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Plan of Attack

• Four algorithms
– Jacobi Iteration

– Gaussian Elimination

– Conjugate Gradient

– Irregular Mesh Relaxation

• For each one, look at
– The algorithm

– Parallelism

– Data distribution

– Resulting HPF program
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A Simple Model for Programs

Ttotal = Tseq +
T par

P
+ Tcomm

Ttotal = Total execution time

T seq = Sequential execution time

T par = Total parallel computation time

P = Number of processors

Tcomm = Communication / synchronization time
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Jacobi Iteration: The Algorithm

• The Problem
– Given a partial differential 

equation & boundary conditions

– Find the solution

• The Approach
– Divide (continuous) space into a 

(discrete) grid

– Guess a solution on the grid

– Update the solution at every grid 
point

– Repeat update until solution 
doesn't change

∂ 2u
∂x 2 + ∂ 2u

∂y 2 = −2x 2 + 2x − 2y 2 + 2y

u = 0 if x = 0,x = 1,y = 0,  or y = 1
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Jacobi Iteration: 
Equations and Pictures

Discretized 
Equations

4u1,1-u2,1-u1,2=-0.00220

4u1,2-u2,2-u1,1-u1,3=-0.00293

4u1,3-u2,3-u1,2=-0.00220

4u2,1-u1,1-u3,1-u2,2=-0.00293

4u2,2-u1,2-u3,2-u2,1-u2,3=-0.00391

4u2,3-u1,3-u3,3-u2,2=-0.00293

4u3,1-u2,1-u3,2=-0.00220

4u3,2-u2,2-u3,1-u3,3=-0.00293

4u3,3-u2,3-u3,2=-0.00220

Reordered 
Equations

u1,1=(u2,1+u1,2-0.00220)/4

u1,2=(u2,2+u1,1+u1,3-0.00293)/4

u1,3=(u2,3+u1,2-0.00220)/4

u2,1=(u1,1+u3,1+u2,2-0.00293)/4

u2,2=(u1,2+u3,2+u2,1+u2,3-0.00391)/4

u2,3=(u1,3+u3,3+u2,2-0.00293)/4

u3,1=(u2,1+u3,2-0.00220)/4

u3,2=(u2,2+u3,1+u3,3-0.00293)/4

u3,3=(u2,3+u3,2-0.00220)/4

0 0 0 0 0

0 X X X 0

0 X X X 0

0 X X X 0

0 0 0 0 0

UI,J UI,J+1
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Jacobi Iteration: Parallelism

• Each Jacobi iteration uses all the data computed in the 
previous step

– No parallelism at this level

– (We won't try other iterative schemes to avoid this)

• All updated elements within an iteration can be updated 
in parallel

– unew(i,j)=(u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1)+f(i,j))/4

– These are independent because unew  u and unew  f

– This is a classic data-parallel operation

• Testing for convergence can be done in parallel
– Convergence criteria: Largest element in array

– Searching for the maximum is a data-parallel reduction
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Jacobi Iteration: Data Mapping

• Convergence test requires a whole-array reduction

– Any distribution ⇒  parallel, with communication

• Element updates require local value and nearest neighbors

– BLOCK ⇒  least communication volume

– CYCLIC ⇒  communicate entire array

– (BLOCK,*) ⇒  move u(i-1,j), u(i+1,j) ∀  j

– (*,BLOCK) ⇒  move u(i,j-1), u(i,j+1) ∀  i

– (BLOCK,BLOCK) ⇒  move u(ILOW-1,j), u(IHIGH+1,j) ∀  j, 
u(i,JLOW-1), u(i,JHIGH+1) ∀  i

• Computation is static and homogenous

– No load balancing issues

• The bottom line

– (BLOCK,*) or (*,BLOCK) on high-latency machines or small 
problem sizes

– (BLOCK,BLOCK) on low-latency machines
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Jacobi Iteration: Partitioning

• At the most abstract level, Jacobi iteration is a 
sequential process.

• However, each step in the process is itself 
composed of many smaller operations.

• Conclusion: Jacobi iteration has plenty of data 
parallelism

Update 
grid

Check 
conv.
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Jacobi Iteration: Communication

• Element updates:
– Each requires 4 values from previous update step

– Static, local communication

– Generally, the second-fastest kind (after no communication)

• Convergence test:
– Uses all values from latest update step

– Static, global communication

– Reduction operation

– Efficient methods known, encapsulated in libraries
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Jacobi Iteration: Agglomeration

• Element updates require nearest neighbors
– CYCLIC ⇒  communicate entire array

– BLOCK ⇒  least communication volume

– (BLOCK,*) ⇒  move u(i-1,j), u(i+1,j) ∀  j

– (BLOCK,BLOCK) ⇒  move u(ILOW-1,j), u(IHIGH+1,j) 
∀  j, u(i,JLOW-1), u(i,JHIGH+1) ∀  i

• Convergence test requires a whole-array 
reduction

– Any distribution ⇒  static, structured communication

• The bottom line
– (BLOCK,*) on high-latency machines or small problem sizes

– (BLOCK,BLOCK) on low-latency machines
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Jacobi Iteration: HPF Program

