Aspirin/MIGRAINES

Release V7.0

By

Russell R. Leighton

Copyright (©1994 by Russell Leighton, all rights
reserved

This book was typeset using IATEX.

If this doesn’t work...try Prozac.

The MITRE Corportion has funded the initial development of A/M. Since
leaving MITRE, I continue to support A/M with the help of others that value
A/M as an important tool.

Many people have contributed to the robustness of the A/M software. It
would be difficult to give the appropriate credit all of the people who have made
contributions. Some have given suggestions, many have tested the software
on different platforms, tracked and fixed bugs and offered me access to their
computers. Primarily it has been the work of the INTERNET neural network
research community. In particular, the following names come to mind as people
that have made significant contributions to A/M: Dave Ault, Chedley Aouriri,
Michael Bobak, Val Bykovsky, Bart Conrath, Dan Dickey, Nga Do, Charles
Fletcher, David Goblirsch, Mathew Grzech, Duane Gustavus, Glenn Himes,
Garry Jacyna, Henrik Klagges, Manette Lazear, Sam Lin, John Michopoulos,
William Morgart, Thu Nguyen, Steve Rehfuss, Dave Subar, Alexis Wieland,
Michael Yearworth. I look forward to continuing working with these and more
interested people to develop A/M to its fullest potential.

Contents

SUMMARY
1.1 ASPIRIN
1.2 MIGRAINES e

INTRODUCTION
2.1 Contents. e
2.1.1 Notation and Conventions
2.2 Prerequisites
2.3 The History of Aspirin/MIGRAINES
2.4 Previous Versions e
2.5 Current Version- V7.0
2.6 Acquiring Aspirin/MIGRAINES

A Tutorial Introduction

3.1 Before Starting

3.2 Encoder/Decoder Example
3.2.1 Creating An Executable Program
3.2.2 Runningencode
3.2.3 Analyzing encode with MIGRAINES and gnuplot

DETECTOR TUTORIAL
FAQ
EXAMPLES

Aspirin Language

7.1 An Example Aspirin File

7.2 Compiling an Aspirin File

7.3 Format of Aspirin Files,

74 Aspirin Syntaxo
7.4.1 Black Boxes (DefineBlackBox)
74.2 Loading Black Boxes

743 Compilers Lo

8 MIGRAINES Interface

8.1
8.2

8.3
8.4

9 The
9.1
9.2
9.3

9.4

9.5

Visualization Examples
Moving Through the Neural Network (Contexts)
8.2.1 Testing Context
Global Commands
Pipes. o e e
8.4.1 Data Stream Format

bpmake Utility

9.0.2 Environment Variables and Parameters for bpmake
Modifying the Base Makefile.
The Backprop.cFile
Input Data L
9.3.1 Data Format Files
Including Application-Specific Code
9.4.1 Thewuserdnit File.
9.4.2 User-Defined Data Generators
Executing bpmake-Created Simulations
9.5.1 -[d]datafile <.df filename>.
9.5.2 -aJalpha] <learningrate>
9.5.3 -i[inertia]<inertia>
9.54 -llearn] o
9.5.5 -F[Filename] <filename>
9.5.6 -s[save] <iteratioms>
9.5.7 -H# . e
9.5.8 -t[test] <iterations> <passes> <bound>
9.5.9 -N[Notest]
9.5.10 -I[Iterations] <iteratioms>
9.5.11 -n <mean> <variance>
9.5.12 -u <mean> <variance>
9.5.13 f[forward] <iteratioms>
9.5.14 -E[Epoch]
9515 -plprint]
9.5.16 -P[Pdpfa] <threshold>
9.5.17 -Af[AsciiDump] L.
9.5.18 -AsciiDumpNoFmt
9.5.19 -L[LoadAscii]
9.5.20 -hlhelp]

10 The analyze Utility 87

10.1 Sonar Example Lo 88
10.2 Characters Example and DataReduce 88
103 Usage o o v i i e 89
A INSTALLING A/M V7.0 92
B YOUR UNIX ENVIRONMENT 94
C RELEASE NOTES, KNOWN BUGS AND WORK-AROUNDS 95
D PORTING TO NEW PLATFORMS 96
E USING COPROCESSORS 99
F PARALLEL COMPUTERS 101
G GNUPLOT 102
H Tk/Tcl and wish 103
I NET TOOLS 104
J THE BACKPROPAGATION ALGORITHM 106
K THE AUTOREGRESSIVE BACKPROPAGATION ALGORITHM108
K.0.1 Gradient Descent 109
K.0.2 Stability Issues 111
K.0.3 Weight Update Issues 111

Chapter 1

SUMMARY

A suite of software tools for developing neural network simulations, called As-
pirin/MIGRAINES (A/M) has been developed by an internally funded neu-
ral network research effort at the MITRE Corporation. These tools include a
declarative language for describing neural networks, code generators to take the
declarative description and generate optimized simulations, and a user inter-
face for analysis. The A/M V7.0 software is available free from a number of
INTERNET ftp sites (see section 2.6).

The software tools are made up of two major components: a neural net-
work description language called “Aspirin” and a user interface called “MI-
GRAINES”. An Aspirin file is created that describes the network architecture.
This file is then “compiled” to create a C program for simulating that network.
This simulation is then compiled with an ANSI C compiler and linked with
application code and the MIGRAINES interface routines.

The software is for creating, and evaluating, feed-forward networks such as
those used with the backpropagation [Rumelhart, 1986] learning algorithm. It
is aimed both at the expert programmer/neural network researcher who may
wish to tailor significant portions of the system to his/her precise needs, as well
as at casual users who will wish to use the system with an absolute minimum
of effort. The software is written for a C/UNIX environment. A great deal of
effort has gone into creating a portable software distribution. As of this writing,
the following UNIX systems are supported:

1. Convex
2. Cray
. DecStation

. IBM RS/6000

Ot ox W

. Intel 486/386 (Unix System V, Linux)

Aspirin File MIGRAINES

Interface
Aspirin Compiler Link
Link
Simulation Application
Code Code

Figure 1.1: Interaction of Aspirin and MIGRAINES

HP 9000
NeXT

News

© »® N o

Silicon Graphics
10. Sun

In addition, the software can be run on coprocessor boards added to a UNIX
host. As of this writing, the following coprocessors are supported:

1. Mercury i860 (40MHz)
2. Meiko Computing Surface w/i860 (40MHz) Nodes

1.1 ASPIRIN

Aspirin was originally conceived as a way of dealing with the “MIGRAINES”
of coding neural network simulations. Our goal was to create an underlying
system that would exist behind the interface and provide the network modeling
facilities. The system had to be flexible enough to allow research, that is, make
it easy for a user to make frequent, possibly substantial, changes to network

DefineBlackBox Encoder
InputSize->[8 x 1]
OutputLayer-> Out
Components->

PdpNode Out [8 x 1]
InputsFrom-> Hidden

}

PdpNode Hidden [3 x 1]

InputsFrom-> $INPUTS

Aspirin Neural Network Description Network Architecture

Figure 1.2: Aspirin Description and Network Architecture

designs and learning algorithms. At the same time it had to be efficient enough
to allow large “real-world” neural network systems to be developed.

Aspirin uses a front-end parser and code generators to realize this goal. A
high level declarative language has been developed to describe a network. This
language was designed to make commonly used network constructs simple to
describe, and, potentially, to allow any network to be described. The Aspirin file
defines the type of network, the size and topology of the network, and descrip-
tions of the network’s input and output. This file may also include information
such as initial values of weights, names of user defined functions, and hints for
the MIGRAINES interface system.

The Aspirin language is based around the concept of a black box. A black box
is a module that (optionally) receives input and (necessarily) produces output.
Black boxes are autonomous units used to construct neural network systems.
Black boxes may be connected arbitrarily to create large, possibly heterogeneous
network systems. As a simple example, pre- or post-processing stages of a neural
network can be considered black boxes that do not learn.

The output of the Aspirin parser is sent to the appropriate code generator
that implements the desired neural network paradigm. The goal of Aspirin is
to provide a common, extendible front-end language and parser for different
network paradigms. The publicly available software includes a backpropagation
code generator that supports several variations of the backpropagation learning
algorithm with wide variety of capabilities.

A file describing a network using the Aspirin language is processed by the
Aspirin parser. Files containing C functions to implement that network are
generated. This code can then be linked with an application using these routines
to control the network. Optionally, a complete simulation can be automatically

generated that is integrated with an interactive interface and can read data
in a variety of file formats. If a different neural network paradigm is desired
a new code generator is used. Our hope is that after the software is released
to the public other researchers, using this code as an example, will add more
code generators for other paradigms, machines, and computer languages. For
example, if a researcher wished to modify the backpropagation learning rule,
he/she could slightly change the existing code generators to produce a new
code generator integrated with the other Aspirin/MIGRAINES tools.

1.2 MIGRAINES

MIGRAINES is an interactive interface that allows users to export data from
the neural network simulation to analysis and graphics packages via Unix pipes.
The MIGRAINES interface has been designed to be flexible and portable. Since
this interface uses a very simple data format, the data can be easily used by
many different plotting packages. (see chapter 8). MIGRAINES is not necessary
for the execution of the Aspirin system. Networks may be designed, executed,
tested, and saved entirely apart from any interface.

Chapter 2

INTRODUCTION

Aspirin is a declarative language used to describe complex neural networks.
Our goal in designing Aspirin was to make, not only, commonly used network
constructs simple to describe, but also to allow almost any network to be spec-
ified. An Aspirin neural network description is parsed and a number of sim-
ulation routines are generated in a high level language (currently in ANSI C
[Kernighan, 1988]). These computer routines are then compiled using standard
compilers and linked either to the MIGRAINES interface (a process that is usu-
ally done automatically) or used with other more application-specific systems.
Aspirin currently supports backpropagation learning techniques with a number
of algorithmic and topological variations. These include skip-level and tessel-
lated connections (i.e., limited receptive fields), several node transfer functions,
delays, “static” feedback, and a number of learning heuristics.

MIGRAINES is an interactive interface that allows users to export data from
the neural network simulation to analysis and graphics packages via Unix pipes.
The MIGRAINES interface has been designed to be flexible and portable. Since
this interface uses a very simple data format, the data can be easily used by
many different plotting packages.

The Aspirin/MIGRAINES system is being written for a UNIX environ-
ment with current development being carried out on a Silicon Graphics In-
digo. The Aspirin compiler makes use of the UNIX utility yacc. The As-
pirin/MIGRAINES utility bpmake is built on the UNIX utility make.

2.1 CONTENTS

This book describes the command syntax and options for creating, compiling,
and running Aspirin simulations. Most of the compilation commands are exe-
cuted automatically for the user by the bpmake utility. One of the strengths of
the Aspirin/MIGRAINES system is its ability to automatically generate opti-

mized simulation code. A number of tutorial examples and code fragments are
provided to help explain the material and how these capabilities can be used
to best advantage. It is recommended that the user read these sections before
large neural network system simulations are developed.

2.1.1 Notation and Conventions

Throughout this manual, text that is to be viewed as input to or output from
the computer is printed in a typewriter-like font. For example, the file name
network.aspirin and the command:

aspirin network.aspirin network -c backprop

are printed in this font to denote their special role.

Because the Aspirin/MIGRAINES system is case sensitive, the strings Network,
network, NETWORK, and NeTwOrK are treated as distinct by the system.

Within many of the code samples there will be text within angle brackets
(e.g. <text>). These are descriptive names for variables that are to be replaced
in user code by actual variable names. As an example, the descriptive name
<aspirin-file> could be replaced by the file name network.aspirin.

This report is written assuming that the Aspirin/MIGRAINES software is
running in the C shell environment on a Unix workstation. See Appendix A for
information regarding particular UNIX systems.

2.2 Prerequisites

Before Aspirin and MIGRAINES can be used the proper UNIX environment
variables must be set (Appendix B on page 94).

In the remainder of this report it is assumed that the environment variable
NNTOOLS has been set to the Aspirin/MIGRAINES “home” directory. If, for ex-
ample, Aspirin/MIGRAINES has been installed in the directory /usr/nntools,
this can be accomplished by including the statement:

setenv NNTOOLS /usr/nntools

in the user’s .cshrc file. The environment variable NNTOOLS is referenced in a
command by adding the prefix “$” to NNTOOLS, e.g., $NNTOOLS. For example, to
move into the directory defined by NNTOOLS you would type

cd $NNTOOLS

References will be made throughout this manual to Aspirin/MIGRAINES files
and directories using $NNTOOLS, such as referring to the Aspirin directory
$NNTOOLS/src/aspirin.

In addition, the user’s search path must include the appropriate Aspirin/ MIGRAINES
bin directory. For a Sun3 this directory is $NNTOOLS/bin/sun 68k and for a

Sun4 this directory is $NNTOOLS/bin/sun_sparc. Generally this is done by in-
cluding a statement of the form

set path = ($path $NNTOOLS/bin/$MACHTYPE)

in your . cshrec file. The $MACHTYPE variable should be set to the kind of machine
you are working on.

The following commands enable you to check that the appropriate environ-
ment variables have been set. First check to see that the environment variable
NNTOOLS is defined by typing:

printenv NNTOOLS

The computer should respond with /usr/nntools, or whatever the correct di-
rectory path is on your system.

If that works correctly, check to see if you can find the executable utilities
(that is, if your path has been set correctly) by typing:

aspirin

Since you did not give this program the proper arguments it should reply with
a message telling you what arguments to use, for example:

Usage: aspirin <aspirin file> <C file> -c <network compiler> [<compiler flags>]

If this message does not appear, see Appendix A(page 92) and Appendix B(page
94).

2.3 THE HISTORY OF ASPIRIN/MIGRAINES

The Aspirin/MIGRAINES system has existed in some form since 1986 and
has principally been the work of Russell Leighton and Alexis Wieland. It
was preceded and motivated by a series of hand-coded systems for implement-
ing and testing various neural network paradigms under a variety of machines
and graphic environments. The name MIGRAINES was conceived by David
Subar!. The declarative language Aspirin, which actually predates the name
MIGRAINES, was envisioned as the behind-the-scenes work horse which would
tie the system together. Its use in this role of dealing with the tedium of neural
network simulation(“MIGRAINES”) that inspired its name.

2.4 Previous Versions

During its life, Aspirin/MIGRAINES has existed in a variety of forms on a
number of machines and has been developed and used by a number of people.

1The actual meaning of the acronym MIGRAINES has changed repeatedly since its
introduction.

10

The original system was designed for the Symbolics and was written in a mixture
of Zeta Lisp and Common Lisp.

The UNIX-based versions were first written and used as MITRE began its
neural network research under a MITRE Sponsored Research (MSR) program
in October of 1987. The people originally involved with writing and using this
software made the initial assumption that any fixed neural network simulation
system would not be computationally powerful enough for many applications.
There was also the assumption made that, since people would want to write their
own applications, Aspirin/MIGRAINES would only be a tool to remove the
hard or tedious parts of coding networks. However, since 1988, people outside
of MITRE’s neural network research team have begun to use this software. As
a result, the team members have realized that most people do not want to
write any software. Enhancements made in response to this conclusion have
made Aspirin/MIGRAINES a much more powerful system. The basic system
architecture has been described in [Wieland, 1988].

Version 4.0 was released on the InterNet in March of 1991. It was very much
like V5.0 but used a window system called NeWS1.1 for a graphical interface.

Version 5.0 introduced:

e Support for autoregressive nodes [Leighton, 1991].
e Line search and conjugate gradient optimization.

e Interface allowing the user to open Unix pipes from neural network data
structures.

Version 6.0 introduced:
e ANSI C implementation and code generation

e The analyze utility

2.5 Current Version - V7.0

This release introduces:
e Tk/Tcl graphical interface to MIGRAINES called NNinspect.
e Bugs fixes for problems with AM6.0.

2.6 ACQUIRING ASPIRIN/MIGRAINES

The original am6 software is available from two FTP sites, CMU’s simula-
tor collection. The updated am?7 software is available at http://www.elegant-
software.com. The compressed tar file is a little less than 2 megabytes. Most of
this space is taken up by the documentation and examples.

Computer mail concerning Aspirin/MIGRAINES should be sent to:

11

Russell Leighton russ@elegant-software.com

12

Chapter 3

A TUTORIAL
INTRODUCTION

Since most of the Aspirin/MIGRAINES neural network tools are straightfor-
ward to use, this manual begins with a short tutorial example. This example
demonstrates the major features of both Aspirin/MIGRAINES, and the use of
these tools to carry out neural network research and development.

The danger in this approach is that in the attempt to elucidate the simple
features of the Aspirin/MIGRAINES system, its true power and utility may
be obscured. The Aspirin/MIGRAINES package was explicitly developed to
facilitate neural network research. The bulk of the user’s manual describes the
full power of the system and gives hints on how to extend it.

3.1 Before Starting

This section assumes that Aspirin/ MIGRAINES has been installed correctly on
your computer and that the appropriate environment variables have been set
(see page 9).

3.2 Encoder/Decoder Example

Throughout this report we use the encoder/decoder problem presented in [Rumelhart, 1986]
as a simple neural network example. A complete example of an encoder/decoder
system can be found in $NNTOOLS/examples/encode.
The encoder/decoder problem is to take each of eight input vectors, force it
through a bottleneck of three computing nodes, and then reproduce the same
input vector as the output. This problem requires that the network find some

13

way of compressing, or encoding, the inputs via the small number of hidden
nodes to create the desired output.

3.2.1 Creating An Executable Program

You are advised to create a new directory for each new network description and
its associated files. In this case, we are going to use the encoder network descrip-
tion and the data files that come with the Aspirin/MIGRAINES distribution.
To create a directory and copy these files into it, type the following commands:

1. mkdir encode!
2. cd encode?
3. cp $NNTOOLS/examples/encode/* .3

You have now created a new directory and copied the following files into it:
encode.aspirin which is an Aspirin language description of the neural net-
work, a data format file named encode.df, and an ASCII data file named
encode.data. The purpose of each of these files will be explained later in this
example.

The next step is to generate an executable program from the Aspirin lan-
guage file. This is done by typing the single-word command:

bpmake

A dozen or so lines of text will appear on the screen as the program aspirin
is called to translate the encode.aspirin file into an encode.c file. This new
C file is then compiled by the C compiler into a machine executable program
named encode. The name of the executable program is the same as the name
of the Aspirin file minus the “.aspirin” suffix.

The file encode. c, created by bpmake, is a C program for implementing the
network-specific portion of the encoder task. Interested readers can browse this
code. (The network-independent portion of the code is in the file $NNTOOLS/migraines/bp/Backprop.c.
It includes all of the hooks for running the simulator, both with and without
MIGRAINES) You have now completed the process of creating an optimized
simulation.

