
+ 3.00 x

2
+ 4.50 x

3
+ 6.75 x

4
= 16.5

2.00 x
1
+ 4.00 x

2
+ 8.00 x

3
+ 16.0 x

4
= 30.0

Gaussian Elimination: The Algorithm

• The Problem
– Given N linear equations in N

unknowns x
i

– Find values of all x
i
 to satisfy the

equations

• The Approach
– Use Eq. 1 to eliminate x

1
 from Eq.

2, 3, … N

– Use Eq. 2 to eliminate x
2
 from Eq.

3, … N

– …

– Eq. N only involves x
N

⇒ Solve it!

– Work backwards to find x
N-1

, …, x
1

x
1

= 1.00

x
2

= 1.00

x
3

= 1.00

x
4
= 1.00

CRPC

Gaussian Elimination: Pictures

Not Used Pivot Elements Updated Elements

CRPC

Gaussian Elimination: Parallelism

• Each step of Gaussian Elimination uses all the
data computed in the previous step

– No parallelism at this level

– (We won’t try to reorder computations to avoid this)

• All updated elements within a step can be done
in parallel

– Basic formula: a(i,j)=a(i,j)-a(i,K)/a(K,K)*a(K,j)

– These are independent because i K, j K

– This is a classic data-parallel operation

• Choosing the pivot row can be done in parallel
– Pivot criteria: Row with the largest element

– Searching for the maximum is a data-parallel reduction

CRPC

Gaussian Elimination: Data Mapping

• Pivot selection requires a 1-D reduction

– Distribute rows ⇒ parallel, with communication

– Distribute columns ⇒ sequential, but no communication

• Element updates require the old value and elements from the
pivot row and column

– Distribute rows ⇒ parallel, but broadcast the pivot row

– Distribute columns ⇒ parallel, but broadcast the pivot column

• Each stage works on a smaller contiguous region of the array

– BLOCK ⇒ processors drop out of the computation

– CYCLIC ⇒ work stays (fairly) evenly distributed until the end

– CYCLIC(K) ⇒ granularity will be at least K elements

• The bottom line

– (*,CYCLIC) if broadcast > pivoting one column

– (CYCLIC,*) if broadcast < one column, synchronous comm.

– (CYCLIC,CYCLIC) if broadcast < one col., overlapped comm.

CRPC

Gaussian Elimination: Partitioning

• At the most abstract level, Gaussian elimination
is a sequential process.

– Need all elements in column k to find pivot row

– Need all elements in column k and pivot row to perform pivoting

• However, each step in the process is itself
composed of many smaller operations.

– Perform all element updates independently

• Conclusion: Gaussian elimination has plenty of
data parallelism

– Until the last few stages, anyway…

CRPC

Gaussian Elimination: Communication

• Pivot search:
– Reduction along column

– Static, global communication

• Element updates:
– Each requires itself, elements from pivot column & row

– Static, global communication

– Broadcast

CRPC

Gaussian Elimination: Agglomeration

• Pivot selection requires a 1-D reduction

– Distribute rows ⇒ parallel, with communication

– Distribute columns ⇒ sequential, but no communication

• Element updates require the old value and elements from the
pivot row and column

– Distribute rows ⇒ parallel, but broadcast the pivot row

– Distribute columns ⇒ parallel, but broadcast the pivot column

• Each stage works on a smaller contiguous region of the array

– BLOCK ⇒ processors drop out of the computation

– CYCLIC ⇒ work stays (fairly) evenly distributed until the end

• The bottom line

– (*,CYCLIC) if broadcast > pivoting one column

– (CYCLIC,*) if broadcast < one column, synchronous comm.

– (CYCLIC,CYCLIC) if broadcast < one col., overlapped comm.

CRPC

Gaussian Elimination: HPF Program

REAL a(n,n), tmp(n)

!HPF$ DISTRIBUTE a(CYCLIC,CYCLIC)

!HPF$ ALIGN tmp(i) WITH a(*,i)

DO k = 1, n-1

! Select the pivot

ipivot = MAXLOC(ABS(a(k:n,k))) + k - 1

! Swap the rows

tmp(k:n) = a(ipivot,k:n)

a(ipivot,k:n) = a(k,k:n)

a(k,k:n) = tmp(k:n)

! Update the submatrix

FORALL (i=k+1:n, j=k+1:n) &

& a(i,j) = a(i,j) - a(i,k)/tmp(k)*tmp(j)

END DO

CRPC

Gaussian Elimination: Mapping

• This program is harder for the compiler.
– Allocate portion of array on each processor based on
DISTRIBUTE

– Apply owner-computes rule analytically based on left-hand side

– Detect communication from dependence analysis & intrinsics

– Here, it really pays to transform the program!

