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Introduction 
 
This final report accompanies an object-oriented database 
management system developed as a term project. It has 
three main sections dedicated to database schema 
maintenance, object data model, and query processing. 

Data Structures for a DB Schema 
 
By their nature, object-oriented databases should support 
class hierarchy. In this project, tree structures are used to 
implement class hierarchy. 

Schema Object 
 

 
Figure 1 

 
The schema has three major components as illustrated in 
Fig.1. The first one is a tree of class types which holds all 
user defined classes and definitions. The second one is an 
index to ease the class retrieval, and the last one is a 
reference to a disk object by which the disk storage is 
performed. 
 
Class Hierarchy 
 
Initially, the schema has a root node, baseClass, which 
serves as the base class in the hierarchy. The schema also 
provides necessary methods to add and delete classes 
from the hierarchy, to traverse the tree, to save and 
reload the schema, and to search for individual classes. 
 

New classes are constructed by allocating a new 
SchemaNode object through the newClass method of the 
schema. If the class has no parents, then the baseClass is 
assigned as the parent class. Otherwise, it is placed in its 
parent’s sub tree, and its links, such as parent, children 
and siblings, are set to appropriate values. A close look to 
the hierarchy and its structure is given in Figure 2.  
 

 
Figure 2 

 
In addition to the class addition, users can remove a class 
from the schema along with its entire sub tree, and the 
instances of these classes. Otherwise, all schema 
evolutions are static in a sense that users have to make 
changes in the data definition language. 
 
Inheritance among user defined classes arise whenever a 
user extends a new class from a parent class which is 
already defined in the system. In this process, first, the 
parent is search. If it exists, all of its properties are 
copied to the child class and their inherited flags are set 
on. Later, the properties of the new class are added. In 



this way, database objects are collected in leaf nodes. 
Using this method, upper level classes are prevented 
from hosting large databases, and database manipulations 
from evaluating unnecessary objects in queries involving 
one or two particular classes rather than a class 
hierarchy. 
 
Class Definitions 

 
Properties (Attributes & Relationships) 

 
Schema nodes have data fields to hold class definitions as 
well. These are a property list which holds attributes and 
relations defined by the user, and an instance index, 
which is mainly an associative array keeping database 
objects in the memory keyed by their object identifiers 
[see Objects in Memory Format]. 
 
An abstract class, Property, is developed to hide 
differences among attributes (ie. Long, Short, String) and 
relationships, and to use their similarities. Common 
fields grouped in this class definition are the property 
name (i.e. “name”, “address”), the property type (i.e. 
ptLONG, ptSHORT, ptLIST), the size of the type in 
terms of memory units, and a flag to hold inheritance 
information. 
 
Primitive Classes 
 
More specialized, but still abstract versions of Property 
class are Attribute and Relation classes. All attribute 
objects corresponding to atomic literals such as long, 
short, double, etc., are intances of classes derived from 
Attribute class. Relation class as well is the parental class 
of relationship classes. Each of these property objects 
keeps an array of instances of primitive classes. For 
example, if an attribute “age” in domain “short” is 
defined, an attribute object is constructed from 
attr<short>, inserted into the property list in its schema 
node, and a dynamic array is created to hold all instances 
of class “short” in the primitive object set, “age.” 
 
Struct, Enum, and Collections 
 
Structures are considered as inner classes, and treated as 
such. Structure definitions are converted into new class 
definitions by giving a name made out of its owner class 
and its type name connected by a period. Later, these new 
classes are inserted into the class hierarchy at the top 
level which means that they do not inherit any parent 
class. The structure attribute, then, is converted into a 
one-to-one relationship. Whenever an instance of the 
class type which aggregates a structure is constructed, the 

system constructs a corresponding structure object, and 
establishes a relationship to it. 
For example, if the following interface is given, 
 
interface Students { 
 attribute String name; 
 attribute Struct Address { 
  String street, 
  String city, 
  String state, 
  String zip 
 } address; 
}; 
 
the system converts the definitions to the following: 
 
interface Students { 
 attribute String name; 
 relationship Student.Address 
address; 
}; 
interface Students.Address { 

attribute String street, 
 attribute String city, 
 attribute String state, 
 attribute String zip 
}; 
 