3.2.2 Running encode

This example is called encode because the neural network will learn to encode
a set of eight patterns with a hidden layer of three nodes . The network ar-
chitecture has eight inputs connected to all three hidden nodes. The nodes in

1Creates a new subdirectory, named “encode” in the current directory.
2Move into the newly-created directory.
3Copies all of the files for the encoder into this new directory.

14

the hidden layer are fully connected to an output layer of eight nodes. To see
this, type: more encode.aspirin . The aspirin file describes the network to
be simulated and the bpmake program creates the executable simulation.

The simulation created by bpmake can read a number of data file formats (see
page 75). One of these formats is an ASCII format. The data for this example
is located in a file called encode.data. Type: more encode.data to see the
eight patterns that the neural network will learn to encode. The executable
simulation, called encode, can take a large number of optional arguments. Type:
encode -help. Only a few of these options will be discussed here.

One of the options is -d <datafile> . The <datafile> is not the file
encode.data. The input of data into simulations generated by bpmake is indi-
rectly referenced through a file called a data format file (or .df file). This file
tells the simulation which files to load and specifies the format of the data in the
respective files. Type: more encode.df. This .df file contains one ReadFile
command that tells the simulation to load the data in encode.data and that
this file has data of type ASCIL. There are also some optional keywords that are
included within the ReadFile command.

Another option to the encode simulation is -1, which stands for learn. Type:
encode -1 . You should see the program exit with a message like: “No gener-
ators defined!” ® This means that the program has no data to use for learning.
Type: encode -1 -d encode.df. You should see something like

(silicon.14) <- encode -1 -d encode.df

Backpropagation Learning

Black Boxes:

encode (Saved at Iteration 0)

Loading Data Files...Done.

Learning Rate: 0.200000

Inertia: 0.950000

Your learning rate is a bit high.

If this does not converge try lowering it.
Learning. ..

Testing every 5000 iterations.
Saving every 5000 iteratioms.

4The more program will display a page at a time of the Aspirin file, hit the space bar to
see more of the file.
5A generator is a function that supplies data to the simulation (see page 82).

15

Dumping Network at 5000.
Success!! Dumping Network.Finished.

Total Iterations 5000

Elapsed compute time: 2.440000 seconds
Elapsed system time: 0.170000 seconds
(silicon.15) <-

The simulation has successfully learned to do the encoding and has saved the
state of the network parameters (weights, etc.) to a file called Network.Finished.

The simulation will periodically save its state to a file called Network. save.
The period is controlled by the -s option. Type: encode -1 -d encode.df -s
1000. You should see it dump the network every 1000 iterations. The default
is to save the state every 5000 iterations.

The simulation periodically pauses and checks to see if the network has
converged. How often it checks is controlled by the -t option. The -t option
has three arguments. The first is the number iterations between tests, where
an iteration is one forward and one backward pass. If this is set too low, the
simulation will spend the most of the time testing, not learning. If it is set very
high, you will have to wait longer before your simulation will stop. The second
argument is the number of iterations the simulation must pass the convergence
test before being allowed to stop. Usually this number equals the number of
patterns in the data file. However, if noise is being added dynamically to the
input patterns, you want this number much higher than simply the number of
patterns. The third argument is a real number denoting the error bound. If the
convergence test is passed for all of these iterations then the network is said to
have converged. The convergence test uses the maximum absolute difference as
the error calculation. If the absolute value of the difference between each output
node and its associated target during all of the specified iterations is less than
some number (the error bound) then the network is said to have converged.
Type: encode -1 -t 10 8 0.2 -d encode.df. This tells the simulation to
learn and pause every ten iterations to check for convergence. The network
will be said to have converged if, for eight successive iterations, the maximum
absolute difference between all output node values and their associated target
values is less than 0.2. You should notice that this finished executing with fewer
iterations than the previous run.

The -alpha option allows you to override the learning rate parameter. Type:
encode -1 -d encode.df -t 10 8 0.2 -alpha 0.35. This should converge
even faster than last time. Try this with many different learning rates. You
will notice that convergence time does not vary linearly with the learning rate
parameter.

Sometimes you might want to see the actual output values. The -p option

16

used with the —-f option will print the values of the outputs and the associated
targets. The -f option takes one argument which is the number of times to prop-
agate forward. Type: encode -d encode.df -p -f 8 Network.Finished

This rest of this section illustrates using the MIGRAINES interface with the
Aspirin generated simulation. Before continuing you should bring up a window
system that will allow you to use gnuplot (see appendix G).

3.2.3 Analyzing encode with MIGRAINES and gnuplot

You can run the executable program encode with the MIGRAINES interface
by typing the following command to the UNIX shell:

encode -d encode.df
You should see the following printed out:

Aspirin/MIGRAINES 6.0

Backpropagation Learning

Black Boxes:

encoder (Saved at Backprop Iteration 0)

Welcome to the MIGRAINES user interface.
Copyright (C) 1988-1992 The MITRE Corporatiomn.
Type ? for help.

Type quit to end this session.

MIGRAINESY

This is a prompt for the MIGRAINES interface. This interface allows you to
navigate through the neural network structures declared in the .aspirin file and
connect Unix pipes to extract weight and node data. Each black box, layer and
connection matrix are contexts that you push into and pop out of. Within a
context you can apply commands consistent with that context. For example, if
you are in a layer context, then you can open a Unix pipe to get the data in the
nodes in that layer.

In this tutorial we will explore a few of the commands and then run a demon-
stration file that will extract weights and node values from the neural network.
These will then be plotted by gnuplot®. At the prompt:

MIGRAINESY

81f you do not have gnuplot this will not work. However, the files produced by this demo
are ASCII and could be plotted by other plotting packages.

17

type 7. You will see two groupings of text. The first is entitled Global
Commands. These are commands that can be executed from any context that
allow you to navigate through the neural network structures as well as export
data to Unix pipes. The second grouping of text is entitled SubContexts. This
text lists the available contexts.

Since you have already taught the network to perform the encoding problem,
there should be a file in the current directory called Network.Finished that
contains the weights of the converged network. Type load Network.Finished
to the MIGRAINES interface. This will result in the converged weights to be
loaded into the network.

Type push TestingContext. This will put you into the testing context so
that you can evaluate how well the network has converged. Type 7. Notice
there are now commands available that are local to this context. Type Info.
You should see:

Bound: 0.100000 Iterations: 100

This means that the testing criteria are a maximum absolute error of 0.1 and
100 iterations. Since the encoding problem only has 8 patterns, the number
of iterations needs only to be 8. Type SetIterations 8. Type Info. Type
SetBound 0.5 then type StartTesting. The simulator will evaluate each pat-
tern and stop when either a pattern exceeds the error bound or the number of
testing iterations is reached. To evaluate the network performance, set the error
bound to be large, test to see which patterns fail and then repeat the process
making the error bound gradually smaller. For example:

TestingContext), StartTesting

Testing 8 patterms...

Success, 8 patterns passed with 0.500000 error bound!
TestingContext’ SetBound 0.4
TestingContext), StartTesting

Testing 8 patterns...

Success, 8 patterns passed with 0.400000 error bound!
TestingContext) SetBound 0.3

TestingContext), StartTesting

Testing 8 patterns...
Success, 8 patterns passed with 0.300000 error bound!

TestingContext) SetBound 0.2

18

TestingContext) StartTesting

Testing 8 patterms...
Success, 8 patterns passed with 0.200000 error bound!
TestingContexty,

TestingContext) SetBound 0.1
TestingContext), StartTesting

Testing 8 patterms...
Pattern 0 (3 in encode.data) exceeded a 0.100000 error bound.
TestingContext

Type pop. Now you have moved out of the TestingContext back to the
root context. Type push encoder. For information on the encoder black box
type Info. You should see:

MIGRAINESY, push encoder
encodery, Info

Black Box: encoder
Dynamic (can learn)
Efferent (has target outputs)
Input Size: 8 x 1
2 Layers

Type 7 to see the subcontexts:

encodery, ?
Global commands:

pbinary (Output pipe data in binary)

pascii (Output pipe data in ascii)

pnoheader (Do not use header on pipe data)

pheader (Use header on pipe data)

pinfo (Info on pipes)

pclose <pipe name> (close a Unix pipe)

popenWeights <x node index> <y node index> <pipe name> <commands> (open a Unix ...)
popenInputs <pipe name> <commands> (open a Unix pipe to accept input vector)
popenTargets <pipe name> <commands> (open a Unix pipe to accept output target vector)
popenBiases <pipe name> <commands> (open a Unix pipe to accept node bias vector)
popenNodes <pipe name> <commands> (open a Unix pipe to accept node value vector)
cycle (<iterations> present inputs/targets to network)

load (<filename> load neural network weight file)

19

push (<context> down context)

pop (up context)

poproot (go to root context)

source (<filename> evaluates commands in file)
! (<string> executes system call)

echo (<string> prints string)

quit (quit MIGRAINES)

? (this message)

Current context commands:
Info
Subcontexts:

Targets
$INPUTS
encoder:Qutput_Layer
encoder:Hidden_Layer

Each subcontext is a component of the black box. The Targets and $INPUTS
subcontexts allow you to open Unix pipes to the target and input data, respec-
tively. The other subcontexts represent the layers in the neural network. From
within these subcontexts you can open Unix pipes to the node values and the
bias weights. Type push encoder:0Output Layer. Type Info for information
about the layer:

encodery, push encoder:0utput_Layer
encoder:0utput_Layery Info

Layer: encoder:0utput_Layer
Size: 8 x 1

Type 7 to see the subcontexts:

encoder:Qutput_Layery ?
Global commands:

pbinary (Output pipe data in binary)
pascii (Output pipe data in ascii)
pnoheader (Do not use header on pipe data)
pheader (Use header on pipe data)

pinfo (Info on pipes)

pclose <pipe name> (close a Unix pipe)

popenWeights <x node index> <y node index> <pipe name> <commands> (open a Unix ..

popenInputs <pipe name> <commands> (open a Unix pipe to accept input vector)

20

D

popenTargets <pipe name> <commands> (open a Unix pipe to accept output target vector)
popenBiases <pipe name> <commands> (open a Unix pipe to accept node bias vector)
popenNodes <pipe name> <commands> (open a Unix pipe to accept node value vector)
cycle (<iterations> present inputs/targets to network)

load (<filename> load neural network weight file)

push (<context> down context)

pop (up context)

poproot (go to root context)

source (<filename> evaluates commands in file)

! (<string> executes system call)

echo (<string> prints string)

quit (quit MIGRAINES)

7 (this message)

Current context commands:
Info
Subcontexts:

encoder:Hidden_Layer->encoder:0utput_Layer

The connection between the hidden layer and this layer is represented as a
subcontext called encoder:Hidden Layer->encoder:0Qutput Layer. Type:

push encoder:Hidden Layer->encoder:QOutput Layer
then type Info:

encoder:0utput_Layery push encoder:Hidden_Layer->encoder:0Output_Layer
encoder:Hidden_Layer—>encoder:Qutput_Layer’), Info

Connection: encoder:Hidden_Layer->encoder:0utput_Layer
Full connection
Size: 3 x 1

From within this subcontext you can open Unix pipes to the weights into each
node that are represented by this connection.

Finally, the source command allows you to evaluate a file as if you had
typed it into the MIGRAINES interface. In this directory there is a file called
encode.cmd. Study this file. It extracts all of the weights and extracts the hid-
den layers values after cycling through the input data. Type source encode.cmd.
There now exists ASCII data files that can be used for plotting to see the weights
in the neural network. In addition, there is a file that contains the values of
the hidden nodes. Since there are three hidden nodes, we can plot these in a
3-dimensional plot to see how well the neural network separates the input data

21

in “hidden node space”. Similarly, the weight vectors from the hidden layer
to the output layer are also three element vectors. We can plot these in a 3-
dimensional plot to see how the neural network “encodes” the data. If you have
gnuplot, type gnuplot encode.gnu to see these plots. Although the neural
network may converge to different solutions from different initial conditions, in
most cases these 3 dimensional plots reveal that the hidden layer acts as a bi-
nary encoding. This can be seen by a box-like shape to the points in the weight
vector space.

Read the file called Learn in the other examples directories. Executing
Learn in the example directory typically causes the network to learn, followed
by analysis, then display using gnuplot.

22

Chapter 4

DETECTOR TUTORIAL

Many neural network applications can be described as either detector or clas-
sifier problems. This tutorial outlines how to approach a detection problem
with a backpropagation network. Although this tutorial uses an Aspirin neural
network, the concepts and issues are the same for any detection problem. The
reader is referred to an introductory text on detection and estimation for further
reading.

This detector tutorial illustrates the sensitivity of the neural network to
choices of output threshold and prior probabilities in the training data. The
implications of these sensitivities have a large impact on the application of
neural networks as detectors and classifiers. It will be shown that:

e Choice of an output threshold must be made based on receiver operator
characteristic (ROC) curves.

e The probability of using an element from a particular class during training
can significantly bias the performance statistics.

Typically, an analysis such as this would be parameterized in terms of signal
to noise ratio (SNR), however, for convenience, in this tutorial we will param-
eterize only in terms of noise variance. After a network has been trained it will
be tested with different amounts of additive Gaussian noise on the same data.
The effect of this noise on the testing will be illustrated by histograms of the
output distributions and ROC curves.

Two networks of the same architecture have been trained. Each network
was trained with a different “mix” (probability of signal and the probability of
noise/clutter):

1. Bias towards signal (P(signal) = 10.0P(noise/clutter))

2. Bias towards noise/clutter (10.0P(signal) = P(noise/clutter))

23

Bias towards Signal (Variance 0.5)

0.8

0.6

0.4 /
02 [+

0 20 40 60
Bin (Range [0:1])

Percentage per Bin

80 100

Figure 4.1:

The network architecture and data are taken from the Characters example
(page 31), with the following small changes:

e The output layer has only 1 node, trained to output 1.0 for signal and 0.0
for noise/clutter.

e The “signal” class consists of the data for the letters C and D.

e The “noise/clutter” class consists of the data for the letters A and B, as
well as a zero’d vector.

The networks are trained with a small amount of additive Gaussian noise, hence
we have a two class detector problem with one class the signal plus noise and
the other class just noise (noise and clutter, where the clutter consists of the
noise corrupted letters A and B).

The effect of the different “mixes” can be seen in the histogram plots ! of
the output node (Figures 4.1, 4.2). The histograms for the network trained
to be biased towards signal has a shift in the output distributions to the right
(towards 1.0), while the histograms for the network trained to be biased towards
noise/clutter are shifted to the left (towards 0.0). Therefore, depending on the
“mix” during training, a particular threshold choice may have a very different

1The output node values under the condition of signal and noise/clutter were collected in
100 bin histograms.

24

Bias towards Noise (Variance 0.5)

1
S+N —
0.8
£
@ 06
(7]
o
(4]
. A
5
o
5 0.4 1 I\
a |
0.2 | J\
0 L N

0 20 40

60 80 100
Bin (Range [0:1])

Figure 4.2:

performance in terms of probability of detection (Pd) and versus probability of
false alarm (Pfa). Clearly one cannot arbitrarily choose an output threshold.
Further, the sensitivity to the “mix” during training implies that consideration
be given to the quality and proportions of training data.

In order to evaluate the networks trained with different “mixes” we need to
access the performance in terms of Pd versus Pfa. This is done by creating an
ROC curve. An ROC curve is created by varying the output threshold and
plotting Pd on one axis and Pfa on the other. A set of curves are typically con-
structed, where each curve represents a different noise variance or SNR.. Figures
4.3 and 4.4 each show a family of curves generated by calculating histograms
under different noise conditions. The further a curve is to the upper left, the
lower the noise variance. The squared off curve at the upper left reflects the
performance under the condition of no noise at all and the square shape implies
perfect separation. The lower right curve reflects the performance at extremely
high noise variance and the fact that it runs along the diagonal implies no
separation. The shape of the curves between the upper left and lower right de-
scribe the performance of the network under the conditions of increasing noise
variance.

Note that the important criteria for training a neural network detector con-
cern Pd and Pfa not the convergence to within some RMS bounds. It is quite
likely that a network not “converge” during training to producing some small
RMS error, yet be an excellent detector. This can happen when the output

25

Probability of Detection

Probability of Detection

0.8

0.6

0.4

0.2

ROC (Bias towards Noise)

0.4 0.6
Probability of False Alarm

Figure 4.3:

ROC (Bias towards Signal)

0.8

0.2

0.4 0.6
Probability of False Alarm

Figure 4.4:

26

0.8

distribution never comes close the target levels in the training data but there is
still separation of the two classes.
The important points to be taken from this tutorial are:

e The threshold for the detector should be determined from an ROC curve.
The decision of a particular threshold implies a decision about operating
performance in terms of Pd verus Pfa.

e The prior probabilities of the training class must be considered during
training. In most cases, the priors should be waited equally, however, it
may be desirable to reflect the true prior probabilities of the classes in the
operational environment within the training set.

e The notion of convergence of a neural network detector (or classifier) is
not a useful concept, rather, the degree of separation is what is important.

27

Chapter 5

FREQUENTLY ASKED
QUESTIONS

Why is the number of iterations reported from loading a saved network

different from the number of iterations that the network was actually
trained?
This a feature not a bug. There is a heuristic that is enabled by default
which will only update the weights (and the iteration counter) if the error
is less than a specified threshold (0.00005 by default). See section 7.4.3.
This generally makes learning much faster by not updating the weights
when there is very little error.

Will A/M run on a PC under DOS or Windows?
What an ugly thought ... but yes, it has been done.

Can I use A/M generated code in a commercial application?

Yes.

Is it easy to add new code generators for new algorithms?
Not really, but it can be done. Writing code generators is an ugly business.
I think that the code generated by the current aspirin backprop compiler
is reasonably clean as are the support libraries. Unfortunately, the code
generator itself is quite complex.

How do I add a neural network that I have trained into another program
as a module?
The easiest way to do this is to link the compiled object file into your pro-
gram and manipulate the network as a single object. This is done in the
bayes and ntalk examples (pages 30,32), refer to the file Makefile.am.
In addition, most applications will not require learning, therefore when
including Aspirin code in an application you can declare all black boxes

28

Can

Static-> and recompile the network. This will result in a much smaller
executable, both in code and static storage.

I move the weight files from one machine to another?

Be careful about this! There are two issues here. First, since the weight
files are binary, the word format and byte order must match between the
two machines. If this is not the case then you need to produce an ascii
version of the file with the -AsciiDumpNoFmt option, move the ascii file
and reload it. The second issue is that even if you have compatible word
formats or you moved the weights as ascii, the difference between the
hardware and math libraries of the two machines may make the network
behave differently. Validate all networks if you do this!