REAL u(0:nx,0:ny), unew(0:nx,0:ny), f(0:nx,0:ny)

!HPF$ DISTRIBUTE u(BLOCK,*)

!HPF$ ALIGN (:,:) WITH u(:,:) :: unew, f

dx = 1.0/nx; dy = 1.0/ny; err = tol * 1e6

FORALL ( i=0:nx, j=0:ny )

f(i,j) = -2*(dx*i)**2+2*dx*i-2*(dy*j)**2+2*dy*j

END FORALL

u = 0.0; unew = 0.0

DO WHILE (err > tol)

FORALL ( i=1:nx-1, j=1:ny-1 ) &

unew(i,j) = (u(i-1,j)+u(i+1,j)+u(i,j-1)+ &

u(i,j+1)+f(i,j))/4

err = MAXVAL( ABS(unew-u) )

u = unew

END DO
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Jacobi Iteration: Mapping

• This program is a piece of cake for the 
compiler.

– Allocate portion of array on each processor based on 
DISTRIBUTE

– Apply owner-computes rule analytically based on left-hand side

– Detect shift communication from dependence analysis of 
subscripts or pattern matching

– Recognize MAXVAL intrinsic as reduction communication

– Place all communication directly outside parallel construct 
where it occurs

– Number processors so that shifts do not cause contention
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Gaussian Elimination: The Algorithm

• The Problem
– Given N linear equations in N 

unknowns x
i

– Find values of all x
i
 to satisfy the 

equations

• The Approach
– Use Eq. 1 to eliminate x

1
 from Eq. 

2, 3, … N

– Use Eq. 2 to eliminate x
2
 from Eq. 

3, … N

– …

– Eq. N only involves x
N 

⇒ Solve it!

– Work backwards to find x
N-1

, …, x
1

x
1  

= 1.00

x
2  

= 1.00

x
3  

= 1.00

x
4 
= 1.00
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Gaussian Elimination: Pictures

Not Used Pivot Elements Updated Elements
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Gaussian Elimination: Parallelism

• Each step of Gaussian Elimination uses all the 
data computed in the previous step

– No parallelism at this level

– (We won’t try to reorder computations to avoid this)

• All updated elements within a step can be done 
in parallel

– Basic formula: a(i,j)=a(i,j)-a(i,K)/a(K,K)*a(K,j)

– These are independent because i K, j K

– This is a classic data-parallel operation

• Choosing the pivot row can be done in parallel
– Pivot criteria: Row with the largest element

– Searching for the maximum is a data-parallel reduction
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Gaussian Elimination: Data Mapping

• Pivot selection requires a 1-D reduction

– Distribute rows ⇒  parallel, with communication

– Distribute columns ⇒  sequential, but no communication

• Element updates require the old value and elements from the 
pivot row and column

– Distribute rows ⇒  parallel, but broadcast the pivot row

– Distribute columns ⇒  parallel, but broadcast the pivot column

• Each stage works on a smaller contiguous region of the array

– BLOCK ⇒  processors drop out of the computation

– CYCLIC ⇒  work stays (fairly) evenly distributed until the end

– CYCLIC(K) ⇒  granularity will be at least K elements

• The bottom line

– (*,CYCLIC) if broadcast > pivoting one column

– (CYCLIC,*) if broadcast  < one column, synchronous comm.

– (CYCLIC,CYCLIC) if broadcast < one col., overlapped comm.
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Gaussian Elimination: Partitioning

• At the most abstract level, Gaussian elimination 
is a sequential process.

– Need all elements in column k to find pivot row

– Need all elements in column k and pivot row to perform pivoting

• However, each step in the process is itself 
composed of many smaller operations.

– Perform all element updates independently

• Conclusion: Gaussian elimination has plenty of 
data parallelism

– Until the last few stages, anyway…
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Gaussian Elimination: Communication

• Pivot search:
– Reduction along column

– Static, global communication

• Element updates:
– Each requires itself, elements from pivot column & row

– Static, global communication

– Broadcast
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Gaussian Elimination: Agglomeration

• Pivot selection requires a 1-D reduction

– Distribute rows ⇒  parallel, with communication

– Distribute columns ⇒  sequential, but no communication

• Element updates require the old value and elements from the 
pivot row and column

– Distribute rows ⇒  parallel, but broadcast the pivot row

– Distribute columns ⇒  parallel, but broadcast the pivot column

• Each stage works on a smaller contiguous region of the array

– BLOCK ⇒  processors drop out of the computation

– CYCLIC ⇒  work stays (fairly) evenly distributed until the end

• The bottom line

– (*,CYCLIC) if broadcast > pivoting one column

– (CYCLIC,*) if broadcast  < one column, synchronous comm.

