
CSE781 Database Management Systems
Final Report

December 11, 1997

Ozgur Balsoy

Introduction

This final report accompanies an object-oriented database
management system developed as a term project. It has
three main sections dedicated to database schema
maintenance, object data model, and query processing.

Data Structures for a DB Schema

By their nature, object-oriented databases should support
class hierarchy. In this project, tree structures are used to
implement class hierarchy.

Schema Object

Figure 1

The schema has three major components as illustrated in
Fig.1. The first one is a tree of class types which holds all
user defined classes and definitions. The second one is an
index to ease the class retrieval, and the last one is a
reference to a disk object by which the disk storage is
performed.

Class Hierarchy

Initially, the schema has a root node, baseClass, which
serves as the base class in the hierarchy. The schema also
provides necessary methods to add and delete classes
from the hierarchy, to traverse the tree, to save and
reload the schema, and to search for individual classes.

New classes are constructed by allocating a new
SchemaNode object through the newClass method of the
schema. If the class has no parents, then the baseClass is
assigned as the parent class. Otherwise, it is placed in its
parent’s sub tree, and its links, such as parent, children
and siblings, are set to appropriate values. A close look to
the hierarchy and its structure is given in Figure 2.

Figure 2

In addition to the class addition, users can remove a class
from the schema along with its entire sub tree, and the
instances of these classes. Otherwise, all schema
evolutions are static in a sense that users have to make
changes in the data definition language.

Inheritance among user defined classes arise whenever a
user extends a new class from a parent class which is
already defined in the system. In this process, first, the
parent is search. If it exists, all of its properties are
copied to the child class and their inherited flags are set
on. Later, the properties of the new class are added. In

this way, database objects are collected in leaf nodes.
Using this method, upper level classes are prevented
from hosting large databases, and database manipulations
from evaluating unnecessary objects in queries involving
one or two particular classes rather than a class
hierarchy.

Class Definitions

Properties (Attributes & Relationships)

Schema nodes have data fields to hold class definitions as
well. These are a property list which holds attributes and
relations defined by the user, and an instance index,
which is mainly an associative array keeping database
objects in the memory keyed by their object identifiers
[see Objects in Memory Format].

An abstract class, Property, is developed to hide
differences among attributes (ie. Long, Short, String) and
relationships, and to use their similarities. Common
fields grouped in this class definition are the property
name (i.e. “name”, “address”), the property type (i.e.
ptLONG, ptSHORT, ptLIST), the size of the type in
terms of memory units, and a flag to hold inheritance
information.

Primitive Classes

More specialized, but still abstract versions of Property
class are Attribute and Relation classes. All attribute
objects corresponding to atomic literals such as long,
short, double, etc., are intances of classes derived from
Attribute class. Relation class as well is the parental class
of relationship classes. Each of these property objects
keeps an array of instances of primitive classes. For
example, if an attribute “age” in domain “short” is
defined, an attribute object is constructed from
attr<short>, inserted into the property list in its schema
node, and a dynamic array is created to hold all instances
of class “short” in the primitive object set, “age.”

Struct, Enum, and Collections

Structures are considered as inner classes, and treated as
such. Structure definitions are converted into new class
definitions by giving a name made out of its owner class
and its type name connected by a period. Later, these new
classes are inserted into the class hierarchy at the top
level which means that they do not inherit any parent
class. The structure attribute, then, is converted into a
one-to-one relationship. Whenever an instance of the
class type which aggregates a structure is constructed, the

system constructs a corresponding structure object, and
establishes a relationship to it.
For example, if the following interface is given,

interface Students {
 attribute String name;
 attribute Struct Address {
 String street,
 String city,
 String state,
 String zip
 } address;
};

the system converts the definitions to the following:

interface Students {
 attribute String name;
 relationship Student.Address
address;
};
interface Students.Address {

attribute String street,
 attribute String city,
 attribute String state,
 attribute String zip
};

All of these processes are hidden from users, and the
system response to structure evaluations as it is supposed
to. Using this method, the system saves a lot of
bookkeeping memory and time specialized to structures.
It eases the queries which structures are involved in such
that an access to a structure attribute does not need any
different implementation other than class attributes do.
The street property can be accessed as
a_student.address.street.

Enumerated type sets are considered as static definitions,
and stored with the enumerator attribute definitions. Any
instance of these types is an unsigned char which is an
index to the element in the type set. For example, if an
attribute of Professor class is defined Enum Rank
{full,associate,assistant}, then for an associate professor,
this attribute will have an index value of 1 which costs
one byte in the main and secondary storage. However, in
case of user interaction, these indexes have to be
converted back and forth.

Collections are implemented through the collection
module. The interface of the module provides required
methods specified by the collection class specifications.
Internal implementations of all the collection types are
extensive associative arrays which support indexed
accesses as well as insertion, deletion, sort, and element
distinction for sets and bags.