29

Chapter 6

EXAMPLES

The software distribution comes with a directory of examples. These examples
are meant to illustrate different features of the Aspirin/MIGRAINES system.
The examples sonar and nettalk are well known neural network applications.
The data has been made available by the authors of these applications for
research purposes only !.

Each example has a group of README files that describe the usage of
Aspirin/MIGRAINES. Read these carefully to understand how to run the pro-
grams generated by bpmake.

In each directory is a file called Learn which is an executable shell script. The
Learn files are meant as examples of how to set up the networks to learn. Read
the Learn files and then execute them. Upon successful completion of a learning
run a dump file called Network.Finished will be written to the directory. The
weights in the final network can be viewed through a plotting package. All the
Learn files use Gnuplot3 as the plotting package, although almost any plotting
package may be used. In particular, the patterns that the weights have formed
are of interest.

Fach example directory also contains a Runs directory which contains files
of runs of the Learn script on different machines.

BAYES

This example shows that a backprop neural network can learn to approximate
the optimal bayesian decision surface. Four normal random variables that repre-
sent different classes are used to train the network. Plots are generated showing
the decision surface and the input distributions. The optimal bayesian decision
surface follows the basin of the valleys between the different input random vari-

1This data was acquired via the nnbench mailing list, Scott Fahlman moderator.

30

ables. The plots show that the neural network has learned to place the decision
surface along these valleys.

This example illustrates the use of a user_init.c file to create your own
data generators.

CHARACTERS

This example contains data used in “An Analysis of Noise Tolerance for a Neural
Network Recognition System” [Wieland, 1988]. The network in this example
learns to recognize the letters A,B,C,D independent of rotation and in the
presence of noise. This is a very simplified version of the experiment described
in [Wieland, 1988].

This example illustrates the use of tessellation and multiple black boxes.
This example does not require multiple black boxes. This is a situation where
one might want multiple black boxes so, once trained, they can be used as
modules in other networks.

The data used is in Typel files generated on a Sun workstation (IEEE 32
bit big-endian floats).

ENCODE

This example is also taken from [Rumelhart, 1986]. The goal of this network is
to map a binary set of inputs to the same binary set of outputs using a small
number (e.g. log,(n)) of hidden nodes.

After training the network examine the weights connecting the hidden layer
to the output. Many times these weights converge to a binary number encoding.
If the magnitudes of the weights are ignored and just the signs considered, then
you can read these as the binary numbers 0 through 7.

DETECT

This network detects a sign wave in noise. This example illustrates the use of
the user_init.c file to create your own data generators.

IRIS

The data set to be used was published by Fisher [Fisher, 1936] and has been
used widely as a testbed for statistical analysis techniques. The sepal length,
sepal width, petal length, and petal width were measured on 50 iris specimens
from each of 3 species, Iris setosa, Iris versicolor, and Iris virginica.

31

MONK’s Problems

The MONK'’s problem were the basis of a first international comparison of
learning algorithms. The result of this comparison is summarized in “The
MONK’s Problems - A Performance Comparison of Different Learning algo-
rithms” [Thrun, 1991].

The MONK’s problems are derived from a domain in which each training
example is represented by six discrete-valued attributes. Each problem involves
learning a binary function defined over this domain, from a sample of training
examples of this function. Experiments were performed with and without noise
in the training examples.

The example included is the backpropagation neural network trained on the
three problem sets.

NETTALK

This example contains the data used in “Parallel networks that learn to pro-
nounce English text” [Sejnowski, 1987]. The network is trained on a database of
text to phoneme mappings. The original system described in [Sejnowski, 1987)
could output the phonemes to a DECTalk? system for actual audio playback of
the text. Read the file README.nettalk for a full description.

This example illustrates the use of the user_init.c file to build your own
data generators. Also, a complete stand-alone application called Performance
is included. This program links to the simulation and measures the performance
of the network using the “Best Guess” metric.

PERF

This example is a large network. It is used only for benchmarking

RINGING

This example illustrates the use of an autoregressive [Leighton, 1991](see ap-
pendix K) network to learn a time varying function. In this case a exponentially
decaying sinusoid impulse response.

SEQUENCE

This example illustrates the use of an autoregressive network to learn to recog-
nize sequences of events. The training set consists of sequences of tokens. The

?Digital Equipment Corporation, DT'C-01-AA.

32

Projection of Hidden Unit Vectors thru [0,1] Principal Components
T

5 T T T
o < " g
¢ 4 pcaDl.rocks’ ¢
o o © © "pca0l.mines’ +
o o +T
° . +
@
15 1 o ° e B
° oo + o+ *
° 4 4 + o+
+ + +
o o +
3o ° ° oo, Ty
1L . e i
<o ° o ° + 4 +++ +
. ° ° © ot +
o Lt e o+
L + & 4
05 o 3 oy PR
3 ° @ n +
oo o0 o
EARE T -~
0 o 00 +%«2‘
© ©
© o X o 'y +
o 3 R
> A
+
05 | + 4
05 o
1 I I I I I
-2 15 1 0.5 0 05 1 15

Figure 6.1: Principal Components Analysis of Hidden Layer for Sonar Example

network is trained using the AR backpropagation algorithm [Leighton, 1991]
(see appendix K) to recognize a particular sequence within the training data.
This cannot be done using the same architecture without AR nodes. It is tested
for generalization on the test set.

A simple feedforward network that will do this is in the file ff.aspirin. Notice
that delays are required on the input. This is the typical approach to recognizing
sequences, but scales badly. If you need to recognize a very long sequence (or
your data is highly sampled) then the number of delays (and 1st layer weights)
can grow very large. The feedforward network has 10 (~30%) more weights
than the AR network. Normally both input delays and AR delays are used in
AR backprop networks for temporal recognition.

The idea of AR backprop is that the input delay window can remain small
and AR “memories” can be used recognize the temporal characteristics of the
signal.

The best solution for some problems is to use both (an ARMA network).

In this example, the AR network can separate 3 the data with no delays on
the input. The feedforward network with delays separates the data very well,
but requires an input retina as long as the sequence.

33

Traning and Output Data for Spiral Problem

Spiral2 (Training) ——
Spiral1 (Output) ——
Spiral2 (Output) ——

Figure 6.2: The Spiral Problem

SONAR

This example contains the data used in “Analysis of Hidden Units in a Layered
Network Trained to Classify Sonar Targets” [Gorman, 1988]. In this example
the neural network learns to separate processed sonar returns from rocks and
mines on the ocean floor. Read the file README. sonar for a full description.

This example makes use of the analyze program to perform principal com-
ponents analysis and canonical discriminate analysis to visualize the clustering
performed by the hidden layer.

SPIRAL

This an example of a very hard pattern recognition problem. The data in this
example are the x and y coordinates of two spirals. In the actual data file
the coordinates for each spiral have an additional number associated with them
which denotes to which spiral the coordinate belongs to (i.e., 0.5 for one spiral
and -0.5 for the other). The two spirals coil three times around the origin and
around one another. The goal of this example is to train the network to map an
x,y coordinate into the proper spiral. The network is trained by giving it x and
y and the target classification for some of the points along these intertwined
spirals. This problem was originally conceived by this group at MITRE and is

3There exists a threshold that will separate the classes.

34

Weight Evolution for the XOR Neura Network

—
6
4
2
o —
2
Qutput Node Bias —
Hidden Node Weight1 to Input —— AN
-4 Hidden-Node Weight2-to-triptit
—
-6 T
-8
-10
-12
0 2 4 6 8 10 12 14 16

Figure 6.3: Weight Evolution (from Gnuplot 3)

described by Lang, et al in [Lang, 1988]. Read the file README. spiral for more
details.

This example illustrates the use of user defined nodes and user defined error
functions.

XOR

This is an example taken from [Rumelhart, 1986] whose historical significance
dates back to Minsky and Papert’s book Perceptrons [Minsky, 1969]. The
largest criticism of the perceptron was the inability of this method to converge
when the classes are not linearly separable. The exclusive-or (XOR) problem is
tomap 10to1,01to1,00to0and 11 to0. This problem is not linearly
separable. Since the backpropagation method can solve this problem it has
overcome a major shortcoming of perceptrons.

This example illustrates a simple Aspirin file used with an ASCII data file.
Notice the skip level connections. The .df file controls the loading of the data
files into the network. The MIGRAINES file xor. cmd causes the weights to be
dumped to file as a function of learning iteration.

35

Chapter 7

ASPIRIN LANGUAGE

Aspirin is a declarative language used to specify neural network architectures.
Associated with Aspirin are compilers that generate computer code to simulate
the network(s) described in an Aspirin file. Aspirin enables a user to describe a
neural network at a very high level. Commonly this code is used in conjunction
with MIGRAINES to create a flexible, but efficient, neural network simulation.
However, the Aspirin-generated simulations do not require the MIGRAINES
interface. The code that is generated from the Aspirin description of a network
can be linked into more application-specific systems.

The Aspirin language and the Aspirin compilers are decoupled in the sense
that an Aspirin description may be understood by some compilers but not oth-
ers. This allows the Aspirin network description language to be extensible with-
out having to extend all of the associated compilers. Each compiler generates
code to simulate a specific neural network paradigm. For example, an appli-
cation may compile the Aspirin descriptions of two different neural networks
using two different compilers. The generated code could then be linked into an
application which controls the two networks, thus creating a single large hetero-
geneous system. Conversely, a particular network may be compiled by several
different compilers with the goal of comparing various learning algorithms on a
single network.

Aspirin is organized around the concept of a black box description of a neural
network. A black box neural network is an abstract unit which (optionally)
receives external input and (necessarily) produces some output. A complete
neural network is one example of a black box. Another example of a black
box is a subnetwork component of a larger, complex neural network system.
The compilers generate functions that enable you to control each black box
individually, as well as all of the black boxes declared in a single aspirin file.
Code is also generated to enable programs to query the network about its current
state and the functions it is currently using.

36

7.1 An Example Aspirin File

As a simple example of a Aspirin description we return to the encoder/decoder

problem described on page 13. In this problem, the network takes eight in-

put values, pushes that through a bottleneck of three nodes, and then recreates

the input values on eight output nodes. An Aspirin file equivalent to the one dis-

cussed below can be found in the file $NNTOOLS/examples/encode/encoder.aspirin.
An aspirin description of the encoder/decoder network is:

DefineBlackBox Encoder

{
OutputLayer-> Output_Layer
InputSize-> 8
Components->
{
PdpNode Bottleneck 3
{
InputsFrom-> $INPUTS
}
PdpNode Output_Layer 8
{
InputsFrom-> Bottleneck
}
}
}

Let us examine this file line by line:

DefineBlackBox Encoder
This statement tells the Aspirin compiler that a new black box named
“Encoder” is being defined. For this network, as for most simple net-
works, a black box and a network are synonymous terms.

{ and }
Curly brackets are used throughout Aspirin to denote the beginning and
end of a definition. In this case the statements within the { } are the

definition of the black box Encoder.

OutputLayer-> Output_Layer
Since Aspirin does not require that the description of the network compo-
nents be formatted or ordered in any particular manner, it is necessary to
specify the name of the layer that produces the output of this black box.
In this example the layer named Output_Layer is the output layer.

InputSize-> 8
If the network receives external input, you must specify the number of

37

input elements. Whenever possible, the resulting application will check
that the number of input data elements is correct ', but for some spe-
cial cases (such as user-defined data generators; see page 82) this is not
possible. An incorrect InputSize-> argument may cause unpredictable
results.

Components->
This section describes the make-up of this black box in terms of its layers
and their connections.

PdpNode Bottleneck 3
This means that the layer named Bottleneck is composed of three items
of type PdpNode (sigmoidal nodes with output in the range of [0,1]). The
size of a layer, as with the size of the inputs, can be expressed by the
equivalent notation [3] or [3 x 1] to indicate that it is really a vector of
three items.

InputsFrom-> $INPUTS

This specifies the connections into the current layer, in this example
Bottleneck. Without other qualification, the default is a full connec-
tion. That is, every node in Bottleneck receives input from each of the
eight $INPUTS. The word $INPUTS is a special word in Aspirin (as are all
words beginning with $) and indicates inputs external to the network. For
example, these inputs might be supplied by user-provided data patterns
or user-written data generators.

PdpNode Output_Layer 8
In a similar manner, this defines a layer named Output_Layer composed
of eight PdpNodes.

InputsFrom-> Bottleneck
This declares that the Dutput_Layer receives input from (and is fully con-
nected to) the layer Bottleneck. The order that layers are defined is not
important. (It would have been equally correct to define Dutput_Layer
with its reference to Bottleneck before Bottleneck had been declared).

Once an Aspirin file has been created, it can be compiled by typing bpmake,
see section 9 on page 74.

1This assumes that the standard application program is used by compiling the application
with bpmake. If you elect to write your own program to use the Aspirin-generated routines
directly, it is your responsibility to perform checks on the number of input and output data
elements.

38

7.2 Compiling an Aspirin File

Aspirin files are generally compiled with utility bpmake. Bpmake automatically
generates a generic application linked to the MIGRAINES interface code. This
section describes how bpmake compiles a simulation generated by an Aspirin
compiler.

First bpmake (if necessary) calls the utility aspirin to compile the “.aspirin”
file? to create a “.c” C file and a “.h” C header file. The Aspirin parser aspirin,
which is located in the $NNTOOLS/bin/$MACHTYPE directory, takes two file names
as its arguments: the name of the Aspirin file and a file name for the generated
simulation files. As the third argument, an Aspirin compiler must be specified
with the -c flag. Any additional flags for that specific compiler come last.

As an example, compile the Aspirin file encoder.aspirin by typing:

aspirin encoder.aspirin encoder -c backprop

In this example, two files are created: a header file named encoder.h and a
C file named encoder.c. The header file is intended to be #included into
application programs. It lists the functions that are generated. The C file
contains the actual routines that an application program will use. The contents
of these files depends on the particular compiler (indicated by the parameter
following the —c flag). In this example the standard backpropagation algorithm
has been specified.

The resulting code is then compiled by a C compiler and linked with applica-
tion code. bpmake (see page 74) creates an application linked to MIGRAINES
by executing something like:

gcc -D_sun_sparc__-D_sunos__ -02 -I$NNTOOLS/include \
-c encode.c ;
gcc -D_sun_sparc__-D_sunos__ -02 -I$NNTOOLS/include \

$NNTOOLS/migraines/bp/Backprop.c -o encode encode.o \
-L$NNTOOLS/1ib/sun_sparc
-1BpUi -1Bplo -1BpDatafile -1BpConverge -1BpSim -1Am0Os -1m ;

Note that the files generated by Aspirin require that they are linked with a
number of libraries and a UNIX math library (-lm).

If you are writing your own application code to use Aspirin-generated C
routines, it is very important that the floating point guide to your system be
read carefully. There are usually compiler flags that allow a C compiler to take
advantage of floating point hardware. In addition to compiler flags, functions
may need to be inserted into the application program to set up the floating point
hardware. For example, on Sun 4 systems running Sun OS 4.0, you must call the
function abrupt_underflow_(), once in your program, to force floating point
underflows to zero. If this is not done, the exception is handled by the operating

2By convention, Aspirin files have a .aspirin suffix.

39

system, which will result in the program running slower than cold molasses. On
Sun 3 systems be sure to have the environment variable FLOAT_OPTION set to
£68881. In addition, some machines have high performance vector libraries
(e.g., Cray, Convex) that Aspirin simulations require. These libraries need to
be included when the application is compiled.

7.3 Format of Aspirin Files

An Aspirin file consists of one or more black box definitions. Each black box
represents a network or subnetwork to be simulated. The code generated by
the compiler controls each black box. All black boxes have names, components,
and produce some output(s). They may also have data inputs from the outside
world (inputs to the system) or from the outputs of other black boxes.

A black box can be connected to other black boxes by referring to the name
of each of those black boxes. Since each black box is intended to truly be a
“black box,” a layer in one black box can only connect to the outputs of another
black box.

The format of Aspirin files is reminiscent of C. There is no requirement to
format the text in any particular manner, aside from providing code that is
easily read by humans. Files may contain any number of C-style comments;
that is, anything between /* and */ is ignored by the compiler as a comment
(“recursive” comments are not allowed). In addition, the Aspirin compiler pre-
processes the Aspirin description file with the C macro preprocessor (cpp). This
allows C-style #defines of constants and macros to be used.

Names are specified by strings® beginning with letters a-z or A-Z followed by
alpha-numeric characters*. Numbers are specified as strings using the characters
0-9. Numbers may have either + or - prepended and may also use a decimal
point.

7.4 Aspirin Syntax

This section describes the syntax used in Aspirin files. Not all of the constructs
will necessarily work with all compilers. See the particular compiler descrip-
tion for information on the supported Aspirin constructs. The directories under
$NNTOOLS/examples of the software distribution contain some examples of sim-
ple applications using Aspirin.

7.4.1 Black Boxes (DefineBlackBox)

Conceptually a black box is either a network or a subnetwork. An Aspirin file
is composed of a series of one or more black box descriptions. A black box is

3Maximum length 14.
4The characters !,$,/,-,_ and . are also allowed.

40

defined by a Def ineBlackBox statement. A black box is required to have certain
statements, and allowed to have many others. Each black box must contain a
declared OutputLayer-> and a list of Components->. Optionally, a black box
may receive input from the outside world via $INPUTS. The $ character indicates
that the token is a special symbol internal to the current black box. The token
$INPUTS refers to the inputs of the black box that the application program
controls.

A black box is declared by the DefineBlackBox statement, followed by a
name for the black box, and a declarative description of the component elements:

DefineBlackBox <name>

{
OutputLayer-> <layer-name> /* required x/
Static—> /* optional */
InputSize-> <number-of-inputs> /* optional */
InputFilter-> <C function> /* optional */
OutputFilter-> <C function> /* optional x/
Components-> /* required */
{
<list-of-component-layers>
}
}

Words bracketed by < and > are to be replaced by appropriate values; for
example <layer-name> might be replaced by Encoder.

Output Layer (OutputLayer->)

All black boxes must have an output layer defined.

Static (Static->)

The Static-> statement turns off the learning in the black box. This has
the effect of significantly reducing the memory requirements for the simulation.
This option is usually used for pre-processing black boxes (see section 7.4.1).
Also, once a network has learned, recompiling the network with all black boxes
declared Static-> will result in a more efficient simulation that is suitable for
inclusion within application-specific programs. If a black box is declared static
which receives input from another non-static black box then the code generator
may not be able to optimize the simulation due to the dependence. For example,
the back-propagation code generator will produce code to propagate the error
through the static black box to the non-static black box, although the weights
in the static black box are never changed.