– Reorder computation to always precompute the next pivot
column

– Rearrange communication to pipeline the series of updates

– Do broadcasts asynchronously

– Net result: 2× speedup

– Use standard numbering for processors

CRPC

Conjugate Gradient: The Algorithm

• The Problem
– Given a partial differential

equation & boundary conditions

– Find the solution

• The Approach
– Divide (continuous) space into a

(discrete) grid

– Guess a solution on the grid

– Estimate how the solution should
change

– Move in that direction

– Repeat estimate and move until
solution doesn't change

∂ 2u
∂x 2 + ∂ 2u

∂y 2 = −2x 2 + 2x − 2y 2 + 2y

u = 0 if x = 0,x = 1,y = 0, or y = 1

x

y
0

0
.2

5

0
.5

0
.7

5

1

x

0

0.5

1

y

x

y

- 0 . 0 8

- 0 . 0 6

- 0 . 0 4

- 0 . 0 2

0

u

x

y

CRPC

Conjugate Gradient:
Equations and Pictures

Discretized
Equations

4u1,1-u2,1-u1,2=-0.00220

4u1,2-u2,2-u1,1-u1,3=-0.00293

4u1,3-u2,3-u1,2=-0.00220

4u2,1-u1,1-u3,1-u2,2=-0.00293

4u2,2-u1,2-u3,2-u2,1-u2,3=-0.00391

4u2,3-u1,3-u3,3-u2,2=-0.00293

4u3,1-u2,1-u3,2=-0.00220

4u3,2-u2,2-u3,1-u3,3=-0.00293

4u3,3-u2,3-u3,2=-0.00220

Minimize
r =(Au −f)T (Au −f)

A =

4 1 0 1 0 0 0 0 0

1 4 1 0 1 0 0 0 0

0 1 4 0 0 1 0 0 0

1 0 0 4 1 0 1 0 0

0 1 0 1 4 1 0 1 0

0 0 1 0 1 4 0 0 1

0 0 0 1 0 0 4 1 0

0 0 0 0 1 0 1 4 1

0 0 0 0 0 1 0 1 4



































f =

−.00220

−.00293

−.00220

−.00293

−.00391

−.00293

−.00220

−.00293

−.00220



































9-Dimensional Search

???

2-Dimensional Search

3-Dimensional Search

CRPC

Conjugate Gradient: More Equations

u = 〈 initial guess 〉
r = f – A ∗ u
δ = max(|r|)
ι = 0; ρ = 0
WHILE (δ > ε) DO

ι = ι + 1; ρold = ρ
ρ = r ⋅ r
IF (ι=1) THEN p = r ELSE p = r + ρ/ρold p
q = A ∗ p
α = ρ / (p ⋅ q)
u = u + α p
r = r – α q
δ = max(|r|)

END WHILE

CRPC

Conjugate Gradient: Parallelism

• Each CG iteration uses all the data computed in the
previous step, plus data computed in the current step

– No parallelism at this level

– (We won't try to overlap computation within a step)

• Each matrix operation can compute elements in parallel
– r(i,j)=f(i,j)-4*u(i,j)+u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1)

– p(i,j) = r(i,j) + rho/rho_old * p(i,j)

– These are classic data-parallel operations

– rho = Σ
i,j
 r(i,j)2

– This is a data-parallel reduction

• Testing for convergence can be done in parallel
– As in Jacobi iteration

CRPC

Conjugate Gradient: Data Mapping

• Convergence test requires a whole-array reduction

– Any distribution ⇒ parallel, with communication

• Inner products require whole-array reductions

– Any distribution ⇒ parallel, with communication

• Array operations require local value and nearest neighbors

– BLOCK ⇒ least communication volume

– (BLOCK,*) ⇒ move u(i-1,j), u(i+1,j) ∀ j

– (BLOCK,BLOCK) ⇒ move u(ILOW-1,j), u(IHIGH+1,j) ∀ j,
u(i,JLOW-1), u(i,JHIGH+1) ∀ i

• Computation is static, homogenous, and over full array

– No load balancing issues

• The bottom line

– (BLOCK,*) or (*,BLOCK) on high-latency machines or small
problem sizes

– (BLOCK,BLOCK) on low-latency machines

CRPC

Conjugate Gradient: Partitioning

• At the most abstract level, conjugate gradient
has minimal parallelism

– u, r, α can be updated independently

• The real potential parallelism is in the matrix
and vector operations, however.

– r ⋅ r is a reduction of size N

– u + α p is a vector update of size N

– A * p is a (sparse) matrix-vector multiply, in this case of size
O(N)

– It looks a lot like the operator in Jacobi

• Conclusions:
– Stick to the matrix/vector operators

– Task parallelism (and pipelining) may improve some

CRPC

Conjugate Gradient: Communication

• Convergence test:
– Global reduction

• Dot products:
– Global reductions

• Vector updates:
– Elementwise scaling and addition of two vectors

– No communication if vectors are aligned

• Matrix-vector multiplies:
– Depends on the matrix (PDE operator) in the problem

– For the model problem, equivalent to Jacobi iteration grid
update

– Static, local communication

CRPC

Conjugate Gradient: Agglomeration

• Dot products and convergence test always
require global communication

– No reason to pick one DISTRIBUTE over another

• Vector updates require no communication
– Really no reason to choose a particular DISTRIBUTE

• Matrix-vector multiply does care where its data
come from

– In this case, same advantages/disadvantages as Jacobi
iteration

• The bottom line
– (BLOCK,*) on high-latency machines or small problem sizes

– (BLOCK,BLOCK) on low-latency machines

CRPC

Conjugate Gradient: HPF Program

REAL u(0:n,0:n), r(0:n,0:n), p(0:n,0:n)