All of these processes are hidden from users, and the 
system response to structure evaluations as it is supposed 
to. Using this method, the system saves a lot of 
bookkeeping memory and time specialized to structures. 
It eases the queries which structures are involved in such 
that an access to a structure attribute does not need any 
different implementation other than class attributes do. 
The street property can be accessed as 
a_student.address.street. 
 
Enumerated type sets are considered as static definitions, 
and stored with the enumerator attribute definitions. Any 
instance of these types is an unsigned char which is an 
index to the element in the type set. For example, if an 
attribute of Professor class is defined Enum Rank 
{full,associate,assistant}, then for an associate professor, 
this attribute will have an index value of 1 which costs 
one byte in the main and secondary storage. However, in 
case of user interaction, these indexes have to be 
converted back and forth. 
 
Collections are implemented through the collection 
module. The interface of the module provides required 
methods specified by the collection class specifications. 
Internal implementations of all the collection types are 
extensive associative arrays which support indexed 
accesses as well as insertion, deletion, sort, and element 
distinction for sets and bags. 



 
Relationships 
 
There are three types of relations: lists, sets, and one-to-
one. Lists allow indexed accesses and duplicate values. 
Sets, however, can only have unique values, and does not 
allow indexed accesses. 
 
In relational properties are stored only object identifiers. 
Since the identifiers are composed of the object type 
name and a number, and also the collections can only 
store the same type objects, the system has an 
optimization in the implementation of relationships. A 
relational property keeps only one copy of the target class 
name, and an array of long typed numbers. Using this 
method, the numbers can be used as indexes to the 
instances of the aggregate classes, which makes access 
times constant. This also simplifies data storage since the 
identifiers require fixed length memory. 
 
Class Indexing 
 
Object type information, class information stored in the 
schema nodes, is required in many different cases. For 
example, when a user defines a sub class of a parent 
class, all the system knows about the parent class is its 
name. Although the class hierarchy is stored in tree 
structure, a search for some class information on this tree 
is not very efficient because user-defined classes are 
placed based on parent-children relations rather than 
alphabetical order of their names. 
 
To reduce the search time of class information retrieval, 
a map object (an associative array implementation 
defined in Standard Template Libraries) is used. Each 
element of the map is a pair of the class name and a 
pointer to the related schema node sorted according to 
the class name. Internal implementation of this map is a 
red-black tree with a time complexity O(log N). This 
indexing method is illustrated in Figure 3. 

 
Figure 3 

 
Schema Storage 
 
Users can construct the database schema by editing a 
DDL text file, and using a more user-friendly language. 
However, each time this file is needed by the system, 
first, it has to be parsed; second, it has to be error-freed, 
and finally the schema can be constructed. 
 
Instead, a schema file is created whenever the DDL file is 
processed for the first time. On the later references to the 
database schema, this file is used. It is guaranteed to be 
error-free, and faster to retrieve into the main memory. 
The format of the schema file is given in Figure 4. 
 

 
Figure 4 

Objects 
 
In-memory format 
 
Each object in the system is defined by an object 
identifier, and by a pointer to its domain class stored in 
an object descriptor. This type of representation 
illustrated in Figure 5 is very similar to Resident Object 
Descriptors (RODs) in [1]. The attribute instances of an 
object, then, can be retrieved through its identifier and 
the pointer. 

 
Figure 5 



In domain classes (schema nodes), a tuple class C with n 
attributes is stored in n vectors, one vector for each 
attribute. In addition, an associative array (i.e. a map) is 
used to store object identifiers for user-defined objects.  
 

 
Figure 6 

 
Figure 6 illustrates the memory representation of a 
domain class along with its instances. As an example, 
Students class is given. It has three properties, namely 
“name”, “student_id”, and “grades” which is defined as 
an array.  
 