– (CYCLIC,CYCLIC) if broadcast < one col., overlapped comm.
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Gaussian Elimination: HPF Program

REAL a(n,n), tmp(n)

!HPF$ DISTRIBUTE a(CYCLIC,CYCLIC)

!HPF$ ALIGN tmp(i) WITH a(*,i)

DO k = 1, n-1

! Select the pivot

ipivot = MAXLOC( ABS(a(k:n,k)) ) + k - 1

! Swap the rows

tmp(k:n) = a(ipivot,k:n)

a(ipivot,k:n) = a(k,k:n)

a(k,k:n) = tmp(k:n)

! Update the submatrix

FORALL ( i=k+1:n, j=k+1:n ) &

& a(i,j) = a(i,j) - a(i,k)/tmp(k)*tmp(j)

END DO
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Gaussian Elimination: Mapping

• This program is harder for the compiler.
– Allocate portion of array on each processor based on 
DISTRIBUTE

– Apply owner-computes rule analytically based on left-hand side

– Detect communication from dependence analysis & intrinsics

– Here, it really pays to transform the program!

– Reorder computation to always precompute the next pivot 
column

– Rearrange communication to pipeline the series of updates

– Do broadcasts asynchronously

– Net result: 2× speedup

– Use standard numbering for processors
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Conjugate Gradient: The Algorithm

• The Problem
– Given a partial differential 

equation & boundary conditions

– Find the solution

• The Approach
– Divide (continuous) space into a 

(discrete) grid

– Guess a solution on the grid

– Estimate how the solution should 
change

– Move in that direction

– Repeat estimate and move until 
solution doesn't change

∂ 2u
∂x 2 + ∂ 2u

∂y 2 = −2x 2 + 2x − 2y 2 + 2y

u = 0 if x = 0,x = 1,y = 0,  or y = 1
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Conjugate Gradient: 
Equations and Pictures

Discretized 
Equations

4u1,1-u2,1-u1,2=-0.00220

4u1,2-u2,2-u1,1-u1,3=-0.00293

4u1,3-u2,3-u1,2=-0.00220

4u2,1-u1,1-u3,1-u2,2=-0.00293

4u2,2-u1,2-u3,2-u2,1-u2,3=-0.00391

4u2,3-u1,3-u3,3-u2,2=-0.00293

4u3,1-u2,1-u3,2=-0.00220

4u3,2-u2,2-u3,1-u3,3=-0.00293

4u3,3-u2,3-u3,2=-0.00220

Minimize 
r =(Au −f )T (Au −f )

A =

4 1 0 1 0 0 0 0 0

1 4 1 0 1 0 0 0 0

0 1 4 0 0 1 0 0 0

1 0 0 4 1 0 1 0 0

0 1 0 1 4 1 0 1 0

0 0 1 0 1 4 0 0 1

0 0 0 1 0 0 4 1 0

0 0 0 0 1 0 1 4 1

0 0 0 0 0 1 0 1 4
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−.00220



































9-Dimensional Search

???

2-Dimensional Search

3-Dimensional Search



CRPC

Conjugate Gradient: More Equations

u = 〈 initial guess 〉
r = f – A ∗  u
δ = max( |r| )
ι  = 0; ρ = 0
WHILE (δ > ε) DO

ι  = ι  + 1; ρold = ρ
ρ = r ⋅ r
IF  (ι=1)  THEN  p = r   ELSE  p = r + ρ/ρold p
q = A ∗  p
α = ρ / (p ⋅ q)
u = u + α p
r = r – α q
δ = max( |r| )

END WHILE
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Conjugate Gradient: Parallelism

• Each CG iteration uses all the data computed in the 
previous step, plus data computed in the current step

– No parallelism at this level

– (We won't try to overlap computation within a step)

• Each matrix operation can compute elements in parallel
– r(i,j)=f(i,j)-4*u(i,j)+u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1)

– p(i,j) = r(i,j) + rho/rho_old * p(i,j)

– These are classic data-parallel operations

– rho = Σ
i,j
 r(i,j)2

– This is a data-parallel reduction

• Testing for convergence can be done in parallel
– As in Jacobi iteration
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Conjugate Gradient: Data Mapping

• Convergence test requires a whole-array reduction

– Any distribution ⇒  parallel, with communication

• Inner products require whole-array reductions

– Any distribution ⇒  parallel, with communication

• Array operations require local value and nearest neighbors

– BLOCK ⇒  least communication volume

– (BLOCK,*) ⇒  move u(i-1,j), u(i+1,j) ∀  j

– (BLOCK,BLOCK) ⇒  move u(ILOW-1,j), u(IHIGH+1,j) ∀  j, 
u(i,JLOW-1), u(i,JHIGH+1) ∀  i

• Computation is static, homogenous, and over full array

– No load balancing issues

• The bottom line

– (BLOCK,*) or (*,BLOCK) on high-latency machines or small 
problem sizes

– (BLOCK,BLOCK) on low-latency machines
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Conjugate Gradient: Partitioning

• At the most abstract level, conjugate gradient 
has minimal parallelism

– u, r, α can be updated independently

• The real potential parallelism is in the matrix 
and vector operations, however.