REAL q(0:n,0:n), f(0:n,0:n)

!HPF$ DISTRIBUTE u(BLOCK,*)

!HPF$ ALIGN (:,:) WITH u(:,:) :: r, p, q, f

INTERFACE

SUBROUTINE a_times_vector(x, y)

REAL, INTENT(IN) :: x(:,:)

REAL, INTENT(OUT) :: y(:,:)

!HPF$ DISTRIBUTE x *(BLOCK,*)

!HPF$ ALIGN y(:,:) WITH *x(:,:)

END INTERFACE

u = 0.0

r = f

err = MAXVAL(ABS(r(1:n-1,1:n-1)))

i = 0; rho = 0

DO WHILE (err > tol)

i = i + 1; rho_old = rho

rho = SUM(r(1:n-1,1:n-1)**2)

IF (i=1) THEN

p = r

ELSE

p = r + rho/rho_old * p

END IF

CALL a_times_vector(p, q)

alpha = rho / SUM(p*q)

u = u + alpha * p

r = r – alpha * q

err = MAXVAL(ABS(r(1:n-1,1:n-1)))

END DO

CRPC

Conjugate Gradient: Mapping

• This program looks like a more complicated
version of Jacobi iteration to the compiler.

– Allocate arrays based on DISTRIBUTE

– Apply owner-computes rule

– Detect communication from dependence analysis and intrinsics

– Useful optimizations include aggregating communication,
overlapping communication with computation

– All of this becomes more interesting if the program
encapsulates operations in a subroutine

– The programmer must trade off efficiency for flexibility and
maintainability

CRPC

Irregular Mesh Relaxation:
The Algorithm

• The Problem
– Given an irregular mesh of

values

– Update each value using its
neighbors in the mesh

• The Approach
– Store the mesh as a list of edges

– Process all edges in paralle

– Compute contribution of edge

– Add to one endpoint, subtract
from the otherl

1.0
0.1

0.3

0.1

0.1

0.2

CRPC

Irregular Mesh: Sequential Program

REAL x(nnode), flux(nedge)

INTEGER iedge(nedge,2)

err = tol * 1e6

DO WHILE (err > tol)

DO i = 1, nedge

flux(i) = (x(iedge(i,1))-x(iedge(i,2))) / 2

err = err + flux(i)*flux(i)

END DO

DO i = 1, nedge

x(iedge(i,1)) = x(iedge(i,1)) - flux(i)

x(iedge(i,2)) = x(iedge(i,2)) + flux(i)

END DO

err = err / nedge

END DO

CRPC

Irregular Mesh: Parallelism

• Each iteration of the relaxation uses all the data
computed in the previous step, and the edge array

– No parallelism at this level

– (Does this sound familiar?)

• All edge values can be computed in parallel
– flux(i)=(x(iedge(i,1))-x(iedge(i,2)))/2

– These are independent because edge_val node_val

• Updating the node values is not trivially parallel
– x(iedge(i,1)) = x(iedge(i,1)) - flux(i)

– x(iedge(i,2)) = x(iedge(i,2)) + flux(i)

– They are dependent because sometimes iedge(i
Y
,1) = iedge(i

Z
,2)

– Fortunately, HPF provides the SUM_SCATTER function

CRPC

Irregular Mesh: Data Mapping I

• Warning: Your compiler may do things differently!

• Computing edge values requires edge list and node values

– Distribute edges ⇒ parallel, no communication for edges

– Replicate edges ⇒ sequential or broadcast edge values

– Distribute nodes ⇒ move “shared” endpoints

– Replicate nodes ⇒ no movement for endpoints

• Updating node values requires edge list, edge values, and node
values

– Distribute edges ⇒ parallel, no communication for edges

– Replicate edges ⇒ sequential, no communication for edges

– Distribute nodes ⇒ move “shared” endpoints

– Replicate nodes ⇒ move all endpoints

• The bottom line, part I

– Always distribute edges

– Distribute nodes unless the problem is very small

CRPC

Irregular Mesh: Data Mapping II

• Warning: Your compiler may do things differently!

• Computation is static, homogeneous, and over full array (with
respect to the edges)

– No load balancing issues

• Accesses to node array are “nearest neighbor” in the mesh

– This is not reflected in the index order!

– ∴ This does not favor either BLOCK or CYCLIC

• To minimize communication, edge and node distributions must
fit the mesh topology

– HPF’s regular distributions are not ideal for this

– HPF 2.0 indirect distributions are better, but require careful
construction

• The bottom line, part II

– No silver bullet

– Order the nodes and edges to bring “close” entities together, then
use BLOCK

CRPC

Irregular Mesh:
Partitioning & Communication

• Each iteration of the relaxation uses all the data computed in the
previous step, and the edge array

– No parallelism at this level

– (Does this sound familiar?)

