Using the
ServiceDiscoveryM anager

Vi Topicsin This Chapter

» Basics of the Ser vi ceDi scover yManager
e Common programming idioms

» Creating LookupCaches

» Soliciting events

10

I n the previous chapter, you learned how to use the Servi ceRegi strar

Chapter

interface. This interface, common to al lookup service implementations, is

the “lowest common denominator” API for accessing lookup functionality.
You can count on the basic interfaces for | ookup() and regi ster () being
available on every lookup service you encounter.

Now, in this chapter, you'll learn about how to use the Ser vi ceDi scover y-
Manager class. Thisclassishuilt using the“raw” Servi ceRegi st rar interface,
and provides higher levd functionality on top of it. In this chapter, you'll learn
how to use the Servi ceDi scover yManager to maintain client-side caches of
services, search for services, and receive event notifications when services
appear, disappear, or are modified. While you can certainly do al of these func-
tions directly using Ser vi ceRegi st rar, in most cases, the Ser vi ceDi scov-
er yManager will provide asimpler programming model and more functionality.

I'll talk about the API provided by this important class, and cover the most
common programming “idioms’ that it supports. Asyou'll see, the Ser vi ceDi s-
cover yManager is a complicated class that can support a number of styles of
interaction. Beginners are often confused by the behavior of this class because
they don’t understand the different ways to use it, and how those programming
stylesinteract. In this chapter, I'll cover each of these styles, and provide example
programs that show you practical details about how to use them.

355

s)

(o))

w“

4

Chapter 10 Using the ServiceDiscoveryM anager

Higher Level APIsfor Client Lookup

You've no doubt noticed that many of the clients you've seen so far exhibit
many of the same behaviors—they discover lookup services, search for desired
services, and solicit events to be informed of changes in the available services.
In the examples in this book, I've typicaly done some bookkeeping to keep
track of the lookup services and service proxies that I'm using. Certainly much
of the Ser vi cel nf owat cher and Ser vi cel nf oSear cher code from the last
chapter is devoted to these sorts of chores.

There are anumber of good reasons for this bookkeeping. First, by holding on
to the proxies for lookup services, you don’t have to reinitiate the costly discov-
ery process if you need to do future queries or event solicitations. Second, by
holding on to the services found at these lookup services, you can very quickly
iterate over the available services, perhaps to present them to a user. Keeping
information about the service 1Ds of lookup—and other—services alows you to
recognize duplicate registrations, which isauseful thing to do.

Of course, not all clients will, or should, do this bookkeeping. Limited mem-
ory clients, for instance, may be willing to pay the time penalty required to query
lookup services again and again, rather than keeping references to many service
proxies around. But, many clients will follow the “cache and bookkeep” para-
digm. (And, now is probably a good time to point out that many services will
themselves be clients of other services. So, they are likely to follow many of
these same patterns and have the same requirements for bookkeeping.) Sun real-
ized this common behavior and created a class—called the Ser vi ceDi scov-
er yManager —to support itin Jni 1.1.

The ServiceDiscover yM anager

The Ser vi ceDi scover yManager isanincredibly flexible class. It can serve as
a“substitute” for using theraw Ser vi ceRegi st rar methods for doing lookup.
It can also create a cache of services based on some search criteria. This cache
can be polled by a client application that wishes to determine what services are
available, and the cache can also deliver events to the client when a service is
added, removed, or changed. One of its benefitsisthat it largely hidesthe entire
notion of lookup services and the Ser vi ceRegi st rar API. You only deal with
services—the Ser vi ceDi scover yManager takes care of finding lookup ser-
vices, eliminating duplicate services, and so on. Most client applications writ-
tento Jini 1.1 or later will use the Ser vi ceDi scover yManager class as their
sole interface for service location.