– r ⋅ r  is a reduction of size N

– u + α p is a vector update of size N

– A * p is a (sparse) matrix-vector multiply, in this case of size 
O(N)

– It looks a lot like the operator in Jacobi

• Conclusions:
– Stick to the matrix/vector operators

– Task parallelism (and pipelining) may improve some
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Conjugate Gradient: Communication

• Convergence test:
– Global reduction

• Dot products:
– Global reductions

• Vector updates:
– Elementwise scaling and addition of two vectors

– No communication if vectors are aligned

• Matrix-vector multiplies:
– Depends on the matrix (PDE operator) in the problem

– For the model problem, equivalent to Jacobi iteration grid 
update

– Static, local communication
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Conjugate Gradient: Agglomeration

• Dot products and convergence test always 
require global communication

– No reason to pick one DISTRIBUTE over another

• Vector updates require no communication
– Really no reason to choose a particular DISTRIBUTE

• Matrix-vector multiply does care where its data 
come from

– In this case, same advantages/disadvantages as Jacobi 
iteration

• The bottom line
– (BLOCK,*) on high-latency machines or small problem sizes

– (BLOCK,BLOCK) on low-latency machines
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Conjugate Gradient: HPF Program

REAL u(0:n,0:n), r(0:n,0:n), p(0:n,0:n)

REAL q(0:n,0:n), f(0:n,0:n)

!HPF$ DISTRIBUTE u(BLOCK,*)

!HPF$ ALIGN (:,:) WITH u(:,:) :: r, p, q, f

INTERFACE

SUBROUTINE a_times_vector( x, y )

REAL, INTENT(IN) :: x(:,:)

REAL, INTENT(OUT) :: y(:,:)

!HPF$ DISTRIBUTE x *(BLOCK,*)

!HPF$ ALIGN y(:,:) WITH *x(:,:)

END INTERFACE

u = 0.0

r = f

err = MAXVAL( ABS(r(1:n-1,1:n-1)) )

i = 0; rho = 0

DO WHILE (err > tol)

i = i + 1; rho_old = rho

rho = SUM( r(1:n-1,1:n-1)**2 )

IF  (i=1)  THEN  

p = r

ELSE

p = r + rho/rho_old * p

END IF

CALL a_times_vector(p, q)

alpha = rho / SUM(p*q)

u = u + alpha * p

r = r – alpha * q

err = MAXVAL(ABS(r(1:n-1,1:n-1)))

END DO
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Conjugate Gradient: Mapping

• This program looks like a more complicated 
version of Jacobi iteration to the compiler.

– Allocate arrays based on DISTRIBUTE

– Apply owner-computes rule

– Detect communication from dependence analysis and intrinsics

– Useful optimizations include aggregating communication, 
overlapping communication with computation

– All of this becomes more interesting if the program 
encapsulates operations in a subroutine

– The programmer must trade off efficiency for flexibility and 
maintainability
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Irregular Mesh Relaxation: 
The Algorithm

• The Problem
– Given an irregular mesh of 

values

– Update each value using its 
neighbors in the mesh

• The Approach
– Store the mesh as a list of edges

– Process all edges in paralle

– Compute contribution of edge

– Add to one endpoint, subtract 
from the otherl

1.0
0.1

0.3

0.1

0.1

0.2
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Irregular Mesh: Sequential Program

REAL x(nnode), flux(nedge)

INTEGER iedge(nedge,2)

err = tol * 1e6

DO WHILE (err > tol)

DO i = 1, nedge

flux(i) = (x(iedge(i,1))-x(iedge(i,2))) / 2

err = err + flux(i)*flux(i)

END DO

DO i = 1, nedge

x(iedge(i,1)) = x(iedge(i,1)) - flux(i)

x(iedge(i,2)) = x(iedge(i,2)) + flux(i)

END DO

err = err / nedge

END DO



CRPC

Irregular Mesh: Parallelism

• Each iteration of the relaxation uses all the data 
computed in the previous step, and the edge array

– No parallelism at this level

– (Does this sound familiar?)

• All edge values can be computed in parallel
– flux(i)=(x(iedge(i,1))-x(iedge(i,2)))/2

– These are independent because edge_val  node_val

• Updating the node values is not trivially parallel
– x(iedge(i,1)) = x(iedge(i,1)) - flux(i)

– x(iedge(i,2)) = x(iedge(i,2)) + flux(i)

– They are dependent because sometimes iedge(i
Y
,1) = iedge(i

Z
,2)

– Fortunately, HPF provides the SUM_SCATTER function
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Irregular Mesh: Data Mapping I

• Warning: Your compiler may do things differently!

• Computing edge values requires edge list and node values

– Distribute edges ⇒  parallel, no communication for edges

– Replicate edges ⇒  sequential or broadcast edge values

– Distribute nodes ⇒  move “shared” endpoints

– Replicate nodes ⇒  no movement for endpoints

• Updating node values requires edge list, edge values, and node 
values

– Distribute edges ⇒  parallel, no communication for edges

– Replicate edges ⇒  sequential, no communication for edges

– Distribute nodes ⇒  move “shared” endpoints

– Replicate nodes ⇒  move all endpoints

• The bottom line, part I

– Always distribute edges

– Distribute nodes unless the problem is very small
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Irregular Mesh: Data Mapping II

• Warning: Your compiler may do things differently!

• Computation is static, homogeneous, and over full array (with 
respect to the edges)

– No load balancing issues

• Accesses to node array are “nearest neighbor” in the mesh

– This is not reflected in the index order!