• Instead, use the data-parallel edge and node updates

– flux(i)=(x(iedge(i,1))-x(iedge(i,2)))/2

– Independent because edge_val node_val

– x(iedge(i,1)) = x(iedge(i,1)) - flux(i);
x(iedge(i,2)) = x(iedge(i,2)) + flux(i)

– Not independent because sometimes iedge(i
Y
,1) = iedge(i

X
,2)

– Fortunately, HPF provides the SUM_SCATTER function

• Communication needed in both stages

– Between edges and nodes to compute flux

– Edge-node and node-node to compute x

– All communication is static, local with respect to grid, but unstructured
with respect to array indices

CRPC

Irregular Mesh: Agglomeration I

• Warning: Your compiler may do things differently!

• Computing edge values requires edge list and node values

– Distribute edges ⇒ parallel, no communication for edges

– Replicate edges ⇒ sequential or broadcast edge values

– Distribute nodes ⇒ move “shared” endpoints

– Replicate nodes ⇒ no movement for endpoints

• Updating node values requires edge list, edge values, and node
values

– Distribute edges ⇒ parallel, no communication for edges

– Replicate edges ⇒ sequential, no communication for edges

– Distribute nodes ⇒ move “shared” endpoints

– Replicate nodes ⇒ move all endpoints

• The bottom line, part I

– Always distribute edges

– Distribute nodes unless the problem is very small

CRPC

Irregular Mesh: Agglomeration II

• Warning: Your compiler may do things differently!

• Computation is static, homogeneous, and over full array (with
respect to the edges)

– No load balancing issues

• Accesses to node array are “nearest neighbor” in the mesh

– This is not reflected in the index order!

– ∴ This does not favor either BLOCK or CYCLIC

• To minimize communication, edge and node distributions must
fit the mesh topology

– HPF’s regular distributions are not ideal for this

– HPF 2.0 indirect distributions may be better, but require careful
construction

• The bottom line, part II

– No silver bullet

– Order the nodes and edges to bring “close” entities together, then
use BLOCK

CRPC

Irregular Mesh: Pictures

Processor 1

Processor 2

Processor 3

Edge list

X Y
X

Y

CRPC

Irregular Mesh: Bad Data Distribution

1

1
1

2

2

2

3
3
3

3
3

4
4
4

4
4

5
5

6

6
6

7

7

7
7

8
8

8
8

9

9
9

01

01
01

11

11
11

21
21

21
21

31

31

31
31
31

41

41

41
41

41
41

41

41

51

51

51
51

51

Processor 1

Processor 2

Processor 3

Edge list

15

3 4 5

678
9

10

11

12 13

14

1 2

CRPC

Irregular Mesh: Good Data Distribution

1
1
2
2

2

3
3

3

4
4

4
4

4

5

5

5
5

5

6
6
6
6

6

7

7

8

8
8

9
9

9

9
01

01

01
01

01

11
11

11
11

21

21

41

41

41
51
51

51
51

51

51

51

51

Processor 1

Processor 2

Processor 3

Edge list

1
1

21 31

31
31

15

3

45 6 7

89

10

11
12

13

14

1

2

CRPC

Irregular Mesh: HPF Program

USE HPF_LIBRARY
REAL x(nnode), flux(nedge)
INTEGER iedge(nedge,2)
INTEGER permute_node(nnode), permute_edge(nedge)
!HPF$ DISTRIBUTE x(BLOCK)
!HPF$ DISTRIBUTE flux(BLOCK)
!HPF$ ALIGN iedge(i,*) WITH flux(i)
!HPF$ ALIGN permute_edge(i) WITH flux(i)
!HPF$ ALIGN permute_node(i) WITH x(i)

CALL renumber_nodes(iedge, permute_node)
x(permute_node(:)) = x
FORALL (i=1:nedge) iedge(i,:) = permute_node(iedge(i,:))
permute_edge = GRADE_UP(iedge(:,1))
FORALL (i=1:nedge) iedge(i,:) = iedge(permute_edge(i),:)

err = tol * 1e6
DO WHILE (err > tol)

flux=(x(iedge(1:nedge,1))-x(iedge(1:nedge,2)))/2
x=SUM_SCATTER(-flux(1:nedge),x,iedge(1:nedge,1))
x=SUM_SCATTER(flux(1:nedge),x,iedge(1:nedge,2))
err = SUM(flux*flux) / nedge

END DO

CRPC

Irregular Mesh: Mapping

• This program is going to be challenging…
– Indexing of arrays will be difficult

– Owner-computes rule difficult to apply

– Key technique: inspector-executor communication

– First time the code is executed, generate a table of required
communication at run time (inspector)
- Problem: How big does that table get?

- Problem: How do you efficiently distribute that table to all
processors?

– Use this table to manage unstructured communication until
the communication pattern changes (executor)
- Problem: How do you know the pattern has changed?