41

Input Data (InputSize->)

If the InputSize-> statement is used, then this black box connects to the outside
world. If this statement is not specified, then the layers in the black box must
connect to the outputs of other black boxes defined in the Aspirin file.

Filtering Input Signals (InputFilter->)

If the InputFilter-> statement is used, then the inputs will be processed by
the C function named. For example, InputFilter—> PowerSpectrum might be
declared. The user’s C function called PowerSpectrum would be linked into
the executable code. The simulator will pass the inputs to the InputFilter->
which will return a pointer to the new inputs. These new inputs will be used as
the actual inputs to the black box. The InputFilter—> option is useful if you
need to process input data (e.g., from a .df file, see page 75) but do not want
to write your own data generators.

The InputFilter-> C function should take three arguments and return a
pointer to a floating point array. The first argument is a pointer to the inputs
(floating point array pointer). The second argument is the width (an integer).
The third argument is the height (an integer). The InputFilter-> C function
must be linked with the executable. This is most easily done by putting it in
the user_init.c file (see page 82) and using the bpmake utility (see page 74).

Filtering Output Signals (OutputFilter->)

If the OutputFilter-> statement is used, then the output layer values will be
processed by the C function named. For example, OutputFilter-> Threshold
might be declared. The user’s C function called Threshold would be linked
into the executable code. The simulator will pass the output layer values to the
OutputFilter-> which will alter the value of the output layer.

The OutputFilter-> C function should take three arguments and return
void. The first argument is a pointer to the outputs (floating point array
pointer). The second argument is the width (an integer). The third argu-
ment is the height (an integer). The OutputFilter-> C function is used to
alter the output layer values in the array passed as the first argument. The
OutputFilter-> C function must be linked with the executable. This is most
easily done by putting it in the user_init.c file (see page 82) and using the
bpmake utility (see page 74).

Component Layers (Components->)

Each component of a black box is described by four fields: the node type, a
unique name for that layer, the size of that layer (the dimensions), and connec-
tion information (a description of how that layer is connected to other layers).
There are also three optional fields discussed later.

42

Node types are dependent on the compiler that is being used. For example,
the backpropagation compiler in V7.0 of Aspirin has three kinds of sigmoidal
nodes. (PdpNode or PdpNodel produces output in the range [0, 1]. PdpNode2
has an output range of [—0.5,0.5], and PdpNode3 in [—1, 1)]. Also supported are
linear nodes, quadratic nodes, and user-defined nodes. These are described on
page 58.

The size declaration describes how many nodes are in a layer and how they
are arranged. Aspirin presently supports 1 and 2 dimensional arrays of nodes.
Size can be described in one of the following ways:

1-dimensional layer:
width Example: PdpNode layerl 100
[width] Example: PdpNode layer2 [100]
[width x 1] Example: PdpNode layer3 [100 x 1]
[1 x height] Example: PdpNode layer4 [1 x 100]

2-dimensional layer:
[width x height] Example: PdpNode layer5 [100 x 100]

Connection information is described in terms of the inputs to each of the
layers using the InputsFrom-> statement. If a layer is specified without any
additional connection information the default is a full connection between the
two layers. For example:

Components->

{
PdpNode Layer-1 [100 x 20]
{
InputsFrom-> Layer-2 and Layer-3
}
PdpNode Layer-2 [5 x 4]
{
InputsFrom-> Layer-3
}
PdpNode Layer-3 [10 x 10]
{
InputsFrom-> $INPUTS
}
}

In this example Layer-1, which has 2,000 PdpNodes arranged in a 100 by 20
array, is fully connected to Layer-2 and Layer-3. Therefore, each node in
Layer-1 receives 121 inputs: one input from each of the 20 nodes in Layer-2,
plus one input from each of the 100 nodes in Layer-3, plus the node’s bias
weight.

The complete syntax for a black box component description is:

43

<node-type> <optional-node-args> <name> <size>
<optional-order> <optional-arclip> <optional-initial-bias-spec>
{

<connection-specifications>

}

The <optional-node-args> is used for information specific to the node
type. The backpropagation code generator uses this for user defined nodes
called UserNodes (see section 7.4.3).

The <optional-order> field has the form 3:

Order = <integer>

refers to the number of linear feedback delays that are on the node. This is used
to implement autoregressive nodes used in the autoregressive backpropagation
algorithm (see Appendix K) [Leighton, 1991]. The default is 0, which implies
that there are no linear feedback delays.

The <optional-arclip> is used to set the clipping on the autoregressive
feedback delays.

ArClip = <number>

This only applies to autogressive nodes. For PdpNodel, PdpNode2, PdpNode3
this defaults to ten times the dynamic range of the node. For all other node
types there is no default and clipping is only done if ArClip is specified.

The <optional-initial-bias-spec> field has the form:

Bias = <number> or Bias = <C function>

where <number> is a real number and <C function> is the name of a user-
defined C function that is linked into the simulation. This C function should
take a single integer argument (the node index) and return a floating point
number. If a real number is specified then all bias weights in that layer are set
to the specified bias. If a C function is specified, then this is called repeatedly
for each node’s bias weight at initialization time. The ability to set a node’s bias
weight is very useful for creating black boxes that act as preprocessing filters
(see page 51).

Connection Specification

The <connection-specifications> field describes the inputs into the current
layer. The statement InputsFrom-> precedes a list of layer names, the names
of other black boxes, or the $INPUTS token separated by the token and. Each
layer (or black box) in this list has a full connection to the current output of
the layer unless additional connection information is specified. The format of a
complete connection specification is:

50 < integer < 2

44

SIGMOID

OUTPUT

AR Model Neuron
INPUT

SIGMOID

OUTPUT

AR Model Neuron as a Digital Filter

Figure 7.1: Autoregressive Neurons

45

InputsFrom-> <connection> and <connection> and ...
where each <connection> is specified by
<name> <optional-time> <optional-connection-description>

where the field <name> is the name of the source layer, black box or $INPUTS to-
ken and the fields<optional-time>and <optional-connection-description>
are described on pages 46 and 47, respectively.

In a multiple black box network, a layer may connect to the output of any
other black box. This is denoted by prepending ‘!’ to the name of that black
box. For example:

PdpNode layerl [5 x 5]
{
InputsFrom-> !BlackBox5
}

This fully connects layerl to the output of a black box named BlackBoxb5.
Connections can only be made to the output of a black box, not to any of the
internal layers.

Delayed Node Values

Generally, the input to a layer is the current output of another layer or black box.
But for some applications the network is processing data where the temporal
nature of the data is itself important. For these applications it may be desirable
for a layer to receive as inputs the values that were produced at a previous
time [Waibel, 1987].

Aspirin provides this capability by allowing you to specify the time inputs
to a layer are to be sampled. This is specified by following the token $INPUTS,
layer name, or black-box name by the <optional-time> field. The format for
<optional-time> is: @ (Time = <delay>), where <delay> is an integer that
is less than or equal to zero. Not specifying a delay is equivalent to saying @

(Time = 0). To see the previous value you would use (Time = -1); etc. Note
that <delay> may not be a positive number (thus referring to future outputs of
a node).

A moving average connection may be implemented using this delay feature
by specifying a range of temporal values to connect the layer:

@ (Time = [<initial delay>,<final delay>]).

For example, if a you wanted to connect to a layer called Hidden1 with a mov-
ing average style connection you might express this by using: InputsFrom->
Hiddenl @ (Time = [0 , -10]1).

Aspirin creates storage to hold all of the values for every delay. While
there is no restriction on how far back you can have the network store values,

46

memory requirements can quickly become prohibitive if you are working with
large networks and long delays.
The following Aspirin code describes a network with delays:

DefineBlackBox Delay_Example
{
OutputLayer-> 0OUT
InputSize-> 32
Components->
{
PdpNode FIRST 3
{
InputsFrom-> $INPUTS and
/* a moving average style connection */
$INPUTS @ (Time = [0,-20])
} /% end FIRST */
PdpNode OUT 1
{
InputsFrom-> FIRST and
FIRST @ (Time
FIRST @ (Time
} /% end OUT */
} /* end components */
} /* end Delay_Example */

-1) and
-2)

Each node in the layer FIRST receives 65 inputs: 32 from the current input to
the network, 32 from the moving averages of the last 21 inputs to the network
and one from the bias weight. Similarly, the node in layer 0UT receives 10 inputs:
its bias weight and the three outputs of layer FIRST at the current time, plus
FIRST’s outputs the last time the network fed forward, plus FIRST’s outputs the
time before that.

Connection Description
Each connection description, if it exists, begins and ends with parentheses:
(<optional-connection-description>)

Within these parentheses you describe the kind of connection and declare an
optional initialization procedure. Currently, full connections and tessellation
(i-e., limited receptive fields, see section 7.4.1) are the only connection types
implemented, but in the future other types may be included (e.g., second order
(quadratic), random, explicit enumeration).

47

Tessellation

Tessellation (tiling) connections allow each node in a destination layer to be
connected only to a subset of the nodes in a source layer. These connections are
created by a regular tiling of the source layer by the nodes in the destination
layer. Tessellation creates nodes with limited receptive fields.

A tile of connections (the receptive field), for each destination node, must
connect to a rectangular patch in the source layer. These rectangular tiles are
described by their width, height, Xoverlap, Yoverlap, initial Xoffset, and
initial Yoffset. Nodes in the destination layer must connect to some (not
necessarily all) of the nodes in the source layer. The tiling cannot exceed the
dimensions of the source layer; that is, connections may not “hang over the
edges” of the source layer.

The following Aspirin description and figure 7.2 illustrate the use of a one-
dimensional tessellation of the inputs by a layer of 3 nodes. Each node has
8 inputs. The “receptive field” of each node overlaps with its neighbors by 4
(except the end nodes). The tiling begins with the first node, node 0.

DefineBlackBox Tessellation_Example
{
OutputLayer-> LAYER
InputSize-> [16 x 1]
Components->
{
PdpNode LAYER 3
{
InputsFrom-> $INPUTS (with a [8 x 1] Tessellation
using a 4 Xoverlap)
} /* end LAYER */
} /* end components */
} /* end Tessellation_Example */

It is not necessary for the tiling to start with the first node. The following
Aspirin description, shown in figure 7.3, begins the tiling with the second node
in the source layer.

DefineBlackBox Tessellation_Example_With_Offset
{

OutputLayer-> LAYER

InputSize-> [16 x 1]

Components->

{
PdpNode LAYER 3

{
InputsFrom-> $INPUTS (with a [8 x 1] Tessellation

48

Output Layer Nodes

Input Layer Nodes

Figure 7.2: Using a 1D Tessellation

using a 5 Xoverlap
with a 1 Xoffset)
} /* end LAYER */
} /* end components */
} /* end Tessellation_Example_With_0ffset */

Note the addition of the phrase with a 1 Xoffset in the connection description
for LAYER and the difference between figures 7.3 and 7.2. In this example the
first and the last input are not connected to anything.

Aspirin enables you to make two-dimensional tessellations:

DefineBlackBox Two_D_Tess
{
OutputLayer-> LAYER
InputSize-> [6 x 6]
Components->
{
PdpNode LAYER [2 x 2]

{
InputsFrom-> $INPUTS (with a [2 x 2] Tessellation

using a 0 Xoverlap
and a 0 Yoverlap
with a 1 Xoffset
and a 1 Yoffset)
} /* end LAYER */
} /* end components */
} /x* end Two_D_Tess */

49

Output Layer Nodes

Figure 7.3: 1D Tessellation with Offset

Output Layer Nodes

Input Layer Nodes

Figure 7.4: Using a 2D Tessellation with Offset

50

Figure 7.4 is similar to figure 7.3, but generalized for two dimensions.
It is possible for you to create networks that use tessellations of tessellated
layers to form pyramid-style networks:

DefineBlackBox bb3
{
OQutputLayer-> OUPUT-LAYER
InputSize-> [512 x 512]
Components->
{
PdpNode OUTPUT-LAYER [2]
{
InputsFrom-> LAYER2 and LAYER1
} /% end OUTPUT-LAYER x/
PdpNode LAYER2 [3 x 3]
{

InputsFrom-> LAYER1 (with a [15 x 15] Tessellation
using a 8 Xoverlap
and a 8 Yoverlap)

} /* end LAYER2 */
PdpNode LAYER1 [29 x 29]
{

InputsFrom-> $INPUTS (with a [32 x 32] Tessellation
using a 16 Xoverlap
and a 16 Yoverlap)

} /% end LAYER1 */
} /* end components */
} /* end bb3 */

In the above network, LAYERI tiles the input and LAYER2 tiles LAYERI.
Tessellated networks learn much faster than more fully connected networks;
however, fewer weights mean a lower resolution.

Initialization of Weights and Shared Tessellations

Two optional parameters to a tessellation declaration are:

e whether or not this is a shared tessellation (default: not shared)

e whether or not there is a user-defined initialization function (default: ini-
tialize weights to small random values)

A shared tessellation is a tiling exactly as described above but where the
weights for each node are the same weights. It must be emphasized that these

8The exact values depends on the compiler.

51

are not weights with the same value, but literally the exact same weights. Any
change to the input weights to one node affects the input weights to all of
the nodes. These shared weights may be learned or they may remain fixed,
as would be the case for an input filter. This is an even greater reduction in
storage over simple tessellations, and has the interesting advantage that the
network is automatically shift invariant at this level. Clearly it also limits what
the network can compute, but in filtering or preprocessing applications this is
often exactly what is desired.

You may optionally specify a C function by name that will be used to ini-
tialize the weights. If the connection is to a one-dimensional layer, this function
should take a single integer argument. If the connection is to a two-dimensional
layer, this function should take two integer arguments. These arguments cor-
respond to the x and y index of a weight in the particular weight matrix. In
both the one- and two-dimensional cases, the indices range from 0 to dimension-
size—1. This C function must return a single floating point number which will
be used as the (initial) value for that weight. The syntax is:

initialized with <user-supplied-C-function>

As an example, consider the following black-box description which creates
a filter for preprocessing an image (presumably before passing it to a neural
network in a subsequent black box, not shown here):

DefineBlackBox Laplace
{
Outputlayer-> Filter
InputSize-> [32 x 32]
Components->

{
LinearNode Filter [30 x 30] Bias = 0.0
{

InputsFrom-> $INPUTS (with a Shared [3 x 3] Tessellation
using a 2 Xoverlap and 2 Yoverlap
initialized with a Laplacian)

}
}

} /* end Laplace */
where Laplacian is a user-defined C function of the form:

/***

*% Laplacian: Set arc weights to 3x3 Laplacian *%
ok sk 3k ok sk o o o ok ok ok sk sk o e ok ke sk o ok ok sk sk o ok ko sk o o sk sk sk o sk sk o s ok k sk sk o sk k ok o sk ok ok /

VAL
*x Arc weights for a 3x3 Laplacian.

52

*x /

float Laplace_Kernel[3][3] = { { -1.0, -1.0, -1.0 },
{-1.0, 8.0, -1.0 1},
{-1.0, -1.0, -1.0} } ;

/**

** Function to return the weights.

*% /

float Laplacian(x, y)
int x, y;
{
return(Laplace_Kernel[x][y]);

} /* end Laplacian() */

This definition would be placed in the user_init.c file (see page 82) which is
automatically compiled and linked into an application when using bpmake (see
page 74).

Full Tessellation Syntax
The full syntax for a tessellation description is:

(with a <optional-‘Shared’-token> <size> Tessellation
<optional-overlap> <optional-offsets> <optional-initialization>)

e The <size> is:
[<width> x <height>]

(or [<width>] or simply <width>)

e The <optional-overlap> is specified (if y dimension is 1) by:
using a <integer> Xoverlap
or (if the y dimension is greater than 1) by:
using a <integer> Xoverlap and a <integer> Yoverlap
e The <optional-offsets> is specified (if y dimension is 1) by:
using a <integer> Xoffset

or (if the y dimension is greater than 1) by:

53

using a <integer> Xoffset and a <integer> Yoffset
e The <optional-initialization> is specified:

initialized with <user-supplied-C-function>.

7.4.2 Loading Black Boxes

All Aspirin compilers allow you to save the state of the network in a “dump”
file. The Aspirin language allows the state of individual black boxes to be
extracted from a dump file during network initialization. This facility enables
you to build new networks from black boxes created in other networks via the
LoadData command.

For example, consider a large network composed of two black boxes. After
the network has been trained for a number of hours, the user decides to change
one of the two black boxes. The network could be allowed to start learning again
from scratch and make the user wait another couple of hours, or alternatively
the unchanged black box could be loaded from a dump file and only the second
black box created from scratch. This approach will generally speed convergence
of the network’s weights due to the previously learned weights of the first black
box.

When loading a black box from a dump file, the black box in the Aspirin file
may have a different name than the black box stored in the dump file. However,
all other names and sizes internal to the two black boxes must be identical. For
example:

LoadData into detect_Red_Plane from detect_MIG29 in Detect_MIG29.dump

At initialization (that is when <aspirin-file-name> init network() is called)
the black box called detect MIG29 in the file Detect MIG29.dump will be located
and the weights will be loaded into a black box defined in the current aspirin
file called detect Red Plane. Note that the names of the black boxes were
different (detect Red Plane and detect MIG29); this is allowed, but otherwise
they must be identical.

The syntax is:

LoadData into <black-box-name> from <black-box-name> in <path-name>

The LoadData statements should be placed at the end of the Aspirin file.

7.4.3 Compilers

Aspirin can support different types of networks and different learning algorithms
by having a library of different compilers. V7.0 of Aspirin contains one back-
propagation compiler in its library. This compiler allows for a large number of
optional flags which enable many of the more common backpropagation network
types to be created.

54

Backpropagation

This compiler implements the error backpropagation (BP) [Rumelhart, 1986]
algorithm and the autoregressive backpropagation [Leighton, 1991] algorithm.
The BP algorithm can use only feedforward networks 7 Delays and moving
averages are supported. The method of learning involves presenting to the
network an input pattern and then propagating the values forward through
the network. The final values of the output vector are compared to a target
vector and an error signal is generated. The error signal is propagated back
through the network, changing each weight proportional to the degree that
weight contributed to the error. This is repeated for all of the input/output
patterns many times. The final goal is to train the network to reproduce the
input/output mappings to within an acceptably small error.

This compiler can be invoked from aspirin with the flag -c backprop in the
command:

aspirin network.aspirin network -c backprop <backprop-flags>

The following optional <backprop-flags> are supported with the backprop-
agation compiler:

-bpthreshold <float>
This flag causes the simulator to not update the weights if the total mean
error (at the output of the network) is less than <float>. The result is
that the simulation spends its time adapting to only those patterns which
cause significant errors.