Relationships

There are three types of relations: lists, sets, and one-to-
one. Lists allow indexed accesses and duplicate values.
Sets, however, can only have unique values, and does not
allow indexed accesses.

In relational properties are stored only object identifiers.
Since the identifiers are composed of the object type
name and a number, and also the collections can only
store the same type objects, the system has an
optimization in the implementation of relationships. A
relational property keeps only one copy of the target class
name, and an array of long typed numbers. Using this
method, the numbers can be used as indexes to the
instances of the aggregate classes, which makes access
times constant. This also simplifies data storage since the
identifiers require fixed length memory.

Class Indexing

Object type information, class information stored in the
schema nodes, is required in many different cases. For
example, when a user defines a sub class of a parent
class, all the system knows about the parent class is its
name. Although the class hierarchy is stored in tree
structure, a search for some class information on this tree
is not very efficient because user-defined classes are
placed based on parent-children relations rather than
alphabetical order of their names.

To reduce the search time of class information retrieval,
a map object (an associative array implementation
defined in Standard Template Libraries) is used. Each
element of the map is a pair of the class name and a
pointer to the related schema node sorted according to
the class name. Internal implementation of this map is a
red-black tree with a time complexity O(log N). This
indexing method is illustrated in Figure 3.

Figure 3

Schema Storage

Users can construct the database schema by editing a
DDL text file, and using a more user-friendly language.
However, each time this file is needed by the system,
first, it has to be parsed; second, it has to be error-freed,
and finally the schema can be constructed.

Instead, a schema file is created whenever the DDL file is
processed for the first time. On the later references to the
database schema, this file is used. It is guaranteed to be
error-free, and faster to retrieve into the main memory.
The format of the schema file is given in Figure 4.

Figure 4

Objects

In-memory format

Each object in the system is defined by an object
identifier, and by a pointer to its domain class stored in
an object descriptor. This type of representation
illustrated in Figure 5 is very similar to Resident Object
Descriptors (RODs) in [1]. The attribute instances of an
object, then, can be retrieved through its identifier and
the pointer.

Figure 5

In domain classes (schema nodes), a tuple class C with n
attributes is stored in n vectors, one vector for each
attribute. In addition, an associative array (i.e. a map) is
used to store object identifiers for user-defined objects.

Figure 6

Figure 6 illustrates the memory representation of a
domain class along with its instances. As an example,
Students class is given. It has three properties, namely
“name”, “student_id”, and “grades” which is defined as
an array.

Object Access Mechanism

An object is referenced using its object descriptor. For
example, the object descriptor for Mary has Students, 3,
and a pointer to the schema node for the class Students in
its data fields. Whenever Mary’s attribute instances are
requested, her OID is verified through the instance map,
her record number is obtained, and individual attributes
are retrieved using the record number as an vector index.

Disk format

All the database information and database objects are
stored in one directory hierarchy. Each domain class is
given a directory under the main database directory, and
a file called class.inf is created in it holding valid and
user-defined object identifiers. The object identifier
numbers are used as indexes to the other property files,
just like they are used in the main memory model. If an
object, class_n is not created, the nth record stores the
identifier number as zero meaning that the records is
empty, and that object is not a valid object.

In individual class directories, a file is created for each
property defined by the user. If a property is not a
collection, then its file is one binary file (file type pro)
with a fixed record length having attribute instances in
its each record. For the example given above, the
directory structure would be as in Figure 7. For each

collection and string attributes, an accompanying file
(file type dat) is also created. This file stores variable
length data, and the pro file is used as an index file.

Figure 7

Figure 8

Advantages and Disadvantages of the Object Model

Both in the main memory and in the physical storage,
objects and attribute instances are stored in vectors. This
type of transposed storage model has some advantages
and disadvantages [2].

First, it avoids the reorganization of the physical storage.
In case of an attribute deletion, only those files or
physical pages are removed from the physical storage.
Otherwise, each record has to be retrieved, modified, and
rewritten onto the disk.

Second, it reduces the page faults in case of a query
evaluation. Each object set in the query expression
corresponds to a vector of attribute instances. In each
iteration, the next attribute instance to test in predicates,
or to retrieve in projections is going to be the very next
instance in the memory. In traditional systems in which
objects are represented record based, the number of
attribute instances a memory page can hold is the same
as the number of objects a page can hold. This is
approximately P/S where P is the page size, and S is the
size of a single object. It is obvious that bigger objects do
not help query processes. In this system, however, a page
can hold as many attribute instances as its size. A

Identifier Binding Property Object set Iterator Last element in
iteration

S nil nil Students Students_1 Students_n
T nil nil TA TA_1 TA_n

Table 1

character object or a enumerator object takes just one
byte, and in one page P objects can be evaluated.
Transposed storage can be disadvantageous when
retrieving all the attribute values of some instances of a
class C. In this case, it is quite possible that each attribute
value is going to be in different memory pages or
physical pages.

Query Processing

Internal representation

A query expression is converted into internal memory
representation after it is parsed, and error-freed. A query
is evaluated by initializing a query object which has four
components. These are the function, the projection, the
range, and the predicates. The related parts of an

expression are used to construct each component of the
query.