– Commercial compilers are attacking these problems, but there
is a long way to go

	Outline
	1. Introduction to Data-Parallelism
	2. Fortran 90 Features
	3. HPF Parallel Features
	4. HPF Data Mapping Features
	5. Parallel Programming in HPF
	6. HPF Version 2.0

	Plan of Attack
	Four algorithms
	Jacobi Iteration
	Gaussian Elimination
	Conjugate Gradient
	Irregular Mesh Relaxation

	For each one, look at
	The algorithm
	Parallelism
	Data distribution
	Resulting HPF program

	A Simple Model for Programs
	Jacobi Iteration: The Algorithm
	The Problem
	Given a partial differential equation & boundary conditions
	Find the solution

	The Approach
	Divide (continuous) space into a (discrete) grid
	Guess a solution on the grid
	Update the solution at every grid point
	Repeat update until solution doesn't change

	Jacobi Iteration:
Equations and Pictures
	Jacobi Iteration: Parallelism
	Each Jacobi iteration uses all the data computed in the previous step
	No parallelism at this level
	(We won't try other iterative schemes to avoid this)

	All updated elements within an iteration can be updated in parallel
	unew(i,j)=(u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1)+f(i,j))/4
	These are independent because unew � u and unew � f
	This is a classic data-parallel operation

	Testing for convergence can be done in parallel
	Convergence criteria: Largest element in array
	Searching for the maximum is a data-parallel reduction

	Jacobi Iteration: Data Mapping
	Convergence test requires a whole-array reduction
	Any distribution Þ parallel, with communication

	Element updates require local value and nearest neighbors
	BLOCK Þ least communication volume
	CYCLIC Þ communicate entire array
	(BLOCK,*) Þ move u(i-1,j), u(i+1,j) " j
	(*,BLOCK) Þ move u(i,j-1), u(i,j+1) " i
	(BLOCK,BLOCK) Þ move u(ILOW-1,j), u(IHIGH+1,j) " j, u(i,JLOW-1), u(i,JHIGH+1) " i

	Computation is static and homogenous
	No load balancing issues

	The bottom line
	(BLOCK,*) or (*,BLOCK) on high-latency machines or small problem sizes
	(BLOCK,BLOCK) on low-latency machines

	Jacobi Iteration: Partitioning
	At the most abstract level, Jacobi iteration is a sequential process.
	However, each step in the process is itself composed of many smaller operations.
	Conclusion: Jacobi iteration has plenty of data parallelism

	Jacobi Iteration: Communication
	Element updates:
	Each requires 4 values from previous update step
	Static, local communication
	Generally, the second-fastest kind (after no communication)

	Convergence test:
	Uses all values from latest update step
	Static, global communication
	Reduction operation
	Efficient methods known, encapsulated in libraries

	Jacobi Iteration: Agglomeration
	Element updates require nearest neighbors
	CYCLIC Þ communicate entire array
	BLOCK Þ least communication volume
	(BLOCK,*) Þ move u(i-1,j), u(i+1,j) " j
	(BLOCK,BLOCK) Þ move u(ILOW-1,j), u(IHIGH+1,j) " j, u(i,JLOW-1), u(i,JHIGH+1) " i

	Convergence test requires a whole-array reduction
	Any distribution Þ static, structured communication

	The bottom line
	(BLOCK,*) on high-latency machines or small problem sizes
	(BLOCK,BLOCK) on low-latency machines

	Jacobi Iteration: HPF Program
	REAL u(0:nx,0:ny), unew(0:nx,0:ny), f(0:nx,0:ny)
	!HPF$ DISTRIBUTE u(BLOCK,*)
	!HPF$ ALIGN (:,:) WITH u(:,:) :: unew, f
	dx = 1.0/nx; dy = 1.0/ny; err = tol * 1e6
	FORALL (i=0:nx, j=0:ny)
	f(i,j) = -2*(dx*i)**2+2*dx*i-2*(dy*j)**2+2*dy*j

	END FORALL
	u = 0.0; unew = 0.0
	DO WHILE (err > tol)
	FORALL (i=1:nx-1, j=1:ny-1) &
	unew(i,j) = (u(i-1,j)+u(i+1,j)+u(i,j-1)+ &
	u(i,j+1)+f(i,j))/4

	err = MAXVAL(ABS(unew-u))
	u = unew

	END DO

	Jacobi Iteration: Mapping
	This program is a piece of cake for the compiler.
	Allocate portion of array on each processor based on DISTRIBUTE
	Apply owner-computes rule analytically based on left-hand side
	Detect shift communication from dependence analysis of subscripts or pattern matching
	Recognize MAXVAL intrinsic as reduction communication
	Place all communication directly outside parallel construct where it occurs
	Number processors so that shifts do not cause contention

	Gaussian Elimination: The Algorithm
	The Problem
	Given N linear equations in N unknowns xi
	Find values of all xi to satisfy the equations

	The Approach
	Use Eq. 1 to eliminate x1 from Eq. 2, 3, É N
	Use Eq. 2 to eliminate x2 from Eq. 3, É N
	
	Eq. N only involves xN Þ Solve it!
	Work backwards to find xN-1, É, x1

	Gaussian Elimination: Pictures
	Gaussian Elimination: Parallelism
	Each step of Gaussian Elimination uses all the data computed in the previous step
	No parallelism at this level
	(We wonÕt try to reorder computations to avoid this)

	All updated elements within a step can be done in parallel
	Basic formula: a(i,j)=a(i,j)-a(i,K)/a(K,K)*a(K,j)
	These are independent because i�K, j�K
	This is a classic data-parallel operation