– ∴  This does not favor either BLOCK or CYCLIC

• To minimize communication, edge and node distributions must 
fit the mesh topology

– HPF’s regular distributions are not ideal for this

– HPF 2.0 indirect distributions are better, but require careful 
construction

• The bottom line, part II

– No silver bullet

– Order the nodes and edges to bring “close” entities together, then 
use BLOCK
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Irregular Mesh: 
Partitioning & Communication

• Each iteration of the relaxation uses all the data computed in the 
previous step, and the edge array

– No parallelism at this level

– (Does this sound familiar?)

• Instead, use the data-parallel edge and node updates

– flux(i)=(x(iedge(i,1))-x(iedge(i,2)))/2

– Independent because edge_val  node_val

– x(iedge(i,1)) = x(iedge(i,1)) - flux(i); 
x(iedge(i,2)) = x(iedge(i,2)) + flux(i)

– Not independent because sometimes iedge(i
Y
,1) = iedge(i

X
,2)

– Fortunately, HPF provides the SUM_SCATTER function

• Communication needed in both stages

– Between edges and nodes to compute flux

– Edge-node and node-node to compute x

– All communication is static, local with respect to grid, but unstructured 
with respect to array indices
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Irregular Mesh: Agglomeration I

• Warning: Your compiler may do things differently!

• Computing edge values requires edge list and node values

– Distribute edges ⇒  parallel, no communication for edges

– Replicate edges ⇒  sequential or broadcast edge values

– Distribute nodes ⇒  move “shared” endpoints

– Replicate nodes ⇒  no movement for endpoints

• Updating node values requires edge list, edge values, and node 
values

– Distribute edges ⇒  parallel, no communication for edges

– Replicate edges ⇒  sequential, no communication for edges

– Distribute nodes ⇒  move “shared” endpoints

– Replicate nodes ⇒  move all endpoints

• The bottom line, part I

– Always distribute edges

– Distribute nodes unless the problem is very small
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Irregular Mesh: Agglomeration II

• Warning: Your compiler may do things differently!

• Computation is static, homogeneous, and over full array (with 
respect to the edges)

– No load balancing issues

• Accesses to node array are “nearest neighbor” in the mesh

– This is not reflected in the index order!

– ∴  This does not favor either BLOCK or CYCLIC

• To minimize communication, edge and node distributions must 
fit the mesh topology

– HPF’s regular distributions are not ideal for this

– HPF 2.0 indirect distributions may be better, but require careful 
construction

• The bottom line, part II

– No silver bullet

– Order the nodes and edges to bring “close” entities together, then 
use BLOCK
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Irregular Mesh: Pictures

Processor 1

Processor 2

Processor 3

Edge list

X Y
X

Y
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Irregular Mesh: Bad Data Distribution
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Irregular Mesh: Good Data Distribution
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Irregular Mesh: HPF Program

USE HPF_LIBRARY
REAL x(nnode), flux(nedge)
INTEGER iedge(nedge,2)
INTEGER permute_node(nnode), permute_edge(nedge)
!HPF$ DISTRIBUTE x(BLOCK)
!HPF$ DISTRIBUTE flux(BLOCK)
!HPF$ ALIGN iedge(i,*) WITH flux(i)
!HPF$ ALIGN permute_edge(i) WITH flux(i)
!HPF$ ALIGN permute_node(i) WITH x(i)

CALL renumber_nodes( iedge, permute_node )
x( permute_node(:) ) = x
FORALL (i=1:nedge) iedge(i,:) = permute_node(iedge(i,:))
permute_edge = GRADE_UP( iedge(:,1) )
FORALL (i=1:nedge) iedge(i,:) = iedge(permute_edge(i),:)

err = tol * 1e6
DO WHILE (err > tol)

flux=(x(iedge(1:nedge,1))-x(iedge(1:nedge,2)))/2
x=SUM_SCATTER(-flux(1:nedge),x,iedge(1:nedge,1))
x=SUM_SCATTER( flux(1:nedge),x,iedge(1:nedge,2))
err = SUM( flux*flux ) / nedge

END DO
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Irregular Mesh: Mapping

• This program is going to be challenging…
– Indexing of arrays will be difficult

– Owner-computes rule difficult to apply

– Key technique: inspector-executor communication

– First time the code is executed, generate a table of required 
communication at run time (inspector)
- Problem: How big does that table get?

- Problem: How do you efficiently distribute that table to all 
processors?

– Use this table to manage unstructured communication until 
the communication pattern changes (executor)
- Problem: How do you know the pattern has changed?