The ServiceDiscoveryM anager

Here is the declaration of the class:
package net.jini.l| ookup;

public class ServiceDi scoveryManager {
public ServiceDi scoveryManager (
Di scover yManagenent di scoveryMyr,
LeaseRenewal Manager | easeMyr)
t hrows | OExcepti on;

publ i c LookupCache creat eLookupCache(
Servi ceTenpl ate tnpl,
ServiceltenFilter filter,
Servi ceDi scoveryli stener |istener)
t hr ows Renot eExcepti on;

public Serviceltem | ookup(ServiceTenpl ate tnpl,
ServiceltenFilter filter);
public Serviceltem | ookup(ServiceTenpl ate tnpl,
ServiceltenFilter filter,
| ong wai t Dur)
throws InterruptedException, RenbteException;
public Servicelten{] |ookup(ServiceTenplate tnpl,
i nt naxMat ches,
ServiceltenFilter filter);
public Servicelten{] |ookup(ServiceTenplate tnpl,
i nt m nMat ches,
i nt maxMat ches,
ServiceltenFilter filter,
| ong wai t Dur)
throws InterruptedExcepti on, RenoteException;

public Di scoveryManagenent getDi scoveryManager () ;
publ i c LeaseRenewal Manager getLeaseRenewal Manager () ;
public void term nate();

I'll cover how the constructor for this class works before jumping in to the
other methods on the class and how they’re used.

The constructor for Servi ceDi scover yManager takes as arguments an
object implementing the Di scover yManagenent interface, and a LeaseRe-
newal Manager . The semantics are much the same as for the service-side Joi n-
Manager : You can pass in any object that implements Di scover yManagenent
(typicaly aLookupDi scover yManager) to have control over the discovery pro-

Chapter 10 Using the ServiceDiscoveryM anager

cess. You can also passin your own LeaseRenewal Manager if you wish to reuse
an instance of this class that you may aready have “sitting around” in your pro-
gram. If you pass null for either of these parameters, a default implementation
will be created (aLookupDi scover yManager initialized to find lookup services
in the public group, and a“fresh” LeaseRenewal Manager) .

Notice that the constructor is declared as raising | OExcept i on. This is
because the constructor may have to initiate the multicast discovery protocols,
which can cause this exception.

A Word on Usage Patterns

The Servi ceDi scover yManager is a commonly misunderstood class, not
only because it provides a lot of functionality, but because it supports three
broad patterns of usage. Before | continue with the description of the other
methods in the class, | should say a few words about these patterns, how they
work, and how they relate to one another.

In the first pattern, there is no need to create a LookupCache at al. In this
style of use, you only need to create a Ser vi ceDi scover yManager and then
invoke whichever version of | ookup()—on the Ser vi ceDi scover yManager
itself—that is applicable to the needs of your application.

In the other two usage patterns, after creating a Ser vi ceDi scover yManager ,
you use that object to create one or more LookupCaches. From that point on,
you typically interact only with the LookupCache, not the Ser vi ceDi scover y-
Manager that you initially created. Of course, you are free to invoke methods on
Servi ceDi scover yManager at any time, even if you've created a Lookup-
Cache, athough this style of programming isn’t common in the two patterns that
involve LookupCaches.

Once a LookupCache has been created, if you need to query for a particular
service, you will typicaly invoke one of the versions of | ookup() provided by
the LookupCache, not the Servi ceDi scover yManager. This is the second
usage pattern.

Thethird and final usage pattern involves the event mechanisms of the Lookup-
Cache. That is, if you wish to be notified of the arrival, departure, or modification
of sarvices, you must register for eventswith the LookupCache, not with the Ser -
vi ceDi scover yManger or theunderlying Ser vi ceRegi strar.

These three patterns will become more clear as | walk through the rest of the
methods on the class. But it's important to keep these in mind in the discussions
below, so that you can see the “big picture”

The ServiceDiscoveryM anager

Creating Lookup Caches

Perhaps the most important method on this class, because it's used in the two
most common usage patterns, is creat eLookupCache(). Clients use this
method to instruct the Ser vi ceDi scover yManager to create a cache of all of
the available services that match some search criteria. The Ser vi ceDi scov-
eryManager will discover lookup services and then search them to find the
desired services. It will also solicit events from these lookup services to ensure
that the cacheis kept relatively up-to-date—as new matching services appear in
the community, they will also appear in the cache.