-biasdfdt <float>
This flag causes the simulator to add a small random number <float>
to the calculation of the derivative. This results in an error signal bias,
which usually speeds convergence, see [Fahlman, 1988].

-interface
This flag causes the code generator to produce high level network con-
trolling functions with generic names. This is used with the generic appli-
cation code that the bpmake utility compiles. All of these functions begin
with the name network._.

Your Own Error Calculations (ErrorFunction->)

You may replace the mean-squared-error calculation with your own error func-
tion. This keyword only applies to BP simulations. To do this, just as with the
InputFilter->, you specify a C function to be linked with the simulation. For

"The authors are aware of, and have some involvement in, the recent recurrent neural net-
work research, but this version of the Aspirin/MIGRAINES does not address these networks.

55

example, you might declare ErrorFunction-> CrossEntropy. The C function
CrossEntropy will be called every time the output error calculation is required.
The ErrorFunction-> C function should return a float which corresponds to
the total error. For example, if your error function is mean-squared-error, then
this function would return the sum of the squares divided by 2. The C function
should take four arguments. The first is a pointer to an array of floats. This
argument is the target vector. The second is a pointer to an array of floats. This
argument is the output vector. The third is a pointer to an array of floats. This
argument is the credit vector. The credit vector must be filled with the credit
for the corresponding nodes (i.e., —g—i). The fourth argument is an integer.
This argument is the length of the vectors. The ErrorFunction-> C function
must be linked with the executable. This is most easily done by putting it in
the user_init.c file (see page 82) and using the bpmake utility (see page 74).

The Update Interval

By default the weights are updated after each presentation of data. If the
UpdatelInterval is specified for the black box, then the weights are updated
every specified interval. For example:

DefineBlackBox xor

{

InputSize-> 2

OutputLayer-> Output

UpdateInterval-> 4 /* because there are 4 patterns */
¥

This interval is usually set to the number of patterns in the training set (called
an epoch). However, the authors’ experience suggests that weight update after
each presentation (the default) is the most effective, however there are situations
when the weight changes should be averaged over a number of patterns for better
performance.

Experience suggests that the best way to train a network is to begin with
a low update interval and resume training with gradually longer and longer
update intervals.

Line Search

The line search option is used to adaptively choose a learning rate. This option
is typically used with the conjugate gradient option (see 7.4.3). One normally
uses the line search to fine tune a network after it has converged. The normal

56

methodology is to train the network using an update interval smaller than an
entire epoch to insure quick convergence and then to fine tune with an update
interval of an epoch using a line search (possibly with conjugate gradient op-
timization). To specify a line search the following option should appear in the
aspirin file outside the black box descriptions:

LineSearch <update interval> <timeout>

where <update interval> specifies the update interval for the whole network
and <timeout> specifies the maximum number of attempts to decrease the error
in the line search. You may also specify:

LineSearchVerbose <update interval> <timeout>

which is the same as the LineSearch option but will print out information every
time the weights are updated. The line search is an inezact line search, where
the current learning rate is used to change the weights. If that change results
in a decrease in the error for input data used in that update interval, then the
weight change is accepted. If the error is increased then a new weight change
is made that is one half the last weight change. This process is repeated until
there is a decrease in the error or it is repeated <timeout> times. If the line
search is repeated <timeout> times then the last learning rate used is accepted.

A heuristic has been added to change the initial learning rate. The simulation
is begun using a user specified learning rate. If the first weight change is accepted
five times in a row, then the initial learning rate is doubled. If the line search
times out five times in a row then the initial learning rate is halved. This
heuristic results in an optimization that proceeds quickly down local minima.
Therefore, it is recommended that this only be a fine tuning step after the
network has converged to some nominal level of performance.

The line search is implemented by keeping a table as large as the update
interval of pointers to the input and target data. This implies that you must
ensure the data patterns are in separate segments of memory. You cannot use
the line search if you:

1. Use the -u or -n options to add noise to bpmake generated simulations.
This is because each input vector is copied to a single buffer and noise is
then added. There is no way for the simulation to keep track of the data.

2. Use a user defined generator that does not set the inputs with pointers to
different segments of memory.
Conjugate Gradient

To specify a conjugate gradient optimization the following option should appear
in the aspirin file outside the black box descriptions:

ConjugateGradient

57

This must be used with the line search option (see section 7.4.3). This should
be done with the update interval set to an epoch.This option should only be
done to fine tune the network.

Node Types

Six kinds of nodes are currently supported in the backpropagation paradigm:

PdpNode or PdpNodel
Takes a weighted sum of its inputs, plus a bias weight and passes it through
the sigmoid transfer function:

1

o =1ve=

resulting in an output value in the range [0,1]. This is implemented as a
table look-up, ® with no interpolation. If you require more accuracy define
a UserNode.

PdpNode2
Similar to PdpNode, but the outputs are offset by -0.5 in order to be
symmetric around zero. The output values are in the range [—0.5,0.5].
This is implemented as a table look-up, with no interpolation. If you
require more accuracy define a UserNode.

PdpNode3
Similar to PdpNode, but with a range of [—1,1]. This is implemented
as a table look-up, with mo interpolation. If you require more accuracy
define a UserNode.

LinearNode
Takes a weighted sum of its inputs, plus a bias weight and returns this
sum. You can think of this as a PdpNode without a transfer function. Be
warned, these nodes have an unbounded output range!

QuadraticNode
Takes a weighted sum of its inputs, plus a bias weight and returns this
sum squared. This is often helpful when you do not want the sign of the
input to matter, or dealing with second order properties such as size. Be
warned, these nodes have an unbounded output range!

UserNode
These nodes enable the user to specify the name of a function for com-
puting the transfer function and the name of a function for computing

8 A table of 1024 values is used.

58

the derivative of the transfer function. In order to use the UserNode you
must specify the <optional-node-arguments>, which, in this case are the
name of a C function that is the transfer function and the name of the C
function that is the derivative of the transfer function. The format is:

UserNode <C-transfer-function> <C-deriv-of-transfer-function>

Both of these functions should take a single argument of type float, which
will be the weighted-sum input to the node, and return a single argument
of type float, the output of the node. Aspirin will use these names when
writing the code for the network. The application programmer must insure
that these functions are properly defined and able to be linked in. The
recommended place for these function definitions is in the user_init.c
file (see page 82), which is automatically compiled and linked into an
application by bpmake. For example, a cubic transfer function could be
defined in the user_init.c file by the code:

/**

*x Definitions for nodes with a cubic transfer function *x
sk ook sk e ok ok ok ook sk o ok ok o ok ok ko ok sk K o e ok ok ok ok Kk 3 ok sk sk ok ok ok 3 ok ok sk e ok ok ok o ok ok sk o ok ok ok ok ok ok ko /

/**
x* Transfer function (for use during propagation forward)
*x/

float Cubic_Node_Function(x)
float x;
{
return(x * x * x);
} /* end Cubic_Node_Function() */

[*x
x* Derivative of the transfer function (for backprop/learning)
*x/

float Cubic_Node_Function_Prime(x)
float x;
{
return(3.0 * x * X);
} /* end Cubic_Node_Function_Prime() */

Once a cubic node has been defined in the user_init file, it can be used
in the same way that any other node type would be used. For example:

59

UserNode Cubic_Node_Function Cubic_Node_Function_Prime
Cubic_Layer [3 x 3]
{
InputsFrom-> $INPUTS
}

The tessellated connections, as described above, are supported for all six
node types.

Compilation

The compiler generates two files: a header file with a .h suffix and a C file with
a .c suffix. The C file contains the functions declared in the .h file and is linked
to application code. The application code should #include the generated .h
file. For example, your application code might contain the line:

#include mynetwork.h /* generated from mynetwork.aspirin */

Note that the generated files need header information from the $NNTOOLS/include
directory. This is done with the -I flag for the C compiler. Also, common rou-
tines are located in libraries in the directory $NNTOOLS/aspirin/1ib/$MACHTYPE:

1ibAm0Os.a
1ibBpSim.a

which must be linked with the final application. For example, the following
will generate C simulation code in “speech.c” from the Aspirin file called
network.aspirin and then compile it with full (e.g., -02) optimization® and
link it with the math library (e.g., -1m):

aspirin network.aspirin speech -c backprop
gcc -D_sun_sparc__-D_sunos__ -02 -I$NNTOOLS/include -c speech.c

gcc -D_sun_sparc__-D_sunos__ -02 -I$NNTOOLS/include Speech.c -o Speech \
speech.o -L$NNTOOLS/aspirin/lib/sun_sparc -1BpSim.a -1Am0s.a -1lm

The backpropagation compilers generate code that calls functions in the math
library, therefore the final compile must link to the math library with -1m. If
you are not interested in writing application code, the bpmake utility will do
this automatically.

The .h file contains declarations of the exported functions available to the
application. Each black box has a set of functions that controls it. The name
of the particular black box (denoted here as <bb-name>) is prepended as part
of the name of each controlling function. The following are descriptions of
the functions generated by the backpropagation compiler to control each black
box. As an example, if the name of your black box (as declared immediately

9The -02 flag is not required, but is highly recommended.

60

after the DefineBlackBox statement) was xor, a function generated would be
xor_set_input ().

<bb-name>_set_input
Takes one argument, a pointer to a vector of floating point numbers with
length InputSize->.

<bb-name>_get_input
Takes no arguments. Returns a pointer to a vector of floating point num-
bers which is the current input. Note that before the input has been set
this will return (float *)NULL.

<bb-name>_set_target_output
Takes one argument, a pointer to a vector of floating point numbers the
size of
OutputLayer->. This is used to generate the error signal at the output.

<bb-name>_get_target_output
Takes no arguments. Returns a pointer to a vector of floating point num-
bers that is the current target output. Note that before the target output
has been set this will return (float *)NULL.

<bb-name> propagate _forward
Takes no arguments. Propagates the activations through the network.
Must have used <bb-name> set_input before calling.

<bb-name>_calc_error
Takes no arguments. This returns a floating point number correspond-
ing total error at the output layer.

<bb-name>_calc_grad
Takes no arguments. Returns void. Calculates the black box’s contri-
bution to the gradient.

<bb-name>_update weights
Takes a single float as an argument which is typically the inertjia. Re-
turns void. Updates the weights of the black box.

<bb-name>_get_backprop_counter
Takes no arguments. Returns an integer which is the number of times
<bb-name> propagate backward was called.

<bb-name>_set_backprop_counter
Takes an integer argument which resets the number of times
<bb-name> propagate backward was called.

61

In addition, the compiler generates a set of functions that globally control all
of the black boxes. The name of the Aspirin file (denoted as <aspirin-file-name>)
is prepended as part of the name of the controlling function !°. The following
are the functions generated by the backpropagation compiler for global control
of networks defined in an Aspirin file:

<aspirin-file-name> init_network
This takes no arguments. This function MUST be called before any other
functions (except functions that set parameters). Returns 0 if there were
no errors, an error code otherwise. If a non-0 number is returned, the func-
tion <aspirin-file-name> error_string can be called which returns a
string describing the error.

<aspirin-file-name> set_learning rate
This function takes one floating point argument that is the learning rate
of the network described by the Aspirin file. This defaults to 0.2. This
function returns void.

<aspirin-file-name> set_inertia
This function takes one floating point argument that is the inertia (some-
times called the momentum) term. This defaults to 0.95. This function
returns void.

<aspirin-file-name> set_random_init_seed

This function takes one long integer argument that is the seed for the
random number generator used to initialize the weights. This value de-
faults to 123. Since each run defaults to starting with the same random
seed, it will take the same number of iterations to converge, etc. To use
different random number generator seeds (generated from the clock) you
could use <aspirin-file-name> set _random init _seed(time(0)). This
function returns void.

<aspirin-file-name> set_random_init _range
This function takes one floating point argument that is the range about
zero for the numbers that initialize the weights and thresholds. Defaults to
0.1 with weights uniformly distributed in [-0.1, 0.1). This function returns
void.

<aspirin-file-name> dump network
This takes a string as an argument that will be the filename of the dump
file. The state of the network’s weights are written to a file. Returns 0
if there were no errors, an error code otherwise. If a non-0 number is
returned, the function
<aspirin-file-name> error_string can be called which returns a string
describing the error.

10You should only use Aspirin filenames that can be used in C function names.

62

<aspirin-file-name> load network
This function takes a filename of a file previously dumped network with
the name <aspirin-file-name> dump network. Returns 0 if there were
no errors, an error code otherwise. If a non-0 number is returned, the
function
<aspirin-file-name> error_string can be called which returns a string
describing the error.

<aspirin-file-name> asciidump_network
This function takes no arguments. It prints the information included in
the dump file to the screen. This function returns void.

<aspirin-file-name> query network

This function takes two integers as its arguments. The first integer speci-
fies the black box index, and the second integer specifies the layer index.
(A programmer should not rely on any relationship between the order of
black boxes or layers in an Aspirin file and the indices assigned to them.
Aspirin may rearrange black boxes and layers for greater efficiency.) The
function returns an LB_PTR (layer buffer pointer) with all of the information
about that layer. This allows access to the simulation’s data structures
and functions !!.

<aspirin-file-name> error_string
Takes no arguments. Returns a string describing the latest error. Gener-
ally called immediately after one of the above signals an error.

11See $NNTOOLS/include/aspirin_backprop.h for the structure definition and see the source
in $NNTOOLS/src/aspirin/1ibBp/io for examples of getting network information.

63

Chapter 8

MIGRAINES INTERFACE

The MIGRAINES interface was developed in order to allow the neural network
researcher to get inside the neural network. Rather than treating the neural net-
work as a mystical black box, the MIGRAINES interface allows the researcher
to probe the neural network using available analysis tools. Before describing the
MIGRAINES interface commands, a few examples are given to illustrate how
to visualize the innards of a neural network.

8.1 Visualization Examples

Figure 8.1 uses the apE 2.1 visualization package to illustrate the evolution
of the first layer weights as a function of time for a network learning to rec-
ognize characters independent of rotation (the network is described in the file
$NNTOOLS/examples/characters/simple/simple.aspirin).

Similary, figure 8.1 uses Mathematica to display the weights into a node
in a network that has learned to recognize butterfly images (see figure 8.1)
independent of rotation.

Figure 8.4 uses plots from the BAYES example generated by gnuplot (see
page 30). The upper plot is a contour plot of the class distributions H1,H2 H3,H4
and the edges of the decision surface learned by the neural network. Notice
that despite the large overlap of the classes, the network learned a very good
separating surface which runs along the valleys between the classes. The lower
plot is another way of looking at the same data, where the class distributions
and the neural network decision surface have been superimposed.

Figure 8.5 contains two plots generated from data extracted from Aspirin
neural networks. The plot on the top was generated by projecting the values in
a hidden layer through the first two principal components (see section 10). The
bottom plot graphs the output of a neural network versus the targets in three
dimensions.

64

Figure 8.1: Weights from the input to the a node in the hidden layer as a
function of time during learning.

65

Figure 8.2: Butterfly Weights (from Mathematica)

66

Figure 8.3: Butterfly Inputs (from Mathematica)

8.2 Moving Through the Neural Network (Con-
texts)

An Aspirin file contains one or more neural network modules called black boxes.
Each black box is composed of a set of component layers, connection vectors
between layers, and optionally there may be external inputs and target vectors.
The MIGRAINES interface allows you to change the contert by using the
commands push, pop and poproot.

The default context is always the root context. You can push into any
subcontext by typing push <subcontext name>. By typing the ? command
you can display the available subcontexts. From the root context, the sub-
contexts consist of all of the declared black boxes. If you have used the -d
<datafile> option on the command line, then there will also be a subcontext
called TestingContext (see section 8.2.1). The ? command also displays all
relevant commands to the current context. The command pop will move you
back up to the parent context and the command poproot will move you to the
root context.

67

H1+H2+H3+H4 -

H1+H2+H3+H4 Decision Surface Edges -

90
80
70
60
50

90

70 80

20 30 40 50 60

10

0

10ns

Edges of the neural network decision surface and class distribut

Figure 8.4

68

15

05

Projection of Hidden Unit Vectors thru [0,1] Principal Components

T

T

5 T T
° 3 @ " .
+ pcedl.rocks’ o
o o © © "pca0l.mines’ +
o o o N .
@
L o © P i
° oo + o+ *
3 N4 + + o+
N i + +
o o ©
8o ,°° °o * Toay e
L @ ° ¥ 4
* +
o o o o + " L
A +
° ° ° ot +
o & 4 o+t
F ° + F 4
S N +
3 ° @ n +
o o %% o +
o I3 b
& ° LY +
o 00 + #t "
B4 © *i*?
© o X o 'y +
o 3 R
o ° .
L + i
L L L L L
-2 -15 -1 -05 0 05 1

Traning and Output Data for Spiral Problem

Spirall (Training)
Spiral2 (Training)
Spiral1 (Output)
Spiral2 (Output)

Figure 8.5: Data can be Extracted and Analyzed

69

15

8.2.1 Testing Context

This context allows you to do simple testing of networks. The simulation will
cycle until an output vector exceeds the error bound. It then prints out which
input caused the error and updates any open Unix pipes to node, input or target
data.

This will only appear as a subcontext if you have read in data using the -4
option with a .df or have defined a data generator . The commands within
this context are:

Info
Print out the current error bound and iteration count.

SetIterations <iterations>
Set the iteration count <iterations>.

SetBound <bound>
Set the error bound to <bound>.

StartTesting
Cycle through <iterations> of data until an input causes the maximum
absolute value of the difference between a node value and its target is
greater than <bound>. Update all open Unix pipes to node, input or
target data.

8.3 Global Commands

cycle <iterations>
Present <iterations> data patterns to the network. All pipes open to
node, target or input data are updated. This will only appear as an option
if you have read in data using the -d option with a .df or have defined a
data generator 2.

pverbose
Print messages when dumping data to pipes (default).

psilent
Do not print messages when dumping data to pipes.

pbinary
Use native binary as the data format when piping data.

pascii
Use ASCII as the data format when piping data (default).

1See section 9.4.2.
2See section 9.4.2.