– Commercial compilers are attacking these problems, but there 
is a long way to go
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	REAL u(0:nx,0:ny), unew(0:nx,0:ny), f(0:nx,0:ny)
	!HPF$ DISTRIBUTE u(BLOCK,*)
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	Each step of Gaussian Elimination uses all the data computed in the previous step
	No parallelism at this level
	(We wonÕt try to reorder computations to avoid this)

	All updated elements within a step can be done in parallel
	Basic formula: a(i,j)=a(i,j)-a(i,K)/a(K,K)*a(K,j)
	These are independent because i�K, j�K
	This is a classic data-parallel operation

	Choosing the pivot row can be done in parallel
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	Searching for the maximum is a data-parallel reduction


	Gaussian Elimination: Data Mapping
	Pivot selection requires a 1-D reduction
	Distribute rows Þ parallel, with communication
	Distribute columns Þ sequential, but no communication

	Element updates require the old value and elements from the pivot row and column
	Distribute rows Þ parallel, but broadcast the pivot row
	Distribute columns Þ parallel, but broadcast the pivot column

	Each stage works on a smaller contiguous region of the array
	BLOCK Þ processors drop out of the computation
	CYCLIC Þ work stays (fairly) evenly distributed until the end
	CYCLIC(K) Þ granularity will be at least K elements

	The bottom line
	(*,CYCLIC) if broadcast > pivoting one column
	(CYCLIC,*) if broadcast  < one column, synchronous comm.
	(CYCLIC,CYCLIC) if broadcast < one col., overlapped comm.


	Gaussian Elimination: Partitioning
	At the most abstract level, Gaussian elimination is a sequential process.
	Need all elements in column k to find pivot row
	Need all elements in column k and pivot row to perform pivoting

	However, each step in the process is itself composed of many smaller operations.
	Perform all element updates independently

	Conclusion: Gaussian elimination has plenty of data parallelism
	Until the last few stages, anywayÉ


	Gaussian Elimination: Communication
	Pivot search:
	Reduction along column
	Static, global communication

	Element updates:
	Each requires itself, elements from pivot column & row
	Static, global communication
	Broadcast



	Gaussian Elimination: Agglomeration
	Pivot selection requires a 1-D reduction
	Distribute rows Þ parallel, with communication
	Distribute columns Þ sequential, but no communication

	Element updates require the old value and elements from the pivot row and column
	Distribute rows Þ parallel, but broadcast the pivot row
	Distribute columns Þ parallel, but broadcast the pivot column

	Each stage works on a smaller contiguous region of the array
	BLOCK Þ processors drop out of the computation
	CYCLIC Þ work stays (fairly) evenly distributed until the end

	The bottom line
	(*,CYCLIC) if broadcast > pivoting one column
	(CYCLIC,*) if broadcast  < one column, synchronous comm.
	(CYCLIC,CYCLIC) if broadcast < one col., overlapped comm.
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	REAL a(n,n), tmp(n)
	!HPF$ DISTRIBUTE a(CYCLIC,CYCLIC)
	!HPF$ ALIGN tmp(i) WITH a(*,i)
	DO k = 1, n-1
	! Select the pivot
	ipivot = MAXLOC( ABS(a(k:n,k)) ) + k - 1
	! Swap the rows
	tmp(k:n) = a(ipivot,k:n)
	a(ipivot,k:n) = a(k,k:n)
	a(k,k:n) = tmp(k:n)
	! Update the submatrix
	FORALL ( i=k+1:n, j=k+1:n ) &
	& a(i,j) = a(i,j) - a(i,k)/tmp(k)*tmp(j)


	END DO

	Gaussian Elimination: Mapping
	This program is harder for the compiler.
	Allocate portion of array on each processor based on DISTRIBUTE
	Apply owner-computes rule analytically based on left-hand side
	Detect communication from dependence analysis & intrinsics
	Here, it really pays to transform the program!
	Reorder computation to always precompute the next pivot column
	Rearrange communication to pipeline the series of updates
	Do broadcasts asynchronously
	Net result: 2´ speedup

	Use standard numbering for processors


	Conjugate Gradient: The Algorithm
	The Problem
	Given a partial differential equation & boundary conditions
	Find the solution

	The Approach
	Divide (continuous) space into a (discrete) grid
	Guess a solution on the grid
	Estimate how the solution should change
	Move in that direction
	Repeat estimate and move until solution doesn't change


	Conjugate Gradient: 
Equations and Pictures
	Conjugate Gradient: More Equations
	u = á initial guess ñ
	r = f Ð A * u
	d = max( |r| )
	i = 0; r = 0
	WHILE (d > e) DO
	i = i + 1; rold = r
	r = r × r
	IF  (i=1)  THEN  p = r   ELSE  p = r + r/rold p
	q = A * p
	a = r / (p × q)
	u = u + a p
	r = r Ð a q
	d = max( |r| )

	END WHILE

	Conjugate Gradient: Parallelism
	Each CG iteration uses all the data computed in the previous step, plus data computed in the current step
	No parallelism at this level
	(We won't try to overlap computation within a step)

	Each matrix operation can compute elements in parallel
	r(i,j)=f(i,j)-4*u(i,j)+u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1)
	p(i,j) = r(i,j) + rho/rho_old * p(i,j)
	These are classic data-parallel operations
	rho = Si,j r(i,j)2
	This is a data-parallel reduction

	Testing for convergence can be done in parallel
	As in Jacobi iteration


	Conjugate Gradient: Data Mapping
	Convergence test requires a whole-array reduction
	Any distribution Þ parallel, with communication

	Inner products require whole-array reductions
	Any distribution Þ parallel, with communication