The cache that is returned by this method is alocal repository of al matching
services, and is“back-filled” by the Ser vi ceDi scover yManager (meaning that
the set of servicesit contains may change, even after you've acquired areference
to the cache). You should be sure that you understand this point: The proxies and
attributes of any matching serviceswill be stored locally by the cache. So, if your
client is running in a memory-constrained environment, you should take great
care when using caches.

Using methods that you'll see below, you can use the cache to return dl
matching services, and can ask the cache to inform you about changes in the sta-
tus of matched services.

The cr eat eLookupCache() method takes three arguments. The first is an
instance of Servi ceTenpl at e, which works just as in the earlier examples of
the previous chapter: The template is used to query lookup services to find
desired services, using the norma template-matching semantics. The second
argument is a Servi cel tenFil ter. Thisis a client-side filtering mechanism
that lets you have fine-grained control over which services show up in the cache.

| talked in the last chapter about how Ser vi ceTenpl at es, while powerful
and simple-to-use, don’t always give you al of the control over service matching
that you may like. They don't, for instance, alow you to do any comparisons over
numeric attributes other than simple equdity. The Servi cel tenFi | ter used
here allows you greater control over matching. Any Ser vi cel t ens that match
the template are returned to the client where they are evaluated by the filter. The
filter has a method that can return true or false to indicate whether the service is
considered a match or not.

CoreTip: Optimizing your searches

Be sure you understand the relationship between
Servi ceTenpl at es and Servi celtenFilters.
Servi ceTenpl at es are sent “ over thewire” to lookup services. The
matching of services against Ser vi ceTenpl at es happensinside the

Chapter 10 Using the ServiceDiscoveryM anager

lookup service, using the fast (but relatively coarse) rules | outlined
before. Any matched services are then returned to the client, where
Servi cel t enFi | t er s—which execute completely in the client—
have an opportunity to further prune the results.

Usually, you will look for a design that partitions a search
between these two classes in a way that minimizes the amount of
data returned from the lookup service. Snce sending a lot of data
over a network is a relatively expensive operation, you should use
Servi ceTenpl at es that, as closely as possible, cull out only the
services that you're interested in. Once this small set of possibly
interesting services is returned, you can use Ser vi ceFi | t er s to
refine the result set.

Thefinal argument to the constructor is an object that implements the Ser -
vi ceDi scover yLi st ener interface. This argument allows you to supply a
listener to the cache that will be called whenever the cache updatesits state to
reflect the addition, removal, or change of a service. The cache will deliver a
Servi ceDi scover yEvent that encapsulates thisinformation. Unlike Ser vi -
ceEvent s, which are sent from lookup services to reflect their changes in
state, Servi ceDi scover yEvent s are purely local events; that is, they origi-
nate in the cachein the client’'sVVM, rather than some remote VM.

There are some other important differences between Ser vi ceDi scovery-
Event s and Servi ceEvent s in addition to just the local versus remote dis-
tinction. In particular, the cache will try to coalesce multiple remote
Servi ceEvent s into asingle Ser vi ceDi scover yEvent . I'll talk more about
thisin the section on Ser vi ceDi scover yLi st ener s abit later.

I'll continue walking through the rest of the methodsin Ser vi ceDi scover y-
Manager, and then talk about the supporting classes such as LookupCache,
Servi ceDi scover yEvent, and soon.

New Versions of Lookup()

The Ser vi ceDi scover yManager , in addition to supporting the ability to cre-
ate caches of services, also provides “wrapper” implementations of the lookup
method that appears in the Ser vi ceRegi strar interface. | cal these imple-
mentations “wrappers’ because they alow clients to essentially search awhole
set of lookup services at once. That is, while the Ser vi ceRegi strar version
searches only one particular lookup service, these versions are “front ends’ that
provide adightly richer API and can search all of the lookup services that have
been discovered so far.

The ServiceDiscoveryM anager

All versions of the | ookup() method take a Ser vi ceTenpl at e and a Ser -
vi cel tenFi |l ter as arguments; these parameters are used in exactly the same
way as described above. The Ser vi ceDi scover yManager uses the template to
get aninitia set of matching services from the lookup services it has discovered,
and then uses thefilter to further cull thislist.