Object Access Mechanism 
 
An object is referenced using its object descriptor. For 
example, the object descriptor for Mary has Students, 3, 
and a pointer to the schema node for the class Students in 
its data fields. Whenever Mary’s attribute instances are 
requested, her OID is verified through the instance map, 
her record number is obtained, and individual attributes 
are retrieved using the record number as an vector index. 
 
Disk format 
 
All the database information and database objects are 
stored in one directory hierarchy. Each domain class is 
given a directory under the main database directory, and 
a file called class.inf is created in it holding valid and 
user-defined object identifiers. The object identifier 
numbers are used as indexes to the other property files, 
just like they are used in the main memory model. If an 
object, class_n is not created, the nth record stores the 
identifier number as zero meaning that the records is 
empty, and that object is not a valid object.  
 
In individual class directories, a file is created for each 
property defined by the user. If a property is not a 
collection, then its file is one binary file (file type pro) 
with a fixed record length having attribute instances in 
its each record. For the example given above, the 
directory structure would be as in Figure 7. For each 

collection and string attributes, an accompanying file 
(file type dat) is also created. This file stores variable 
length data, and the pro file is used as an index file. 
 

 
Figure 7 

 

 
Figure 8 

 
Advantages and Disadvantages of the Object Model 
 
Both in the main memory and in the physical storage, 
objects and attribute instances are stored in vectors. This 
type of transposed storage model has some advantages 
and disadvantages [2].  
 
First, it avoids the reorganization of the physical storage. 
In case of an attribute deletion, only those files or 
physical pages are removed from the physical storage. 
Otherwise, each record has to be retrieved, modified, and 
rewritten onto the disk. 
 
Second, it reduces the page faults in case of a query 
evaluation. Each object set in the query expression 
corresponds to a vector of attribute instances. In each 
iteration, the next attribute instance to test in predicates, 
or to retrieve in projections is going to be the very next 
instance in the memory. In traditional systems in which 
objects are represented record based, the number of 
attribute instances a memory page can hold is the same 
as the number of objects a page can hold. This is 
approximately P/S where P is the page size, and S is the 
size of a single object. It is obvious that bigger objects do 
not help query processes. In this system, however, a page 
can hold as many attribute instances as its size. A 



Identifier Binding Property Object set Iterator Last element in 
iteration 

S nil nil Students Students_1 Students_n 
T nil nil TA TA_1 TA_n 

Table 1 
 
character object or a enumerator object takes just one 
byte, and in one page P objects can be evaluated. 
Transposed storage can be disadvantageous when 
retrieving all the attribute values of some instances of a 
class C. In this case, it is quite possible that each attribute 
value is going to be in different memory pages or 
physical pages. 

Query Processing 
 
Internal representation 
 
A query expression is converted into internal memory 
representation after it is parsed, and error-freed. A query 
is evaluated by initializing a query object which has four 
components. These are the function, the projection, the 
range, and the predicates. The related parts of an 

expression are used to construct each component of the 
query. 
 
The function component is used to keep the function 
name, and methods to execute the appropriate function 
over the query projections. In this project, no function is 
implemented. 
 
The range component aggregates a list of bindings as 
well as identifiers. Each identifier is mapped to a binding 
object, and its scope lives as long as the query evaluation 
lasts. For example, for a range clause like  
 
(1) “select … from Students as s, TA as t where 
…”,  
 
the following table, Table 1, is constructed. 

  
This table is used to evaluate the natural join defined in 
the range clause. The evaluation process and the implicit 
joins are explained later. 
 
The projection component is composed of a list of 
projection attributes, each attributes corresponding to a 
user-defined projection attribute. These attributes 
aggregate binding objects which are explained later. 
 
The predicate part is a tree of expressions. Each node can 
be either another predicate, a single predicate, a simple 
comparison expression, boolean expression, a 
quantification expression, or a cardinality expression. 
Each expression can be composed of either arithmetic 
operands and operators, membership operators, etc. Each 
dotted operand is represented by a DotOperand object 
which aggregates a binding object. 
 