	Array operations require local value and nearest neighbors
	BLOCK Þ least communication volume
	(BLOCK,*) Þ move u(i-1,j), u(i+1,j) " j
	(BLOCK,BLOCK) Þ move u(ILOW-1,j), u(IHIGH+1,j) " j, u(i,JLOW-1), u(i,JHIGH+1) " i

	Computation is static, homogenous, and over full array
	No load balancing issues

	The bottom line
	(BLOCK,*) or (*,BLOCK) on high-latency machines or small problem sizes
	(BLOCK,BLOCK) on low-latency machines


	Conjugate Gradient: Partitioning
	At the most abstract level, conjugate gradient has minimal parallelism
	u, r, a can be updated independently

	The real potential parallelism is in the matrix and vector operations, however.
	r × r  is a reduction of size N
	u + a p is a vector update of size N
	A * p is a (sparse) matrix-vector multiply, in this case of size O(N)
	It looks a lot like the operator in Jacobi


	Conclusions:
	Stick to the matrix/vector operators
	Task parallelism (and pipelining) may improve some


	Conjugate Gradient: Communication
	Convergence test:
	Global reduction

	Dot products:
	Global reductions

	Vector updates:
	Elementwise scaling and addition of two vectors
	No communication if vectors are aligned

	Matrix-vector multiplies:
	Depends on the matrix (PDE operator) in the problem
	For the model problem, equivalent to Jacobi iteration grid update
	Static, local communication


	Conjugate Gradient: Agglomeration
	Dot products and convergence test always require global communication
	No reason to pick one DISTRIBUTE over another

	Vector updates require no communication
	Really no reason to choose a particular DISTRIBUTE

	Matrix-vector multiply does care where its data come from
	In this case, same advantages/disadvantages as Jacobi iteration

	The bottom line
	(BLOCK,*) on high-latency machines or small problem sizes
	(BLOCK,BLOCK) on low-latency machines


	Conjugate Gradient: HPF Program
	REAL u(0:n,0:n), r(0:n,0:n), p(0:n,0:n)
	REAL q(0:n,0:n), f(0:n,0:n)
	!HPF$ DISTRIBUTE u(BLOCK,*)
	!HPF$ ALIGN (:,:) WITH u(:,:) :: r, p, q, f
	INTERFACE
	SUBROUTINE a_times_vector( x, y )
	REAL, INTENT(IN) :: x(:,:)
	REAL, INTENT(OUT) :: y(:,:)
	!HPF$ DISTRIBUTE x *(BLOCK,*)
	!HPF$ ALIGN y(:,:) WITH *x(:,:)

	END INTERFACE
	u = 0.0
	r = f
	err = MAXVAL( ABS(r(1:n-1,1:n-1)) )
	i = 0; rho = 0

	Conjugate Gradient: Mapping
	This program looks like a more complicated version of Jacobi iteration to the compiler.
	Allocate arrays based on DISTRIBUTE
	Apply owner-computes rule
	Detect communication from dependence analysis and intrinsics
	Useful optimizations include aggregating communication, overlapping communication with computation
	All of this becomes more interesting if the program encapsulates operations in a subroutine
	The programmer must trade off efficiency for flexibility and maintainability



	Irregular Mesh Relaxation: 
The Algorithm
	The Problem
	Given an irregular mesh of values
	Update each value using its neighbors in the mesh

	The Approach
	Store the mesh as a list of edges
	Process all edges in paralle
	Compute contribution of edge
	Add to one endpoint, subtract from the otherl



	Irregular Mesh: Sequential Program
	REAL x(nnode), flux(nedge)
	INTEGER iedge(nedge,2)
	err = tol * 1e6
	DO WHILE (err > tol)
	DO i = 1, nedge
	flux(i) = (x(iedge(i,1))-x(iedge(i,2))) / 2
	err = err + flux(i)*flux(i)

	END DO
	DO i = 1, nedge
	x(iedge(i,1)) = x(iedge(i,1)) - flux(i)
	x(iedge(i,2)) = x(iedge(i,2)) + flux(i)

	END DO
	err = err / nedge

	END DO

	Irregular Mesh: Parallelism
	Each iteration of the relaxation uses all the data computed in the previous step, and the edge array
	No parallelism at this level
	(Does this sound familiar?)

	All edge values can be computed in parallel
	flux(i)=(x(iedge(i,1))-x(iedge(i,2)))/2
	These are independent because edge_val � node_val

	Updating the node values is not trivially parallel
	x(iedge(i,1)) = x(iedge(i,1)) - flux(i)
	x(iedge(i,2)) = x(iedge(i,2)) + flux(i)
	They are dependent because sometimes iedge(iY,1) = iedge(iZ,2)
	Fortunately, HPF provides the SUM_SCATTER function


	Irregular Mesh: Data Mapping I
	Warning: Your compiler may do things differently!
	Computing edge values requires edge list and node values
	Distribute edges Þ parallel, no communication for edges
	Replicate edges Þ sequential or broadcast edge values
	Distribute nodes Þ move ÒsharedÓ endpoints
	Replicate nodes Þ no movement for endpoints