Thefirst two versions of | ookup() return only asingle Ser vi cel t em If the
template and filter together match multiple services, an arbitrary one is selected
and returned. If no matching services are available at the lookup services (that is,
if the template query returns no matches), then the filter will not be run and anull
will be returned to the caller.

The second two versions return an array of all matching service items. Note
that these versions of | ookup() take extra parameters describing how many
matches should be returned. If no matches are found, then an empty array will be
returned to callers.

One single-valued version of | ookup() and one multi-valued version of
| ookup() are also defined to be blocking. This means that they will wait for
some specified amount of time until the requested number of matches is found.
Theversionsof | ookup() that take await duration parameter have this behavior.

If the wait duration expires without the requested number of services being
found (either one service for the single-valued version, or ni nvat ches for the
multi-valued version), then the blocking methods will return an empty result.
Otherwise, they complete successfully and return the service items they have
found.

Contrast this to the non-blocking versions (the versions without the wait dura-
tion parameter), which return a result immediately. Be aware that if these ver-
sions of | ookup() report that no matching services have been found, it may be
because there actually are no matching services in the community, or it may be
because no lookup services have been discovered yet.

This is a common mistake when using this class! Callers create a Ser vi ce-
Di scoveryManager and immediately use the non-blocking version of
I ookup() , whichwill often return null. The error isn't that the serviceisn't avail-
able—it's just that the lookup service holding it may not have been discovered
yet.

Note that the blocking methods may raisej ava. | ang. | nt er r upt edExcep-
ti on. Thisis because, sometimes, a caller may wish to interrupt athread that is
blocked executing one of these methods. If you interrupt athread in thisway (by
calling Thread. i nt er r upt ()), then the method will raisean | nt er r upt edEx-
ception.

The blocking methods provide you with an easy-to-use way to alot a fixed
period of timeto try to find a service.

Chapter 10 Using the ServiceDiscoveryM anager

CoreTip: Know when to use lookup(), and when to use a cache

The cache feature of Ser vi ceDi scover yManager istypically used
by clients that need frequent access to a whole set of services (such
as browsers), or clientsthat are running on high-resource platforms.

Thel ookup() method, on the other hand, is most commonly used
by clients that need accessto only one (or a few) particular services,
or by clients running in resource-constrained environments.

Miscellaneous Methods

After the | ookup() methods, there are a handful of useful utility methods on
Servi ceDi scover yManager . The get Di scover yManager () and get Lease-
Renewal Manager () methods return the Di scover yManagenent object and
LeaseRenewal Manager object in use, respectively. If you explicitly passed in
instances in the constructor, these methods will return these same objects; oth-
erwise, they will return the implicit objects created by the Ser vi ceDi scov-
er yManager .

The termi nat e() method is used to shut down the Ser vi ceDi scovery-
Manager . Specifically, this meansthat all Di scover yLi st eners and Renot e-
Event Li st ener s will be removed, and any leases on event registrations will be
cancelled. All internal threads will also be stopped.

Much asin the case of Joi nManager, calingt erni nat e() isanirreversible
operation. Calling any method on Servi ceDi scover yManager after calling
termi nat e() will resultinaRunt i meExcept i on.

Receiving Remote Events

You've no doubt noticed that some of the methods of this class raise Renot e-
Except i onswhile others do not. This is because the methods that raise Reno-
t eExcept i ons (including cr eat eLookupCache() and the blocking versions
of 1 ookup()) register remote event listeners with lookup services so that they
can be informed of changesin the set of available services.

Thisfact isn’'t amere curiosity of the implementation, though—it puts require-
ments on you to ensure that your client program correctly exports the listener
code that lookup services will use to call back to the Ser vi ceDi scover yMan-
ager.

Remember that remote events are delivered from one JVM to a listener in
another. The actual mechanics of how this happens are that the listener is defined
as an RMI remote object, typically extending j ava. r mi . Uni cast - Renot eCb-

Supporting Classes

j ect. The stub for this object is automatically downloaded into the caller—the
program that will generate the remote event—so that it can know how to connect
back to the receiving listener.

Just like any remote event listener, Ser vi ceDi scover yManager comes with
alistener class that will receive events, and an r ni c-generated stub class that is
meant to be downloaded into callers. Even though the stub comes as a part of the
standard Jini client libraries, it is your responsibility to provide the facilities for
this stub to be downloaded by lookup services.