70

pnoheader
Use no header when piping data.

pheader
Use a header when piping data (default).

pinfo
Print information about currently open pipes.

pclose <pipename>
Close pipe called <pipename>.

popenWeights <x> <y> <pipename> <command>
Only applicable in a connection context. Pipe data in the connection
vector that connects to node[<x>][<y>] into <command>.

popenlnputs <pipename> <command>
Only applicable in a $INPUTS context. The cycle command must have
been called at least once to get data into the inputs. Pipe data in $IN-
PUTS to <command>.

popenTargets <pipename> <command>
Only applicable in an output layer context. The cycle command must
have been called at least once to get data into the targets. Pipe data in
target vector to <command>.

popenBiases <pipename> <command>
Only applicable in a layer context. Pipe data in bias vector to <command>.

popenArl <pipename> <command>
Only applicable in an autoregressive layer context. Pipe data in arl vector
t0 <command>.

popenAr2 <pipename> <command>
Only applicable in an autoregressive layer (of order 2) context. Pipe data
in ar2 vector to <command>.

popenNodes <pipename> <command>
Only applicable in a layer context. Pipe data in node vector to <command>.

load <weightfile>
Loads the <weightfile>. All open pipes to weight data are updated.

push <subcontext name>
Change contexts to <context name>.

pop
Go up a context.

71

poproot
Go to root context.

source <filename>
Evaluate <filename> as if it was typed interactively.

! <unix command>
Execute the <unix command> in a subshell. For example, ! 1s will print
the contents of the current directory.

echo <string>
The echo commands will print all characters following the command to
the standard output.

quit
Exit MIGRAINES.

Display all commands relevant to this context.

8.4 Pipes

The commands popenWeights, popenInputs, popenTargets, popenBiases,
popenArl, popenAr2 and popenNodes allow you to export neural network data
to a Unix pipe. These commands only apply in the appropriate context. For
example, suppose you had pushed into a layer context, then typing popenNodes
Nodes cat > nodes.ascii would result in the current values of the nodes be-
ing written to the program cat, which in turn would write the data to the file
nodes.ascii. Any program that reads data from stdin can be used in a popen
command. For example, a statistics program could be invoked that collected
the output values of the network and reported the performance. Most of the
examples contain .cmd files that open pipes to extract data from the neural
network. Refer to these files for examples of using pipes.

All open pipes should be closed before exiting the MIGRAINES interface.
The pclose <pipename> command is used to close a pipe.

8.4.1 Data Stream Format

Currently, all data that is written to pipes is floating point data. If the pbinary
command is executed, then any pipes opened subsequently will use the native
single precision (float) floating point format. If the pascii command is exe-
cuted, then any pipes opened subsequently will use ASCII.

An ASCII header is used to describe the data. Its form is:

<format> <type> <xdim> <ydim>

72

where <format> can be either ascii or binary, and <type> must be float and,
<xdim> <ydim> are the x and y dimensions of the data vector, respectively. If
the pnoheader command is executed, then any pipes opened subsequently will
not use a header. If the pheader command is executed, then any pipes opened
subsequently will use a header.

Unix filters can be written to translate data in this format to formats us-
able by a plotting/analysis package. Example filters are included with this
distribution 3:

am2gnuplot Convert data to Gnuplot format.

am2math Convert data to Mathematica format.

am2matlab Convert data to Matlab format.

am?2ascii Convert data to ASCII matrices (row major).

am2raw Convert data to file of raw single precision floats (strips header).

All of the above filters take an optional -s flag that will cause the filter to run
in silent mode (no messages). To use these filters you must be using headers on
the data streams.

3Source located in $NNTOOLS/src/aspirin/1ibBp/ui

73

Chapter 9

THE bpmake UTILITY

Bpmake is a compilation tool for automatically creating BP neural network
simulations with the aspirin neural network code generator. These simulations
are automatically linked with the Aspirin simulation library, the MIGRAINES
interface library and the data file reading library. Bpmake is implemented as a
shell script that uses the UNIX make utility.

Your environment should have the following variables set before using bpmake:

NNTOOLS
set to the path where the Aspirin/Migraines software is installed.

MACHTYPE!
set to the kind of machine you are using.

MANPATH
should have $NNTOOLS/man appended to it (e.g., if NNTOOLS=/ul/nntools
then setenv MANPATH $MANPATH:/ul/nntools/man).

Your path should include $NNTOOLS/bin/$MACHTYPE, where $MACHTYPE ex-
pands to the type of machine you are using. If you do not know the proper
setting for MACHTYPE, then look in $NNTOOLS to see what the bin directories are
called on your system (e.g., 1s $NNTOOLS/bin/*).

A single Aspirin file should exist in the current directory with a .aspirin suf-
fix. By executing bpmake the Aspirin software will be invoked using the default
simulation code generator (currently backpropagation with full optimization).
The resulting C code simulation is then compiled by bpmake.

If there is a file user_init.c in the directory then this file is also compiled.
The user_init.c file is the place where the user can alter simulation parameters
and preprocess data. This file MUST contain a function called user_init () that

1Look in $NNTOOLS/bin for a list of installed machines at your site.

74

returns void and takes no arguments. The final executable simulation will call
this function before it has initialized the simulation. It is in this function that
you can change parameters (e.g., learning rate) and define your own generators
for suppling data to the simulation. See section 9.4.1.

Finally, a generic simulation program located in $NNTOOLS/migraines/bp
called Backprop. c will be compiled and linked to the previously compiled files.
The executable will be named by using the prefix of the aspirin file (e.g.,
speech.aspirin => speech).

See the directory $NNTOOLS/examples for examples of using bpmake with an
aspirin file.

9.0.2 Environment Variables and Parameters for bpmake

The Makefile used for the compilation with bpmake allows the user to over-
ride the internal variables by environment variables or variables supplied on the
command line if the environment variable USE_ENV has been set to —e. For exam-
ple, the compiler flags can be overridden by setting the OPTIMIZE environment
variable.

A very important environment variable is USER LIBS. By setting this to
a list of objects and/or libraries, the user can link the user_init.c file to
other functions. For example, if you are reading images using Pixrects in the
user_init. c file, then you would set the USER_LIBS to -lpixrect so the Pixrect
routines would be linked.

9.1 Modifying the Base Makefile

The Makefile for bpmake is located in $NNTOOLS/migraines/bp and is called
Makefile.bp. This file can be modified for your particular installation. For
example, you may need to link to special libraries or might want to alter the
compiling instructions to use a multi-pass optimizing compiler.

9.2 The Backprop.c File

This file contains the main () executable program for simulations built by bpmake.
It is a very generic application that supports a number of flags (see section 9.5.)
This program can be used as an example for writing your own applications that
do not use the bpmake facility. It is located in the directory $NNTOOLS/migraines/bp.

9.3 Input Data

The simulations generated by bpmake have the ability to read a number of data
file formats. Using data files requires two kinds of files. First, the data needs

75

to be in one of the supported formats (listed below). Second, a data format
file (.df) is needed. A .df file controls the reading of the data file. Keywords
allow pre-processing options.

The data is supplied to the simulation by presenting one pattern from a data
file and then moving to the next data file. Note that backpropagation learning
is extremely sensitive to the ordering of these data files.

The small amount of overhead associated with using this method of data
input can be eliminated by defining your own data generators, see section 9.4.2.

9.3.1 Data Format Files

A data format file (.df) is an ASCII file of C style comments, #defines, and
#includes, ReadFile, UseFile and RandomSwitch commands. The ReadFile
command will read the specified file. Many data files can be read by using
multiple ReadFile commands. The ReadFile command takes the following
form:

ReadFile (<pathname> <type> <options>)

Where <pathname> is the path name of the data file and <type> is its type
(see section 9.3.1). These are required arguments to the ReadFile command
<options> field is composed of a list of keywords some of which may be required
by the file reader, depending on the data file type. The format for <options>
is a list of keyword-argument pairs:

(keyword-> [<arguments>])
The following lists available keywords:

(Bias-> <real: bias>)
Takes a real number as an argument. This will cause the data in each
input pattern to have <real: bias> added to each element. If Range->
is being used then the data will be rescaled and shifted to have <real:
bias> as the center of the range.

(Bias-> 2.0)

(Cache-> <integer: mnpatterns>)
Use a data cache of size <integer: mnpatterns> input/target patterns.
The data is read from disk as needed into the data cache. This is very
useful if you have large amounts of data. You declare a file cached and
specify how many data patterns are to be in the cache. Instead of reading
all of the patterns in the file, the software just fills the cache. When you
take a cache “hit” (the next pattern is out of cache), then the cache is
filled from the open file. Basically this is virtual memory for your data
files. Users that have huge amount of data (much more than physical

76

memory) will find this useful because it allow networks to run, without
stopping, on large data sets and prevents the computer’s virtual memory
from thrashing. On coprocessor boards (e.g., Mercury i860) this is useful
if you have more data than memory. The disadvantages are that cache
hits slow you down (but not much if the caches are large) and you are
limited by the maximum number of open files on your system.

(ClearDelays->)
Takes no arguments. Clear the delay buffers after a pattern has been
completely scrolled through. This is usually necessary when using net-
works that encode state information (e.g., TDNN’s[Waibel, 1987]).

(HighClip-> <real: clip>)
If an input data point is > <real: clip> then set it to <real: clip>.

(LowClip—> <real: clip>)
If an input data point is < <real: clip> then set it to <real: clip>.

(Math-> <string: function>)
Takes a single argument that specifies a function to be applied to each
data point in each input pattern after the data is read. Possible functions
are:

e abs[x]

o square[x]
o logl0[x]

o loglO[x+1]

Only a single Math-> statement may be used per ReadFile. Usage:
(Math-> logl0[x+1]).

(Normalize->)
Takes no argument. Causes the each data pattern to have its mean sub-
tracted and its length normalized to 1.0.

(Range-> <real: range> [<real: threshold>])
Takes a real number as an argument. This will cause all data patterns to
be rescaled on a per pattern basis with a range of <real: range> with
0.0 at the center. Rescaling to a small range about zero is recommended
for data patterns with very large dynamic ranges.

(Range-> 2) /* rescale data between -1 and 1 */

If the optional argument <real: threshold> is specified, then if the
maximum value in a pattern is less than <real: threshold>then <real:
threshold> is used as the maximum for the rescaling. This threshold can
prevent the rescaling of noise.

7

(Scale-> <real: scalar>)
Takes a real number as an argument. This will cause the data in each
pattern to have each element scaled by <real: scalar>.

(SubMean->)
Takes no argument. Causes each data pattern data to have its mean
subtracted.

(SwapBytes->)
Takes no argument. Causes the data to have the byte order reversed.
Used when reading data from a machine with opposite byte order.

(Switch-> [<integer: mnpatterns>|string: All])
Takes an optional integer as an argument. Recall that, the normal mode
of presentation is to input one pattern to the network, then to go to the
next data file’s pattern. The Switch-> allows you to control when the
input to the network switches from one file to the next. The argument
corresponds to the number of presentations of data that are to be done
before switching to the next file. <integer: npatterns> defaults to 1.
To delay switching for the whole file use the symbol A11 as the argument.

(Switch-> 10) /* switch to next file after 10 presentations
*/

or

(Switch-> All) /* switch to next file after the whole file
x/

(Target-> <integer-list: 1list of numbers>|string: Self|<string:
filename>)
Takes a list of ASCII numbers, Self, or <string: filename> as an
argument. These numbers form the target output for all black boxes for
this file.

(Target-> 1.0 1.0 0.0)

If Self is used, then the target is the input data pattern itself. This is
used for networks learning the identity mapping.

(Target-> Self)
The ASCII vector and Self are required (and only applicable) for Type 1

and ProMatlab format files. The <string: filename> argument is only
used for Type5 files.

78

The order of application of pre-processing is:
1. SwapBytes->
2. Math->

ClipLow->

ClipHigh->

SubMean->

Normalize->

Range->

Scale—>

© »® N > vtoe W

Bias—>

Data Files
The following lists the currently supported formats for data files:

ASCII Data Format (Ascii)
The format of an Ascii file is:

pattern
target pattern

pattern
target pattern

A pattern or target pattern is composed of ASCII numbers with white
spaces, carriage returns, tabs or C-style comments between them. Data is
stored in row major order? for two-dimensional arrays.

Type 1 Data Format (Typel)
The format of a Typel file is:

pattern
pattern

A pattern is composed of binary single precision floating point numbers.
Data is stored in row major order for two-dimensional arrays. The target
pattern must be declared in the .df file using the Target-> keyword.

2Two dimensional data is stored: row,row,row...

79

Type 2 Data Format (Type2)
The format of a Type2 file is:

target pattern
pattern
pattern

A pattern or target pattern is composed of binary single precision floating
point numbers. Data is stored in row major order for two-dimensional
arrays. The target pattern is the first pattern in the file and applies to all
patterns in the file.

Type 3 Data Format (Type3)
The format of a Type3 file is:

pattern
target pattern

pattern
target pattern

A pattern or target pattern is composed of binary single precision floating
point numbers. Data is stored row major for two dimensional arrays.

Type 4 Data Format (Typed4)
The format of a Type4 file is:

pattern
pattern

target pattern
target pattern

A pattern or target pattern is composed of binary single precision floating
point numbers. Data is stored row major for two dimensional arrays.

Type 5 Data Format (Type5)
The format of a Typeb5 file is:

pattern
pattern

80

A pattern is composed of binary single precision floating point numbers.
Data is stored row major for two dimensional arrays. The target patterns
are read from a separate file of the form:

target pattern
target pattern

The target pattern file can be declared in the .df file using the Target->
keyword (e.g., (Target-> data.targets)). If the Target-> keyword is
not used then the software assumes that the targets are contained in a file
of the same name as the data but with the word .targets appended.

Matlab Format (Matlab)
Files that are the output of a Matlab program . The target pattern
must be declared in the .df file using the Target-> keyword (in the same
way as Typel files). Only one input pattern per file.

The order of the ReadFile-> statements implies the order of presentation
to the neural network. Note that the number of examples of each class in
a classification problem (priors) can influence performance. Sometimes it is
desirable to reference a file more than once in order to normalize the priors or
affect the ordering. Multiple ReadFile statements could be used but this would
cause the data to read into memory multiple times. Instead, the command
UseFile is used to reference a file already read into the system. The format for
the UseFile command is:

UseFile(<pathname>)

By using the RandomSwitch command in a .df file you can cause the selection
of the next data file to be pseudo-random. The format for the RandomSwitch
command is:

RandomSwitch

9.4 Including Application-Specific Code

Users can include their own C code to preprocess the input or to set parameters.
This is done by including their own C code in a file called user_init.c. The
bpmake utility will automatically compile and link this code into the executable
simulation.

81

9.4.1 The user_init File

In this file there must be a function called user_init () which takes no argu-
ments and returns void. This function is called by the simulation generated by
bpmake as the first step of initializing the simulation.

In this file you define functions that were used in the .aspirin file for
initializing connections or biases (thresholds). This is where you can define the
transfer functions for UserNodes.

You can read and process your own data, using the user_init () function.
By defining your own generators, you can control the presentation of the data
to the network (see section 9.4.2).

The following is an example that sets the learning rate for a simulation called
speech:

void user_init()
{

speech_set_learning_rate(0.01);
}/* end user_init */

9.4.2 User-Defined Data Generators

You can define your own generators using the define _generator function. A
generator is a C function that takes one argument and returns void. It should
set all of the inputs and target outputs for all black boxes in the simulation. By
defining your own generators, you can pre-process data as it is presented to the
network (e.g., adding noise with a particular distribution).

The define_generator function takes three arguments. The first is the
name of the generator function. The second is a pointer to a data structure that
you would like passed to the generator when the simulation calls the generator
(this can be a NULL pointer). The third argument is a string that you want to
have associated with the generator.

See Appendix 6 for a description of the example networks that come with
the Aspirin/MIGRAINES software. Many of these examples declare generators
in user_init.c files.

9.5 EXECUTING bpmake-CREATED SIMULA-
TIONS

The simulation created by bpmake can be run in a number of different modes
and controlled by a number of command-line arguments. Assuming a network
is defined in an Aspirin file named <network-name>.aspirin, the executable
simulation code will be placed in the file <network-name> by bpmake. The
simulation can be run using a command of the form

82

<network-name> [options] [dump file]

where the dump file is the path name of a file that contains the network state
saved in a previous run and options may be selected from the following list: 3

[-d] [-datafile <datafile>] read datafile (a .df file)

[-a] [-alpha <learning rate>] set learning rate

[-i] [-inertia <inertia>] set inertia

[-F]1[-Filename <dump file name>] ("Network" default)

[-1] [-learn] learn without graphics

[-s] [-save <iterations>] save to "Network.save" every <iterations> (5000 default)
[-#] Append the current iteration number to the save file name

[-t] [-test <iterations> <passes> <bound>] test for convergence

every <iterations> (5000 default) by going <passes>(default 100)

through generators without an error exceeding +/- <bound>(default 0.1)

[-N] [-Notest] never test for convergence

[-I1[-Iterations <max_iterations>] exit after max_iterations (default is unlimited)
[-n <mean> <variance>] add normally distributed noise to inputs(very slow)

[-u <mean> <variance>] add uniformly distributed noise to inputs(slow)

[-f] [-forward <iterations>] go forward <iterations> (used for stats and benchmarking)
[-E] [-Epoch] go forward one epoch (1 pass thru all data)

(does not apply to user-defined generators!)

[-p] [-print] print outputs and targets (used with -f)

[-P] [-Pdpfa <threshold>] Calculate Pd and Pfa for -f <iterations>

using <threshold> for detection threshold (L2 norm)

[-A] [-AsciiDump] print out all the weights and thresholds

[-AsciiDumpNoFmt] print out all the weights and thresholds (no formatting, use with -L)
[-L] [-LoadAscii] read from stdin the results of -AsciiDumpNoFmt

[-h] [-help] this message

If neither the -1 or —f option is used, then the simulation will use the MI-
GRAINES interface. The only flags that have an effect when using MIGRAINES
are: -d, -n, and —u. The other flags control the simulation when not using MI-
GRAINES.

9.5.1 -[d]datafile <.df filename>

This allows you to specify a data format file (see section 9.3). If there is no .df
file, then you must supply a generator via the user_init.c file.

9.5.2 -alalpha] <learning rate>

Override the learning rate with <learning rate>.

9.5.3 -i[inertial<inertia>

Override the inertia with <inertia>.

30Obtained by using the -help option

83

9.5.4 -l[learn]

Learn.

9.5.5 -F[Filename| <filename>

Overrides the default prefix (“Network”) to the dump file names.

9.5.6 -s[save] <iterations>

The number of iterations between saving the state to Network.save.

9.5.7 -#

If this flag is used then the iteration number is appended to the save file name.
This is useful if you want to evaluate the performance of the network as it has
learned. Be careful, if your simulation runs for a long time you might fill up
your disk!

9.5.8 -t[test] <iterations> <passes> <bound>

This flag controls the testing for convergence. The way this works is that every
<iterations> the simulation stops and propagates forward <passes> or until
the test fails using <bound>. The test is by default the maximum absolute
difference. For example, using -t 1000 500 0.1 will cause the simulation to
stop every 1000 iterations and test for convergence. The test runs through
500 input/output pairs. If the maximum absolute error for all output nodes
is less than 0.1 for all patterns then the network is said to have converged.
Upon successful completion the state of the network is written to a file named
Network.Finished and the simulation exits.