	Choosing the pivot row can be done in parallel
	Pivot criteria: Row with the largest element
	Searching for the maximum is a data-parallel reduction

	Gaussian Elimination: Data Mapping
	Pivot selection requires a 1-D reduction
	Distribute rows Þ parallel, with communication
	Distribute columns Þ sequential, but no communication

	Element updates require the old value and elements from the pivot row and column
	Distribute rows Þ parallel, but broadcast the pivot row
	Distribute columns Þ parallel, but broadcast the pivot column

	Each stage works on a smaller contiguous region of the array
	BLOCK Þ processors drop out of the computation
	CYCLIC Þ work stays (fairly) evenly distributed until the end
	CYCLIC(K) Þ granularity will be at least K elements

	The bottom line
	(*,CYCLIC) if broadcast > pivoting one column
	(CYCLIC,*) if broadcast < one column, synchronous comm.
	(CYCLIC,CYCLIC) if broadcast < one col., overlapped comm.

	Gaussian Elimination: Partitioning
	At the most abstract level, Gaussian elimination is a sequential process.
	Need all elements in column k to find pivot row
	Need all elements in column k and pivot row to perform pivoting

	However, each step in the process is itself composed of many smaller operations.
	Perform all element updates independently

	Conclusion: Gaussian elimination has plenty of data parallelism
	Until the last few stages, anywayÉ

	Gaussian Elimination: Communication
	Pivot search:
	Reduction along column
	Static, global communication

	Element updates:
	Each requires itself, elements from pivot column & row
	Static, global communication
	Broadcast

	Gaussian Elimination: Agglomeration
	Pivot selection requires a 1-D reduction
	Distribute rows Þ parallel, with communication
	Distribute columns Þ sequential, but no communication

	Element updates require the old value and elements from the pivot row and column
	Distribute rows Þ parallel, but broadcast the pivot row
	Distribute columns Þ parallel, but broadcast the pivot column

	Each stage works on a smaller contiguous region of the array
	BLOCK Þ processors drop out of the computation
	CYCLIC Þ work stays (fairly) evenly distributed until the end

	The bottom line
	(*,CYCLIC) if broadcast > pivoting one column
	(CYCLIC,*) if broadcast < one column, synchronous comm.
	(CYCLIC,CYCLIC) if broadcast < one col., overlapped comm.

	Gaussian Elimination: HPF Program
	REAL a(n,n), tmp(n)
	!HPF$ DISTRIBUTE a(CYCLIC,CYCLIC)
	!HPF$ ALIGN tmp(i) WITH a(*,i)
	DO k = 1, n-1
	! Select the pivot
	ipivot = MAXLOC(ABS(a(k:n,k))) + k - 1
	! Swap the rows
	tmp(k:n) = a(ipivot,k:n)
	a(ipivot,k:n) = a(k,k:n)
	a(k,k:n) = tmp(k:n)
	! Update the submatrix
	FORALL (i=k+1:n, j=k+1:n) &
	& a(i,j) = a(i,j) - a(i,k)/tmp(k)*tmp(j)

	END DO

	Gaussian Elimination: Mapping
	This program is harder for the compiler.
	Allocate portion of array on each processor based on DISTRIBUTE
	Apply owner-computes rule analytically based on left-hand side
	Detect communication from dependence analysis & intrinsics
	Here, it really pays to transform the program!
	Reorder computation to always precompute the next pivot column
	Rearrange communication to pipeline the series of updates
	Do broadcasts asynchronously
	Net result: 2´ speedup

	Use standard numbering for processors

	Conjugate Gradient: The Algorithm
	The Problem
	Given a partial differential equation & boundary conditions
	Find the solution

	The Approach
	Divide (continuous) space into a (discrete) grid
	Guess a solution on the grid
	Estimate how the solution should change
	Move in that direction
	Repeat estimate and move until solution doesn't change

	Conjugate Gradient:
Equations and Pictures
	Conjugate Gradient: More Equations
	u = á initial guess ñ
	r = f Ð A * u
	d = max(|r|)
	i = 0; r = 0
	WHILE (d > e) DO
	i = i + 1; rold = r
	r = r × r
	IF (i=1) THEN p = r ELSE p = r + r/rold p
	q = A * p
	a = r / (p × q)
	u = u + a p
	r = r Ð a q
	d = max(|r|)

	END WHILE

	Conjugate Gradient: Parallelism
	Each CG iteration uses all the data computed in the previous step, plus data computed in the current step
	No parallelism at this level
	(We won't try to overlap computation within a step)

	Each matrix operation can compute elements in parallel
	r(i,j)=f(i,j)-4*u(i,j)+u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1)
	p(i,j) = r(i,j) + rho/rho_old * p(i,j)
	These are classic data-parallel operations
	rho = Si,j r(i,j)2
	This is a data-parallel reduction

	Testing for convergence can be done in parallel
	As in Jacobi iteration

	Conjugate Gradient: Data Mapping
	Convergence test requires a whole-array reduction
	Any distribution Þ parallel, with communication

	Inner products require whole-array reductions
	Any distribution Þ parallel, with communication