The function component is used to keep the function
name, and methods to execute the appropriate function
over the query projections. In this project, no function is
implemented.

The range component aggregates a list of bindings as
well as identifiers. Each identifier is mapped to a binding
object, and its scope lives as long as the query evaluation
lasts. For example, for a range clause like

(1) “select … from Students as s, TA as t where
…”,

the following table, Table 1, is constructed.

This table is used to evaluate the natural join defined in
the range clause. The evaluation process and the implicit
joins are explained later.

The projection component is composed of a list of
projection attributes, each attributes corresponding to a
user-defined projection attribute. These attributes
aggregate binding objects which are explained later.

The predicate part is a tree of expressions. Each node can
be either another predicate, a single predicate, a simple
comparison expression, boolean expression, a
quantification expression, or a cardinality expression.
Each expression can be composed of either arithmetic
operands and operators, membership operators, etc. Each
dotted operand is represented by a DotOperand object
which aggregates a binding object.

Bindings

For each dotted path expression in the query statement is
defined a binding object. Each binding object has a
pointer to the domain class, a list of implicit join objects
each composed of a property, an object set, an iterator,
and another iterator for the last element in the iteration.
For example, consider a query which returns all the titles
of the books students have to buy for their courses. The
range clause could be defined as,

(2) “select s.name, b.title from Students as s, s.takes
as c, c.textbook as b”,

then the binding table in the range component is
constructed like Table 2.

If the property is not a collection then the iterator and the
last element iterator are set to the same instance.
Query Evaluation Cycle

The evaluation cycle is simply the interpretation of an
algorithm. This algorithm is summarized as follows:

For all permutations (iterations) in the range clause
object sets, if the predicates evaluates true, pick those
instances currently available in the projection attributes’
bindings.

The following piece of code is mainly the heart of the
query evaluation, and exact implementation of the above
algorithm.

bool ok=range->init();
if(ok)
 do{
 // predicate evaluations
 if(predicates->value())
 projections->pickData();

 // next iteration is generated
 // starting from the right most

Identifier Binding Property Object set iterator Last element in
iteration

S nil nil Students Students_1 Students_n
C S (1st row) takes Courses 1st course

Students_1 takes,
say Course_s1

Last course
Students_1 takes,
say Course_sn

B C(2nd row) textbook Books 1st book taught
for Course_s1

Last book taught
for Course_s1

Table 2

// object set in the range clause
 os = object_sets.rbegin();
 for(; os != object_sets.rend(); os++)
 if ((*os)->iterate()) break;

 // re-initialization of bindings
 // completing the last iteration
 if(os!=object_sets.rend())
 for(init_os=os, init_os--;
 init_os != object_sets.rbegin()-1;
 init_os--)
 (*init_os)->initialize();

 // loop continues until the left most
 // object set in the range clause
 // completes its iteration
 } while(os != object_sets.rend());

The predicate tree is traversed using the postorder
method to evaluate the current value. The top node in the
tree may have erither no children, only one left child
node, or two child nodes. If there is no child at all, the
predicate evaluation returns true to assure the semantics
of no predicates in the query expression. If there is only
the left predicate which means only one predicate is
defined, the value of this predicate is returned. In case of
two predicates defined meaning that there are at least two
or more predicates, and one or more nodes in the
predicate tree, both of the predicates are evaluated and
result is return after the boolean operation of the results.

Path expressions: Hidden Implicit Joins

In the query samples above in (1) and (2), the natural
join operation and implicit join operations are explicitly
defined. However, the evaluation of a path expression is
an implicit join by itself. For example, the range clause
in (2) can be defined as a path expression as follows:

(3) select s.name, s.takes.textbook.title from

Students as s;

The evaluation of path expressions is very similar to the
methods explained above. However, this time, the
binding table has a slight change. Instead of constructing

row based, it is constructed column based. The rows for
the identifiers C and B in Table 2 become the right most
columns of the first row. The evaluation of the join is
performed exactly the same way.

Conclusion

This project was quite a challenge for me at this
semester. I had not completed any other project as big as
this one in the course of my education life before. I had
chances to develop other database management systems,
but these were usually team works in which I took a part.
However, I believe that this was a good experience, and
will be a chance to show off.

The project has some weaknesses in terms of
implementations of the requirements. I have tried to
complete all the requirements, but this was not an easy
task. So, there are some requirements missed. These are
listed in the README file included in the package.

1 W. Kim, J.F. Garza, N. Ballou, and D. Woelk
“Architecture of the ORION Next-Generation Database
System”, IEEE Transactions on Knowledge and Data
Engineering vol.2 No.1 March 1990.
2 L. Al-Jadir, T. Estier, G. Falquet, and M. Leonard,
“Evolution Features of the F2 OODBMS”, Advanced
Database Research and Development Series vol.5 April
1995 pp. 284-291.