9.5.9 -N[Notest]

Never test for convergence.

9.5.10 -I[Iterations] <iterations>

Exit learning after <iterations>(default is unlimited). The state of the net-
work is written to a file named Network.save.

9.5.11 -n <mean> <variance>

Add normally distributed noise to inputs (very slow).

84

9.5.12 -u <mean> <variance>

Add uniformly distributed noise to inputs (slow).

9.5.13 -f[fforward] <iterations>

Go forward <iterations> (used for statistics gathering and benchmarking).

9.5.14 -E[Epoch]

Go forward through all of the data patterns in all the data files (i.e.,one epoch).
This only applies to data files, not to user-defined generators.

9.5.15 -p|[print]
Print outputs and targets (used with -f).

9.5.16 -P[Pdpfa] <threshold>

Calculate an estimate of the probability of detection (Pd) and probability of false
alarm (Pfa) for -f <iterations> using <threshold> for detection threshold (I2
norm). The program counts the number of times that the Euclidean distance
between the output vector and the target vector is less than <threshold>. The
proper way to use this option is to run all of the classes of data separately. The
output is a listing of the max, min, mean and variance for all outputs as well as
the Pd and Pfa ratios.

9.5.17 -A[AsciiDump]

Print out the state of the network to the screen. It is best to redirect this output
to a file!

9.5.18 -AsciiDumpNoFmt

Print out the state of the network to the screen (unreadable). It is best to
redirect this output to a file! This option is useful if you need to move a
network between machines with incompatible word formats. The results of -
AsciiDumpNoFmt can be read into the simulation by -LoadAscii.

9.5.19 -L[LoadAscii]

Read from stdin the results of -AsciiDumpNoFmt and produce a dump file on
the current platform. For example, dump the weights to an ASCII file on a
Cray and read them in on a Sun:

85

cray% speech Network.Finished -AsciiDumpNoFmt > weights.ascii
< ftp weights.ascii to a Sun and convert these weights to a local dump file>
sun% speech -LoadAscii < weights.ascii

Moving weights between machines with different word sizes or different proces-
sors is not recommended. Due to the nonlinearities within the network and the
subtle differences in math libraries, rounding rules and floating point proces-
sors, a network with the same weights on two different kind of machines is not
necessarily going to behave the same.

9.5.20 -h[help]

In case you forget.

86

Chapter 10

THE analyze UTILITY

An integrated utility is provided called analyze which is a program inspired
by the Dennis and Phillips tools [Denis, 1991]. Analyze is used to understand
the training data as well as how the hidden layers separate the data, in or-
der to optimize the network architecture. The analyze program does principal
components analysis (PCA), canonical discriminant analysis (Fisher space anal-
ysis)(CDA), projections, and histograms. It uses the same data file formats as
are supported by bpmake simulations and the output data can be translated to a
variety of formats. Associated with this utility are shell scripts that implement
data reduction and feature extraction.

The techniques of PCA and CDA are well established methods of data anal-
ysis. Rather than delve into a detailed discussion of the techniques, the reader
is referred to[Duda, 1973, Denis, 1991]. The numerical techniques used in this
implementation were modified versions from Numerical Recipes[Press, 1986].

Once you have analyzed the data by PCA or CDA you should consider the
following;:

e If the projection distributions and histograms indicate that there is sep-
aration, then the projection vectors (principal components) might make
good feature detectors, or good initial weight values for neural network
nodes connecting to the input of the network.

e If you did PCA and there were many small eigen values (principal values)
then your data has much redundancy and you should use the projected
data as input to a classifier because the dimensionality has been reduced.

To translate a projection file produced from analyze into a Typel file recognized
by bpmake generated neural network simulations use am2raw which strips the
header off the file leaving a flat file of single precision floats. For example:
am2raw < mydata.prj > mydata.typel

87

10.1 Sonar Example

The Learn script in the sonar example ! illustrates the use of the analyze
utility to analyze the hidden unit values of the neural network. After learning,
the hidden unit values are collected into files using the MIGRAINES interface
and processed by PCA and CDA. The CDA analysis produces projection vectors
(eigen vectors) that best separate the classes.

In fact, the first canonical variate (first eigen vector) can be used as a linear
discriminate to separate the classes. This indicates that only one more layer is
necessary to separate the classes. If the network had any more hidden layers
after the first hidden layer, we would know by this analysis that they are unnec-
essary. Further, examination of the projection vector indicates that not all of
the hidden units are necessary to separate the classes. The near-zero elements of
the projection vector do not contribute very much to the classification decision.
The nodes that correspond to the near-zero elements can be eliminated without
loss of performance for a classifier based on the first hidden layer and the CDA
derived linear discriminate. This also indicates that the neural network could
be retrained with a smaller number of hidden units.

10.2 Characters Example and DataReduce

The Learn script in the characters example ? illustrates the use of the analyze
utility to analyze the training data. The DataReduce script is used to run PCA
and CDA on the training data to reduce the dimensionality of the data. This is
frequently a useful step of preprocessing because, if the dimensionality can be
reduced, then the training time will be reduced and robustness increased.

The DataReduce script ® Uses the analyze utility as well as gnuplot to
analyze data stored in .df files. DataReduce is an interactive program that
requires input from the user, however in the characters example these answers
are provide by program so that the Learn script can be run without user input.
If the reader is interested in repeating the analysis interactively, the responses
are contained in the files YourPcaResponses and YourCdaResponses.

When the Learn script is run two networks are trained and some weight
vectors are displayed. Then PCA is performed by DataReduce followed by CDA.
Plots are displayed of the projection of the data through the first two and three
principal components of the PCA and CDA analysis. The eigen values in the
PCA and CDA analyses indicate that the data could be reduced considerably
without loss of much information. Further, the CDA analysis indicates that
a neural network is not required. Projection through the first two canonical
variates combined with some threshold logic can separate the four classes. This

T,ocated in $NNTOOLS/examples/sonar.
2Located in $NNTOOLS/examples/characters.
3Located in $NNTOOLS/bin/$MACHTYPE.

88

is illustrated best by the histogram plots. Two thresholds can be drawn to
separate the B and the D classes using the first canonical variate. If the value
of the projection through the first canonical variate falls between these two
thresholds then it is either the A or the C class, so single threshold on the
projection through the second canonical variate can separate these classes. One
should note the similarity of the plots of the canonical variates and the weight
vectors of the neural network.

10.3 Usage

The analyze program reads .df files and allows different analysis methods to be
applied to the data.
Required arguments:

-d <df file>

—-InputsXdim <xdim>
-InputsYdim <ydim>
-TargetsXdim <xdim>
-TargetsYdim <ydim>

These arguments describe where to get the data and the dimensionality of the
data.
Analysis methods:

-pca
Options:
-P <prefix>
Use <prefix> for prefix of generated files (default: analyze)

—range <n>
Save 1-n components

-group
Divide data into sets, run pca separately
-edit
Ask user to confirm the use of every group

89

-unique

All data with unique targets are grouped (default)
—max

All data with the same index of max are grouped

—-cda
Options:
-P <prefix>
Use <prefix> for prefix of generated files (default: analyze)
-range <n>
Save 1-n components
-group
Divide data into sets, run pca separately
-edit
Ask user to confirm the use of every group
-unique
All data with unique targets are grouped (default)
—max
All data with the same index of max are grouped
-project
Project the data thru 1-range eigen vectors (looks for files from <prefix>.<component>.<suffix>).
Options:
-P <prefix>
Use <prefix> for prefix of generated files (default: analyze)
-S <suffix>

Use <suffix> for suffix of generated files (default: pcs)
-range <n>

Read 1-n components
-autohistogram <n>

Compute an n bin histogram autoscale to max/min

-histogram <n> <min> <max>
Compute an n bin histogram in the interval [<max>,<min>]

-div
This is used to divide data read from the .df file into groups. Options:
-P <prefix>
Use <prefix> for prefix of generated files (default: analyze)
-edit
Ask user to confirm the use of every group

90

-unique
All data with unique targets are grouped (default)

—max
All data with the same index of max are grouped

91

Appendix A

INSTALLING A/M V7.0

As of this writing, the following UNIX systems are supported:

1.

© o N O Ut ks W

10.

Convex

. Cray

. DecStation

. IBM RS/6000

. Intel 486/386 (Unix System V, Linux)
. HP 9000

. NeXT

. News

. Silicon Graphics

Sun

Installation begins by loading the compressed tarfile containing the As-
pirin/MIGRAINES into a newly created nntools directory using the UNIX
utility tar. The shell script install.script is then invoked to do the rest.
The following text describes this procedure in greater detail.

1.

Create a directory to hold the Aspirin/MIGRAINES software. For exam-
ple, create the directory /usr/nntools. To accomplish this task type the
following UNIX commands:

cd /usr
mkdir nntools

92

5.
6.

. Uncompress the distribution by typing: uncompress am7.tar.Z which

will produce the file am7.tar .

. Use the UNIX utility tar to read the tarfile into this newly created direc-

tory.

cd nntools
tar xvf am7.tar

. Set the environment variables described in Appendix B. These variables

must be in effect before beginning the next step.
Fix the known bugs (see Appendix C).
Read the file README.install and follow instructions.

This should result in the recompilation of all of the subdirectories.

Please notify Russell Leighton (russ@elegant-software.com) of any changes
you make to the code so we may consider incorporating them in future releases.
Also, any questions, comments, or bug reports should be directed to Russell
Leighton. Changes, additions and bug fixes are welcome at any time.

93

Appendix B

YOUR UNIX
ENVIRONMENT

Certain conventions have been established to facilitate Aspirin/MIGRAINES
programming. For Aspirin/MIGRAINES software execution you will need to
declare the UNIX environment variables required by the software. If you have
installed Aspirin/MIGRAINES in the directory /usr/nntools you will need to
include the statements:

setenv NNTOOLS /usr/nntools
setenv MACHTYPE sun_sparc
setenv MANPATH /usr/nntools/man:$MANPATH

in either your .cshrc or your .login file (assumming csh).
Shared scripts need to in your path:

set path = ($path $NNTOOLS/share)

Finally, the executable images are located in $NNTOOLS/bin/sun_sparc (if
you are running on a sun w/sparc). More generally, the binary files are in
$NNTOOLS/bin/$MACHTYPE, where $MACHTYPE expands into the kind of machine
you are running on. Your .cshrc should include the following line after the rest
of your path descriptions:

set path = ($path $NNTOOLS/bin/$MACHTYPE)

If you have a coprocessor (e.g., mc_i860) then you should put the bin area for
the coprocessor after the host:

set path = ($path $NNTOOLS/bin/sgi_r3k $NNTOOLS/bin/mc_1i860)

94

Appendix C

RELEASE NOTES,
KNOWN BUGS AND
WORK-AROUNDS

There seems to be a problem with convergence testing when am?7 is compiled
with Sun’s ANSI C compiler. This has not yet been fixed. I suspect it has some-
thing to do with passing function pointers and prototyping. To work around
this, get the gcc compiler ! (see $NNTOOLS/README. ansiC).

Some people have been having problems with header files and gcc. This
is a gcc installation problem. The probelm seems to be that cpp is getting
the /usr/include files not the gcc ANSI files. Proper installation of gcc will
prevent this.

IThe gcc compiler an excellent ANSI C compiler that works across many platforms and
can be gotten free via anonymous ftp or on a CD from the Free Software Foundation.

95

Appendix D

PORTING TO NEW
PLATFORMS

Follow these steps to configure V7.0 for a new Unix platform:

1. Name your system. The naming convention is <platform>_<processor>[_<os>].
The _<os> is optional, since Unix is assumed. Set the environment vari-
able MACHTYPE to this name. For example:

setenv MACHTYPE ds_alpha

. Find the closest system in the ./config directory.
. Copy the closest system file to $MACHTYPE.config.

. Change the compiler flags, libraries etc. for your system.

[B N VI b

. Check the file .src/os/header.h to see if the defaults for #includeing
headers and math functions are correct. This file always seems to need
to be modified. If you can avoid modifying this file, please do. Many
of the macros can be overridden by defining a file $MACHTYPE.h in the
$NNTOOLS/configdirectory and adding ~-DAM_MACHTYPE_HEADER="\"$NNTOOLS/config/$MACHTYPE.h\""
to the CFLAGS. This causes this header to be #included in the master
header file and can override macros. Some of the system configurations
use this option. See these as examples.

Check the C files in .src/os to make sure your OS supports all of the sys-
tem level functions required. For example, many coprocessors do not allow
the use of system(). There is a conditional compile in am_system() that
causes an error statement printed instead of the system call. If your system
does not support a function used and a conditional compile already exists,
then define the appropriate constant in your file $NNTOOLS/config/$MACHTYPE.h

96

file. If there is no conditional compile, then add one and update your
$MACHTYPE.h file.

If you are having problems with underflows you should modify the file
$NNTOOLS/src/os/am_traps.c to call a floating point hardware configu-
ration function to force underflows to zero without trapping. Underflows
must go to zero.

There has been an attempt to put all system dependent parameters in the

files $NNTOOLS/config/$MACHTYPE. config, $NNTOOLS/config/$MACHTYPE. .,

and $NNTOOLS/src/os/*.c. You should only need to change the $MACHTYPE. config
and the $MACHTYPE.h files. In rare cases, you might need to change the
$NNTOOLS/src/os/*.c files.

6. Type: $NNTOOLS/Makify .

In each directory to be compiled there is a basic Makefile (Makefile.am)
and optionally a file with specific macro definitions (local. am) for that di-
rectory. The script $NNTOOLS/Makify creates a makefile for your platform
by concatenating the files local . am, $NNTOOLS/config/$MACHTYPE. config,
and Makefile.aminto a file in the directory called $MACHTYPE.mk. In this
way, all of the machine specific configuration information is included into
the makefile.

7. Type: make -f $MACHTYPE.mk install

This compiles and then copies the executable programs (aspirin, etc) into
$NNTOOLS/bin/$MACHTYPE and the libraries into $NNTOOLS/1ib/$MACHTYPE.

8. Goto ./examples and compile all examples. Type: make -f $MACHTYPE.mk
Test all of the examples.

9. If you have problems, go back to 2-4 and then re-make.

10. Update the file . /config/Platforms with the new machine. This is done
for future installations.

11. Send a copy of $MACHTYPE. config to russ@elegant-software.com for
inclusion in future distributions.

Try running the script ByteOrder in the $NNTOOLS/porting directory if the
byte order is unknown. This is only relevant for the characters example, see the
.df file.

If you have a vector machine (e.g., convex, cray, i860 machines), you need to
link in the matrix routines if you want this software to run fast. Do the above
vanilla port, and test it before doing the vector port.

Go to the directory ./src/aspirin/l1ibBp/sim.

In the .c files you will see conditional compiles to use vector routines instead
of wanilla C. Modify these files for your machine and vector libraries. Change

97

the $MACHTYPE. config to be like the cray or meikoi860 files. The use of vector
libs can be turned on and off by selectively commenting the SLIBS and the
VECTORLIBS variables:

Added in Classpack from Kuck&Associates (BLAS)
VECTORLIBS=-DBLAS
SLIBS = -1m -L$$MEIKOHOME/860/hlib -lkmath

Plain C (if you don’t have BLAS)
#SLIBS = -1m

98

Appendix E

USING COPROCESSORS

Generally, one can obtain a considerable performance increase by using a co-
processor that is specially tailored to floating point vector operations. As of
this writing there are many vendors selling add-in boards for workstations us-
ing Intel’s i860 microprocessor. Given that the vendor supplies a good vector
library, Aspirin generated simulations can be expected to run extremely effi-
ciently. For example, the Mercury i860 coprocessor will run the nettalk network
($NNTOOLS/examples/ntalk) at more than 12.4 million connections per second
(25+ MFLOPS) without learning !.

If you are using a coprocessor then follow the instructions in Appendix B
for setting up your environment and search path.

To compile a simulation for a coprocessor first set for environment variable
MACHTYPE to the name of the coprocessors. For example:

setenv MACHTYPE mc_i860

for a Mercury i860. If you are unsure of what your coprocessor is called search
the directory $NNTOOLS/bin. As of this writing, the following coprocessors are
supported:

1. Mercury i860 (40MHz)
2. Meiko Computing Surface w/i860 (40MHz) Nodes

Then edit your .aspirin file and run bpmake. This should result in a sim-
ulation that is compiled for the coprocessor.

To run a simulation on a coprocessor you should use the loader program for
the product. This is typically done by executing a loader program followed by
the normal program and arguments. For example, on the Mercury i860:

runmc xor -1 -d xor.df -t 50 4 0.1

IThis was fast in 1991, you are probably laughing given todays processors.

99

on the Meiko i860:
mrun xor -1 -d xor.df -t 50 4 0.1

Some coprocessors may expect that the program and its arguments be com-
piled into an executable, so one more step may be required before running the
program.

Some coprocessors do not allow some system calls back to the host (e.g.,
Mercury i860). This implies that cpp may not be able to be run on your .df
files. If this is the case, and you are using macros (i.e., #define statements)
run cpp manually on the .df file to produce a macro expanded .df file. You can
then use this new .df file with the simulations.

Most coprocessors will require that you use an optimized vector library to
attain peak speeds. See section D.

100

Appendix F

PARALLEL COMPUTERS

There is a myth that “neural network algorithms” are a parallel computing
paradigm. This is only a true statement to the degree that it is true for digital
signal processing (DSP) or matrix algorithms.

With respect to backpropagation learning, parallelizing backpropagation is
not an efficient undertaking except in 2 special cases:

e If you have a fine grain parallel/vector machine then parallelize the ma-
trix/vector routines. Aspirin can take advantage of this style of parallelism
using vector libraries. See section D.

e If you have huge amounts of data, and long update intervals, then dis-
tribute the training data across processors and broadcast the weight up-
dates. This version of Aspirin does not support this kind of learning.

Once a network has been trained, running multiple copies of the network
on different processors to process different data channels can be a very efficient
method of parallelization.

101

Appendix G

GNUPLOT

The examples use a plotting package called gnuplot. In general, gnuplot is
available as the file gnuplot?.?.tar.Z. Please obtain gnuplot from the site nearest
you. Many of the major ftp archives world-wide have already picked up the
latest version, so if you found the old version elsewhere, you might check there.
In NORTH AMERICA, anonymous ftp to dartmouth.edu (129.170.16.4), fetch
pub/gnuplot/gnuplot?.?.tar.Z, in binary mode.