	Updating node values requires edge list, edge values, and node values
	Distribute edges Þ parallel, no communication for edges
	Replicate edges Þ sequential, no communication for edges
	Distribute nodes Þ move ÒsharedÓ endpoints
	Replicate nodes Þ move all endpoints

	The bottom line, part I
	Always distribute edges
	Distribute nodes unless the problem is very small


	Irregular Mesh: Data Mapping II
	Warning: Your compiler may do things differently!
	Computation is static, homogeneous, and over full array (with respect to the edges)
	No load balancing issues

	Accesses to node array are Ònearest neighborÓ in the mesh
	This is not reflected in the index order!
	 This does not favor either BLOCK or CYCLIC

	To minimize communication, edge and node distributions must fit the mesh topology
	HPFÕs regular distributions are not ideal for this
	HPF 2.0 indirect distributions are better, but require careful construction

	The bottom line, part II
	No silver bullet
	Order the nodes and edges to bring ÒcloseÓ entities together, then use BLOCK


	Irregular Mesh: 
Partitioning & Communication
	Each iteration of the relaxation uses all the data computed in the previous step, and the edge array
	No parallelism at this level
	(Does this sound familiar?)

	Instead, use the data-parallel edge and node updates
	flux(i)=(x(iedge(i,1))-x(iedge(i,2)))/2
	Independent because edge_val � node_val

	x(iedge(i,1)) = x(iedge(i,1)) - flux(i); 
x(iedge(i,2)) = x(iedge(i,2)) + flux(i)
	Not independent because sometimes iedge(iY,1) = iedge(iX,2)
	Fortunately, HPF provides the SUM_SCATTER function


	Communication needed in both stages
	Between edges and nodes to compute flux
	Edge-node and node-node to compute x
	All communication is static, local with respect to grid, but unstructured with respect to array indices


	Irregular Mesh: Agglomeration I
	Warning: Your compiler may do things differently!
	Computing edge values requires edge list and node values
	Distribute edges Þ parallel, no communication for edges
	Replicate edges Þ sequential or broadcast edge values
	Distribute nodes Þ move ÒsharedÓ endpoints
	Replicate nodes Þ no movement for endpoints

	Updating node values requires edge list, edge values, and node values
	Distribute edges Þ parallel, no communication for edges
	Replicate edges Þ sequential, no communication for edges
	Distribute nodes Þ move ÒsharedÓ endpoints
	Replicate nodes Þ move all endpoints

	The bottom line, part I
	Always distribute edges
	Distribute nodes unless the problem is very small


	Irregular Mesh: Agglomeration II
	Warning: Your compiler may do things differently!
	Computation is static, homogeneous, and over full array (with respect to the edges)
	No load balancing issues

	Accesses to node array are Ònearest neighborÓ in the mesh
	This is not reflected in the index order!
	 This does not favor either BLOCK or CYCLIC

	To minimize communication, edge and node distributions must fit the mesh topology
	HPFÕs regular distributions are not ideal for this
	HPF 2.0 indirect distributions may be better, but require careful construction

	The bottom line, part II
	No silver bullet
	Order the nodes and edges to bring ÒcloseÓ entities together, then use BLOCK


	Irregular Mesh: Pictures
	Irregular Mesh: Bad Data Distribution
	Irregular Mesh: Good Data Distribution
	Irregular Mesh: HPF Program
	USE HPF_LIBRARY
	REAL x(nnode), flux(nedge)
	INTEGER iedge(nedge,2)
	INTEGER permute_node(nnode), permute_edge(nedge)
	!HPF$ DISTRIBUTE x(BLOCK)
	!HPF$ DISTRIBUTE flux(BLOCK)
	!HPF$ ALIGN iedge(i,*) WITH flux(i)
	!HPF$ ALIGN permute_edge(i) WITH flux(i)
	!HPF$ ALIGN permute_node(i) WITH x(i)
	CALL renumber_nodes( iedge, permute_node )
	x( permute_node(:) ) = x
	FORALL (i=1:nedge) iedge(i,:) = permute_node(iedge(i,:))
	permute_edge = GRADE_UP( iedge(:,1) )
	FORALL (i=1:nedge) iedge(i,:) = iedge(permute_edge(i),:)
	err = tol * 1e6
	DO WHILE (err > tol)
	flux=(x(iedge(1:nedge,1))-x(iedge(1:nedge,2)))/2
	x=SUM_SCATTER(-flux(1:nedge),x,iedge(1:nedge,1))
	x=SUM_SCATTER( flux(1:nedge),x,iedge(1:nedge,2))
	err = SUM( flux*flux ) / nedge

	END DO

	Irregular Mesh: Mapping
	This program is going to be challengingÉ
	Indexing of arrays will be difficult
	Owner-computes rule difficult to apply
	Key technique: inspector-executor communication
	First time the code is executed, generate a table of required communication at run time (inspector)
	Problem: How big does that table get?
	Problem: How do you efficiently distribute that table to all processors?

	Use this table to manage unstructured communication until the communication pattern changes (executor)
	Problem: How do you know the pattern has changed?


	Commercial compilers are attacking these problems, but there is a long way to go