	Array operations require local value and nearest neighbors
	BLOCK Þ least communication volume
	(BLOCK,*) Þ move u(i-1,j), u(i+1,j) " j
	(BLOCK,BLOCK) Þ move u(ILOW-1,j), u(IHIGH+1,j) " j, u(i,JLOW-1), u(i,JHIGH+1) " i

	Computation is static, homogenous, and over full array
	No load balancing issues

	The bottom line
	(BLOCK,*) or (*,BLOCK) on high-latency machines or small problem sizes
	(BLOCK,BLOCK) on low-latency machines

	Conjugate Gradient: Partitioning
	At the most abstract level, conjugate gradient has minimal parallelism
	u, r, a can be updated independently

	The real potential parallelism is in the matrix and vector operations, however.
	r × r is a reduction of size N
	u + a p is a vector update of size N
	A * p is a (sparse) matrix-vector multiply, in this case of size O(N)
	It looks a lot like the operator in Jacobi

	Conclusions:
	Stick to the matrix/vector operators
	Task parallelism (and pipelining) may improve some

	Conjugate Gradient: Communication
	Convergence test:
	Global reduction

	Dot products:
	Global reductions

	Vector updates:
	Elementwise scaling and addition of two vectors
	No communication if vectors are aligned

	Matrix-vector multiplies:
	Depends on the matrix (PDE operator) in the problem
	For the model problem, equivalent to Jacobi iteration grid update
	Static, local communication

	Conjugate Gradient: Agglomeration
	Dot products and convergence test always require global communication
	No reason to pick one DISTRIBUTE over another

	Vector updates require no communication
	Really no reason to choose a particular DISTRIBUTE

	Matrix-vector multiply does care where its data come from
	In this case, same advantages/disadvantages as Jacobi iteration

	The bottom line
	(BLOCK,*) on high-latency machines or small problem sizes
	(BLOCK,BLOCK) on low-latency machines

	Conjugate Gradient: HPF Program
	REAL u(0:n,0:n), r(0:n,0:n), p(0:n,0:n)
	REAL q(0:n,0:n), f(0:n,0:n)
	!HPF$ DISTRIBUTE u(BLOCK,*)
	!HPF$ ALIGN (:,:) WITH u(:,:) :: r, p, q, f
	INTERFACE
	SUBROUTINE a_times_vector(x, y)
	REAL, INTENT(IN) :: x(:,:)
	REAL, INTENT(OUT) :: y(:,:)
	!HPF$ DISTRIBUTE x *(BLOCK,*)
	!HPF$ ALIGN y(:,:) WITH *x(:,:)

	END INTERFACE
	u = 0.0
	r = f
	err = MAXVAL(ABS(r(1:n-1,1:n-1)))
	i = 0; rho = 0

	Conjugate Gradient: Mapping
	This program looks like a more complicated version of Jacobi iteration to the compiler.
	Allocate arrays based on DISTRIBUTE
	Apply owner-computes rule
	Detect communication from dependence analysis and intrinsics
	Useful optimizations include aggregating communication, overlapping communication with computation
	All of this becomes more interesting if the program encapsulates operations in a subroutine
	The programmer must trade off efficiency for flexibility and maintainability

	Irregular Mesh Relaxation:
The Algorithm
	The Problem
	Given an irregular mesh of values
	Update each value using its neighbors in the mesh

	The Approach
	Store the mesh as a list of edges
	Process all edges in paralle
	Compute contribution of edge
	Add to one endpoint, subtract from the otherl

	Irregular Mesh: Sequential Program
	REAL x(nnode), flux(nedge)
	INTEGER iedge(nedge,2)
	err = tol * 1e6
	DO WHILE (err > tol)
	DO i = 1, nedge
	flux(i) = (x(iedge(i,1))-x(iedge(i,2))) / 2
	err = err + flux(i)*flux(i)

	END DO
	DO i = 1, nedge
	x(iedge(i,1)) = x(iedge(i,1)) - flux(i)
	x(iedge(i,2)) = x(iedge(i,2)) + flux(i)

	END DO
	err = err / nedge

	END DO

	Irregular Mesh: Parallelism
	Each iteration of the relaxation uses all the data computed in the previous step, and the edge array
	No parallelism at this level
	(Does this sound familiar?)

	All edge values can be computed in parallel
	flux(i)=(x(iedge(i,1))-x(iedge(i,2)))/2
	These are independent because edge_val � node_val

	Updating the node values is not trivially parallel
	x(iedge(i,1)) = x(iedge(i,1)) - flux(i)
	x(iedge(i,2)) = x(iedge(i,2)) + flux(i)
	They are dependent because sometimes iedge(iY,1) = iedge(iZ,2)
	Fortunately, HPF provides the SUM_SCATTER function

	Irregular Mesh: Data Mapping I
	Warning: Your compiler may do things differently!
	Computing edge values requires edge list and node values
	Distribute edges Þ parallel, no communication for edges
	Replicate edges Þ sequential or broadcast edge values
	Distribute nodes Þ move ÒsharedÓ endpoints
	Replicate nodes Þ no movement for endpoints