102

Appendix H

Tk/Tcl and wish

In order to run NNinspect you need the wish shell. Install both Tk and Tcl
by anonymous ftp from harbor.ecn.purdue.edu in pub/src.

103

Appendix 1

NET TOOLS

We have include a simple set of analysis tools by Simon Dennis and Steven
Phillips. They can be used with the examples to illustrate the use of the MI-
GRAINES interface with analysis tools, although the analyze utility largely
replaces these tools. The package contains three tools for network analysis:

e gea - Group Error Analysis
e pca - Principal Components Analysis

e cda - Canonical Discriminants Analysis

Group Error Analysis (gea)

Gea counts errors. It takes an output file and a target file and optionally a
groups file. Each line in the output file is an output vector and the lines in
the targets file are the corresponding correct values. If all values in the output
file are within criterion of those in the target file then the pattern is considered
correct. Note that this is a more stringent measure of correctness than the total
sum of squares. In particular it requires the outputs to be either high or low
rather than taking some average intermediate value. If a groups file is provided
then gea will separate the error count into the groups provided.

Principal Components Analysis (pca)

Principal components analysis takes a set of points in a high dimensional space
and determines the major components of variation. The principal components
are labeled 0-(n-1) where n is the dimensionality of the space (i.e. the number
of hidden units). The original points can be projected onto these vectors. The

104

result is a low dimensional plot which has hopefully extracted the important
information from the high dimensional space.

Canonical Discriminants Analysis (cda)

Canonical discriminant analysis takes a set of grouped points in a high dimen-
sional space and determines the components such that points within a group
form tight clusters. These points are called the canonical variates and are la-
beled 0-(n-1) where n is the dimensionality of the space (i.e. the number of
hidden units). The original points can be projected on to these vectors. The
result is a low dimensional plot which has clustered the points belonging to each

group.

TECHNICAL REPORT

$NNTOOLS/doc/NetTools. ps.Z [Denis, 1991] is a technical report which demon-
strates the results which can be obtained from pca and cda. It outlines the
advantages of each and points out some interpretive pitfalls which should be
avoided.

105

Appendix J

THE
BACKPROPAGATION
ALGORITHM

The following is a derivation of the generalized delta rule (backpropagation) for
learning in feedforward networks.
The weighted sum input into the jth node from n other nodes is

n
net; = wjo + E W;;0;

2

This is passed through a transfer function f; to produce the output value for
the jth node !

0j = [j(net;)
The weight change of a particular weight should be proportional («) to the
contribution of that weight on the total error (E).

OF
Awj; = —«
I awji
By the chain rule
OE OE Onet;
811)]',' - Bnetj 6wji
« [RY) . _ oOF
Let the “credit” for the jth node be §; = ~ Bret; then

ijz' = Oé(SjO,'

T Fi(nety) = f(net;)(1 — fj(nety))

LA typical transfer function is f;(net;) =

106

By the chain rule
OE 0o, OFE |,
S — Y) t.;
! doj Onet; o, fi(net;)

If the jth node is an output unit then the error E is defined

1
E=5 - 0;)?

where t; is the teaching signal (target value) for the jth node. Then

OFE
90, —(t; — 0j)

Therefore the “credit” for the jth node (an output) is
dj = (t; — 0;) fj(net;)
If the jth node is a hidden node then the “credit” is

OE " OE Onety _ =
doj _Zk:@netk do; Zk:(Skwa

§; = fi(net;) Y pw;
k

where k — k are the indices of nodes to which the jth nodes connects.

The following are some extensions that can be added to improve convergence
time and avoid local minima.

An inertia (also called momentum) term can be added to smooth the weight
changes over time. The weight change equation is modified to include an inertia
constant (7) in the interval [0,1):

A’Il)j,'(t) = aé,- (t)Oi(t) + VA’LU]','(t -].)
wji () = wji(t — 1) + Awji(t)

Scott Fahlman suggests that biasing the derivative speeds convergence [Fahlman, 1988].
This avoids cases where the derivative is equal to exactly zero.

Backpropagation learning is very sensitive to the ordering of the training
patterns. This can be used to advantage on difficult problems by using a “shap-
ing” [Wieland, 1988] schedule in the learning. A shaping schedule is an ordering
of the data during learning. Initially the network only learns with the subset of
the training data that is easily separated. The simulation is stopped, more data
is added to the current training data and the simulation resumed. Gradually
more data is introduced (thus “shaping” the decision surface) until the whole
data set has been learned. This technique is not necessary on many problems,

however, the authors have experienced many cases where the difference between
successfully learning and local minima was the training schedule.

107

Appendix K

THE AUTOREGRESSIVE
BACKPROPAGATION
ALGORITHM

In backpropagation learning [Rumelhart, 1986], the inputs to a neuron are mul-
tiplied by feedforward weights and summed, along with a node bias term. The
sum is then passed through a smooth sigmoidal transfer function, producing the
neuron’s output value. This neural model has no memory, because the output
value is independent of previous inputs or outputs.

The memoryless model described above has been extended to include an
autoregressive(AR) memory, m;(t) (figure 7.4.1), a form of self-feedback where
the output depends on the current output plus a weighted sum of previous
outputs [Leighton, 1991]. The AR node equations are:

0i(t) = f(neti(t)) +m(t)
ninputs;
net;(t) = bias; + Z w;,;05(t)
j=1
1
order;

mz(t) = Z ai,noi(t - ’I’L),

where 0;(t) is the output of node o; at time ¢, w;; is the feedforward weight
from node j to node i !, a; ,, is the feedback weight from the nth delay of node i,

INode i must be contained in a layer farther from the input than the layer containing node
j.

108

ninputs; is the number of input nodes to the ith node and j is an index through
this set of input nodes, and order; is the number of feedback delays for the
ith node. The feedback weights (a;,,) and the feedforward weights (w;;) are
adaptive. The backpropagation learning algorithm can be modified such that
each model neuron can change its w;;’s and a; ,’s to minimize the output error.
In this way, networks can “remember” past events and make context-sensitive
decisions.

K.0.1 Gradient Descent

Error backpropagation is a learning algorithm for feedforward neural networks
that attempts to minimize the mean squared error on the output by adjusting
the feedforward weights. AR backpropagation extends this algorithm to discrete
time-varying systems by including feedback weights that are also adjusted to
minimize the mean squared error. The output error measure is defined as:

S B()

t=To

B0 = 530 - o),

E

where o; is the value of the ith output node and d; is the desired value of the
ith output node. The weight changes are accumulated between Ty and 7;. The
weights are then changed and the process is repeated. The interval from Tg to
T; is called the update interval.

In order to perform gradient descent in weight space, each feedforward
weight, w;;, and each feedback weight, a; ., need to change proportionally to
the negative of the gradient with respect to that weight:

E
A'w]‘,,’ = —Oza—(t)
wji

_ OE(t)
Aa;pn = aaai’n

where « is a constant of proportionality.
The partial derivatives with respect to the feedforward weights can be ex-
panded to:

COE() 0B doi(t)
Bwj,,- B aoi(t) 611)]‘,,’
where
Doi(t) Of(nety(t)) + om(t)
8’11)1'7,' B awj,,- Bwj,,-

109

Of (net;(t)) Onet;(t) n om;(t)
Onet;(t) Ow;; Ow; ;
order; 80i(t . n)

f(neti(t))oj(t)—l— Z Ain

n=1

The credit for an output node o; at time ¢ is defined as:

OE(t)
;= — = d;(t) — 0i(t).
i 03 (t) i(t) — 0i(t)
Brute force calculation of the §; for a hidden node is computationally unde-
sirable. However, assuming that the error at the output changes slowly, the
recursive calculation used in standard backpropagation may be used. If the
error changes slowly, the §; for a hidden unit o; is:

noutputs1 noutputs;
OE(t 80 (t) 0o, (t)
6' _— k = (5 .
‘ ao, 2 0i(t) ; " 805 (1)
The index of a node receiving input from o; is represented as k. The partial
derivative, BE((t)), has been calculated previously. The partial derivative, gf)‘((:)) ,
is calculated as :
Ooy(t) _ Of (netx(t)) | Omx(t)
60,’(t) 60i(t) 601’()
ordery,
, Qo (t —
= f(netx(t))wix + Zakn ? ;))
Therefore, w;,; is updated to minimize E:
order;
OE(t)\ 00;(t) : ! 0o;(t —n)
Aw;i(t) = « (_ 6oi(t)> Bw;; = ad; | f(neti(t))o;(t) + T; ai,naTM
1 &
wi = w"ld—}— T T Z Aw; ;(t).
1= 1o =7

The bias; terms are considered feedforward weights from nodes with values of
1.0 and updated by the above equations.

The partial derivative, — af(t) can be expanded to:
OE(t) _OE(t) doi(t)
B 0a;n - ~ dos(t) dain’
where
doi(t) _ Of(neti(t)) " om;(t)
aaz’,n 6az’,n 6ai,n
do;(t —n)

oi(t —n) + a;p S0
in

110

The §; for o; has already been calculated above. Therefore, a;,,, is updated to
minimize E:

Aa;n(t) = a (6E(t)) doi(t) = ad; [o,-(t —n)+ ai,niaoi(t -n)

"~ oi(t)) dain Oain
1 &
a’e’ = afld+ o D Aain(t).
1 0 /=7

K.0.2 Stability Issues

The AR node is asymptotically stable if the poles of the feedback transfer func-
tion are located within the unit circle of the Z-plane. The AR1 node has only
one pole, which is identical to the feedback weight. Therefore, the stability
criterion is:

|a,~,1| < 1.

Feedback weights are initialized to small random values that do not violate
the stability criterion. At the end of an update interval, if af{" violates the
stability criterion, it is recalculated. The change from afi! to a'§ is halved
until a7'$" satisfies the stability criterion. From a computational standpoint,
it is not desirable to compute the poles for higher-order nodes (i.e., AR2+).
Stability checks can be made using only the feedback weights and their respec-
tive desired changes. These tests are based upon the Routh-Hurwitz stability
criterion [Pandit, 1983]. As in the first-order case, if the stability criterion is vi-
olated, the changes in the feedback weights are halved until the resulting weights
satisfy the stability criterion.

K.0.3 Weight Update Issues

The evaluation of g"#ﬁ? during learning represents the effect of w; ; through past

time. Similarly, %‘;(? represents the effect of a; , through past time. At the

end of each update interval, the weights are changed. The partial derivatives?
associated with each adaptable parameter are set to zero to ensure that the new
sums reflect only the effect of the current update interval. The network can
be tuned to patterns of a particular duration by choosing an update interval
roughly equal to the duration of the patterns of interest. In order to improve
convergence, the AR backpropagation equations can be modified to include a
momentum term [Rumelhart, 1986].

2The partial derivatives are implemented as running sums.

111

Bibliography

[Denis, 1991] Denis, S. and S. Phillips, 1991, Analysis Tools for Neural Net-
works, Technical Report 207, Department of Computer, University of
Queensland.

[Duda, 1973] Duda, R. and P. Hart, 1973, Pattern Classification and Scene
Analysis, Wiley and Sons.

[Fahlman, 1988] Fahlman, S., 1988, “Faster-Learning Variations on Backprop-
agation: An Empirical Study,” In Proceedings of the 1988 Connectionist
Models Summer School.

[Fisher, 1936] Fisher, R. A.; 1936, “The use of mutliple measurements in Tax-
onomic Problems,” Annals of Eugenics, Vol. 7, pp. 179-188.

[Gorman, 1988] Gorman, R. P. and T. J. Sejnowski, 1988, “Analysis of Hidden
Units in a Layered Network Trained to Classify Sonar Targets,” Neural
Networks, Vol. 1, pp. 75—89.

[Kernighan, 1988] Kernighan, B. and D. Ritchie, 1988, The C Programming
Language, Prentice-Hall.

[Lang, 1988] Lang, K. and M. Witbrock, 1988, “Learning to Tell Two Spirals
Apart,” In Proceedings of the 1988 Connectionist Models Summer School.

[Leighton, 1991] Leighton, R. and B. Conrath, 1991, “The Autoregressive Back-
propagation Algorithm,” In Proceedings of the 1991 International Joint
Conference on Neural Networks.

[Minsky, 1969] Minsky, M. and S. Papert, 1969, Perceptrons, MIT Press.

[Pandit, 1983] Pandit, S. and S. Wu, 1983, Time Series and System Analysis
with Applications, John Wiley and Sons.

[Press, 1986] Press, W. H. et al., 1986, Numercial Recipes, Cambridge Univer-
sity Press.

[Rumelhart, 1986] Rumelhart, D., J. McClelland, et al., 1986, Parallel Dis-
tributed Processing, MIT Press.

112

[Sejnowski, 1987] Sejnowski, T. J. and C. R. Rosenberg, 1987, “Parallel net-
works that learn to pronounce English text,” Complex Systems, Vol. 1,
pp- 145-168.

[Thrun, 1991] Thrun, S. B. et al., 1991, The MONK’s Problems - A Per-
formance Comparison of Different Learning Algorithms, CS-CMU-91-197,
Carnegie-Mellon Univeristy.

[Waibel, 1987] Waibel, A., T.Hanazawa, G. Hinton, K. Shikano, and K. Lang,

1987, Phoneme Recognition Using Time-Delay Neural Networks, TR-I-
0006, ATR. Interpreting Telephony Research Laboratories.

[Wieland, 1988] Wieland, A. and R. Leighton, 1988, “Shaping Schedules as a
Method of Accelerated Learning,” In Abstracts of the First INNS Meeting,
page 231.

[Wieland, 1988] Wieland, A., R. Leighton, and G. Jacyna, 1988, An Analysis of
Noise Tolerance for a Neural Network Recognition System, MP-88W00021,
The MITRE Corporation, McLean, Virginia.

[Wieland, 1988] Wieland, A., R. Leighton, and W. Morgart, 1988, “Aspirin for
MIGRAINES,” In Proceedings of the 1988 International Neural Network
Society Conference.

113

Index

ArClip, 44
Aspirin, 36
Aspirin, 8
ArClip, 44
Bias , 44
Black Box, 36
Black Box, 40
Black Box , 54
Compiling, 39
Components-> , 42
Connection Specification , 44
Connection Specification , 47
DefineBlackBox , 40
Delays, 46
History, 10
History, 5
InputFilter->, 42
InputSize->, 42
InputsFrom-> , 44
Loading Black Boxes , 54
Names, 40
Order , 44
OQutputFilter->, 42
OutputLayer->, 41
PdpNode , 43
Receptive Fields , 47
Sigmoid , 43
Size, 43
Software Architecture, 6
Static->, 41
Syntax, 40
Tessellation , 48
Tessellation , 53
Weight Initialization , 51
Backpropagation Compiler , 55

114

ConjugateGradient , 57
ErrorFunction->, 55
LineSearch , 56
LineSearchVerbose , 56
LinearNode , 58
Node Types , 58
Backpropagation Compiler Options,
55
PdpNode , 58
PdpNodel , 58
PdpNode2 , 58
PdpNode3 , 58
QuadraticNode , 58
UpdateInterval->, 56
UserNode , 58
Bias , 44
CDA, see Canonical Discriminant Anal-
ysis, 87
Canonical Discriminant Analysis, 87
Components-> , 42
ConjugateGradient , 57
Coprocessors , 94
Coprocessors , 99
DefineBlackBox , 40
ErrorFunction->, 55
encode, 13
FAQ , 28
Input Data Formats , 75
InputFilter->, 42
InputSize-> , 42
InputsFrom-> , 44
Installation , 92
LineSearch , 56
LineSearchVerbose, 56
MACHTYPE , 74

MACHTYPE , 94
MANPATH , 74
MANPATH , 94
MIGRAINES, 10
MIGRAINES, 64
MIGRAINES, 7
1,72
?,72
Contexts, 67
Output Data Format, 72
Output filters, 73
Pipes, 72
TestingContext, 70
am2ascii, 73
am2gnuplot, 73
am2math, 73
am2matlab, 73
am2raw, 73
cycle, 70
echo , 72
load, 71
pascii, 70
pbinary, 70
pclose, 71
pheader, 71
pinfo, 71
pnoheader, 71
pop, 67
pop, 71
popenArl, 71
popenAr2, 71
popenBiases, 71
popenlInputs, 71
popenNodes, 71
popenTargets, 71
popenWeights, 71
poproot, 67
poproot, 72
psilent, 70
push, 67
push, 71
pverbose, 70
quit, 72
source, 72

115

NNTOOLS , 74
NNTOOLS , 94
Order , 44
QutputFilter->, 42
OutputLayer-> , 41
PCA, see Principal Components Anal-
ysis , 87
Parallel Computers , 101
PdpNode , 43
Platforms , 92
Porting to new platforms, 96
Principal Components Analysis , 87
Sigmoid , 43
Static->, 41
Supported Coprocessors, 5
Supported Platforms, 4
Tessellation , 48
Tessellation , 53
UNIX Environment Variables, 9
UNIX Environment Variables, 94
MACHTYPE , 10
MACHTYPE , 74
MACHTYPE , 94
MANPATH , 74
MANPATH , 94
NNTOOLS , 74
NNTOOLS , 9
NNTOOLS , 94
UpdateInterval->, 56
analyze , 87
Canonical Discriminant Analy-
sis, 87
Principal Components Analysis
, 87
bpmake, 14
bpmake , 74
-4,85
-AsciiDumpNoFmt , 85
-E, 85
-F, 84
-1,84
-LoadAscii, 85
-N, 84
-P, 85

-#, 84
-a, 83
-d, 83
-f,85
-h , 86
-i,83
-1,84
-n, 84
-p, 85
-s, 84
-t, 84
-u, 8
.df , 76
Backprop.c, 75
Executing simulations , 82
Input Data Formats , 75
Inputs pattern presentation , 76
RandomSwitch , 81
ReadFile, 76
Ascii , 79
Bias->, 76
Cache-> , 76
ClearDelays->, 77
HighClip->, 77
LowClip->, 77
Math->, 77
Matlab , 81
Normalize->, 77
Range-> , 77
Scale->, 78
SubMean->, 78
SwapBytes->, 78
Switch->, 78
Target->, 78
Typel , 79
Type2 , 80
Type3 , 80
Type4 , 80
Typeb , 80
UseFile, 81
User Defined Data Generators
, 82
define generator , 82
user_init.c, 74

116

user_init.c, 82
detector, 23
email, 11
encode, 13
examples, 30

bayes, 30

characters, 31

detect, 31

encode, 31

iris, 31

monk, 32

ntalk, 32

perf, 32

ringing, 32

sequence, 32

sonar, 34

spiral, 34

xor, 35
nettalk, 32
user_init.c, 74
web sites, 11