Bindings 
 
For each dotted path expression in the query statement is 
defined a binding object. Each binding object has a 
pointer to the domain class, a list of implicit join objects 
each composed of a property, an object set, an iterator, 
and another iterator for the last element in the iteration. 
For example, consider a query which returns all the titles 
of the books students have to buy for their courses. The 
range clause could be defined as,  
 

(2) “select s.name, b.title from Students as s, s.takes 
as c, c.textbook as b”, 
 
then the binding table in the range component is 
constructed like Table 2. 
 
If the property is not a collection then the iterator and the 
last element iterator are set to the same instance. 
Query Evaluation Cycle 
 
The evaluation cycle is simply the interpretation of an 
algorithm. This algorithm is summarized as follows: 
  
For all permutations (iterations) in the range clause 
object sets, if the predicates evaluates true, pick those 
instances currently available in the projection attributes’ 
bindings. 
 
The following piece of code is mainly the heart of the 
query evaluation, and exact implementation of the above 
algorithm. 
 
bool ok=range->init(); 
if(ok) 
  do{ 
    // predicate evaluations 
    if(predicates->value())  
      projections->pickData(); 
 
    // next iteration is generated 
    // starting from the right most                



    

Identifier Binding Property Object set iterator Last element in 
iteration 

S nil nil Students Students_1 Students_n 
C S (1st row) takes Courses 1st course 

Students_1 takes, 
say Course_s1 

Last course 
Students_1 takes, 
say Course_sn 

B C(2nd row) textbook Books 1st book taught 
for Course_s1 

Last book taught 
for Course_s1 

Table 2 
 
// object set in the range clause 
    os = object_sets.rbegin(); 
    for(; os != object_sets.rend(); os++) 
      if ((*os)->iterate()) break;  
 
    // re-initialization of bindings 
    // completing the last iteration 
    if(os!=object_sets.rend())  
      for(init_os=os, init_os--;  
 init_os != object_sets.rbegin()-1;  
 init_os--)  
 (*init_os)->initialize(); 
 
    // loop continues until the left most 
    // object set in the range clause 
    // completes its iteration 
  } while( os != object_sets.rend() ); 
 
 
The predicate tree is traversed using the postorder 
method to evaluate the current value. The top node in the 
tree may have erither no children, only one left child 
node, or two child nodes. If there is no child at all, the 
predicate evaluation returns true to assure the semantics 
of no predicates in the query expression. If there is only 
the left predicate which means only one predicate is 
defined, the value of this predicate is returned. In case of 
two predicates defined meaning that there are at least two 
or more predicates, and one or more nodes in the 
predicate tree, both of the predicates are evaluated and 
result is return after the boolean operation of the results. 
 
Path expressions: Hidden Implicit Joins 
 
In the query samples above in (1) and (2), the natural 
join operation and implicit join operations are explicitly 
defined. However, the evaluation of a path expression is 
an implicit join by itself. For example, the range clause 
in (2) can be defined as a path expression as follows: 
 
(3) select s.name, s.takes.textbook.title from 

Students as s; 
 
The evaluation of path expressions is very similar to the 
methods explained above. However, this time, the 
binding table has a slight change. Instead of constructing 

row based, it is constructed column based. The rows for 
the identifiers C and B in Table 2 become the right most 
columns of the first row. The evaluation of the join is 
performed exactly the same way. 
 

Conclusion 
 
This project was quite a challenge for me at this 
semester. I had not completed any other project as big as 
this one in the course of my education life before. I had 
chances to develop other database management systems, 
but these were usually team works in which I took a part. 
However, I believe that this was a good experience, and 
will be a chance to show off. 
 
The project has some weaknesses in terms of 
implementations of the requirements. I have tried to 
complete all the requirements, but this was not an easy 
task. So, there are some requirements missed. These are 
listed in the README file included in the package. 
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