	Updating node values requires edge list, edge values, and node values
	Distribute edges Þ parallel, no communication for edges
	Replicate edges Þ sequential, no communication for edges
	Distribute nodes Þ move ÒsharedÓ endpoints
	Replicate nodes Þ move all endpoints

	The bottom line, part I
	Always distribute edges
	Distribute nodes unless the problem is very small

	Irregular Mesh: Data Mapping II
	Warning: Your compiler may do things differently!
	Computation is static, homogeneous, and over full array (with respect to the edges)
	No load balancing issues

	Accesses to node array are Ònearest neighborÓ in the mesh
	This is not reflected in the index order!
	 This does not favor either BLOCK or CYCLIC

	To minimize communication, edge and node distributions must fit the mesh topology
	HPFÕs regular distributions are not ideal for this
	HPF 2.0 indirect distributions are better, but require careful construction

	The bottom line, part II
	No silver bullet
	Order the nodes and edges to bring ÒcloseÓ entities together, then use BLOCK

	Irregular Mesh:
Partitioning & Communication
	Each iteration of the relaxation uses all the data computed in the previous step, and the edge array
	No parallelism at this level
	(Does this sound familiar?)

	Instead, use the data-parallel edge and node updates
	flux(i)=(x(iedge(i,1))-x(iedge(i,2)))/2
	Independent because edge_val � node_val

	x(iedge(i,1)) = x(iedge(i,1)) - flux(i);
x(iedge(i,2)) = x(iedge(i,2)) + flux(i)
	Not independent because sometimes iedge(iY,1) = iedge(iX,2)
	Fortunately, HPF provides the SUM_SCATTER function

	Communication needed in both stages
	Between edges and nodes to compute flux
	Edge-node and node-node to compute x
	All communication is static, local with respect to grid, but unstructured with respect to array indices

	Irregular Mesh: Agglomeration I
	Warning: Your compiler may do things differently!
	Computing edge values requires edge list and node values
	Distribute edges Þ parallel, no communication for edges
	Replicate edges Þ sequential or broadcast edge values
	Distribute nodes Þ move ÒsharedÓ endpoints
	Replicate nodes Þ no movement for endpoints

	Updating node values requires edge list, edge values, and node values
	Distribute edges Þ parallel, no communication for edges
	Replicate edges Þ sequential, no communication for edges
	Distribute nodes Þ move ÒsharedÓ endpoints
	Replicate nodes Þ move all endpoints

	The bottom line, part I
	Always distribute edges
	Distribute nodes unless the problem is very small

	Irregular Mesh: Agglomeration II
	Warning: Your compiler may do things differently!
	Computation is static, homogeneous, and over full array (with respect to the edges)
	No load balancing issues

	Accesses to node array are Ònearest neighborÓ in the mesh
	This is not reflected in the index order!
	 This does not favor either BLOCK or CYCLIC

	To minimize communication, edge and node distributions must fit the mesh topology
	HPFÕs regular distributions are not ideal for this
	HPF 2.0 indirect distributions may be better, but require careful construction

	The bottom line, part II
	No silver bullet
	Order the nodes and edges to bring ÒcloseÓ entities together, then use BLOCK

	Irregular Mesh: Pictures
	Irregular Mesh: Bad Data Distribution
	Irregular Mesh: Good Data Distribution
	Irregular Mesh: HPF Program
	USE HPF_LIBRARY
	REAL x(nnode), flux(nedge)
	INTEGER iedge(nedge,2)
	INTEGER permute_node(nnode), permute_edge(nedge)
	!HPF$ DISTRIBUTE x(BLOCK)
	!HPF$ DISTRIBUTE flux(BLOCK)
	!HPF$ ALIGN iedge(i,*) WITH flux(i)
	!HPF$ ALIGN permute_edge(i) WITH flux(i)
	!HPF$ ALIGN permute_node(i) WITH x(i)
	CALL renumber_nodes(iedge, permute_node)
	x(permute_node(:)) = x
	FORALL (i=1:nedge) iedge(i,:) = permute_node(iedge(i,:))
	permute_edge = GRADE_UP(iedge(:,1))
	FORALL (i=1:nedge) iedge(i,:) = iedge(permute_edge(i),:)
	err = tol * 1e6
	DO WHILE (err > tol)
	flux=(x(iedge(1:nedge,1))-x(iedge(1:nedge,2)))/2
	x=SUM_SCATTER(-flux(1:nedge),x,iedge(1:nedge,1))
	x=SUM_SCATTER(flux(1:nedge),x,iedge(1:nedge,2))
	err = SUM(flux*flux) / nedge

	END DO

	Irregular Mesh: Mapping
	This program is going to be challengingÉ
	Indexing of arrays will be difficult
	Owner-computes rule difficult to apply
	Key technique: inspector-executor communication
	First time the code is executed, generate a table of required communication at run time (inspector)
	Problem: How big does that table get?
	Problem: How do you efficiently distribute that table to all processors?

	Use this table to manage unstructured communication until the communication pattern changes (executor)
	Problem: How do you know the pattern has changed?

	Commercial compilers are attacking these problems, but there is a long way to go