The common way to do thisisto extract the stub class along with the classes it
uses from the Jini JAR files and bundle them into a separate JAR file that will be
served by the client’'sHTTP server. You can, of course, bundle theseinto the JAR
file that contains any other client-exported code so that you have everything in
one place. After doing this, you must set a codebase that tells the lookup service
where the needed code can be found.

The stub class is called net.jini.l ookup. ServiceDi scoveryMan-
ager $LookupCachel npl $LookuplLi st ener _St ub. cl ass, and it lives in
jini-ext.jar.Thisclassdependsonly onnet.jini.core. event. Renot e-
Event Li st ener. cl ass, from jini-core.jar. While technicaly you don’t
need to export the class file for the Renot eEvent Li st ener interface—because
any lookup service should already have it—it's a good idea to keep al necessary
code together, just in case.

Remember that you must make some provision for exporting these class files,
or the methods on Ser vi ceDi scover yManager that use events—which are the
most powerful and useful methods—will not be useable by youl!

In the interest of keeping the descriptions of how to run the example programs
short, | will take the expedient approach of simply placing these classfilesin the
client’s downloadabl e code directory, where they will be served by the “normal”
HTTP server that exports the rest of the client’s code. | would recommend pro-
ducing a single JAR file of all downloadable code exported by the client for a
“production” system, though.

Supporting Classes

Asyou saw above, there are a number of supporting classes used alongside the
Servi ceDi scover yManager .

,g?

S

Chapter 10 Using the ServiceDiscoveryM anager

L ookupCache

For many clients, the most common idiom of using the Ser vi ceDi scovery-
Manager will beto create one or more LookupCaches, each of which reflectsa
different pool of services that the client is interested in. LookupCache is actu-
aly an interface, which alows future implementations of Servi ceDi scov-
eryManager to provide different sorts of caches, perhaps with different
performance characteristics.

The cache provides a handful of methods that allows clients to retrieve ser-
vices out of the cache, and ask the cache to notify them upon changes.

package net.jini.| ookup;

public interface LookupCache {
public Serviceltem | ookup(ServiceltenFilter filter);
public Servicelten{] |ookup(ServiceltenFilter filter,
i nt maxMat ches);

public void addLi stener(Servi ceDi scoverylListener 1);
public void renoveli st ener(Servi ceDi scoverylLi stener 1);

public void discard(Object serviceReference);
public void term nate();

The | ookup() methods work similarly to the versions in Ser vi ceDi scov-
er yManager that you saw before, with a couple of important differences. Firdt,
these methods do not take the Ser vi ceTenpl at e parameter. This is because
they do not actually cause any network traffic to go between the client and the
lookup service. Instead, the query is answered completely from the services that
happen to be contained in the cache at the time the call to | ookup() is made.
Recall that the contents of the cache will eventualy be al of the services that
match both the template and the filter specified when the cache was set up (I say
“eventually” because it may take sometime for the cacheto fill). The Ser vi ce-
I tenFilter provided here alows you to further refine the services you select
from the cache.

A second difference isthat both versions of | ookup() here are non-blocking.
Thefirst will return amatching Ser vi cel t emif it existsin the cache, or null oth-
erwise, but will return immediately. Likewise, the second will return a matching
array of Serviceltens, or an empty array if no matches exist, but will still
return immediately. Again, this behavior is because both of these methods

Supporting Classes

involve no remote calls—they go directly to the cache and try to satisfy the
requests based on the information available locally.

While the | ookup() calsalow youto “poll” the cache to find out if desired
services are available, sometimes you may want the cache to asynchronoudy
notify you when services are available. Thus, the LookupCache provides away
for you to install and remove listeners for service-related events. The addLi s-
tener () and renoveli st ener () methods let you install and uningtall Ser -
vi ceDi scoveryLi steners that will be caled when services are added,
removed, or changed. (See below for details on Ser vi ceDi scover yLi st eners
and the Ser vi ceDi scover yEvent s that they will receive.)

Finally, the last two methods are used for housekeeping in the cache. The
terni nat e() method simply shuts down all of the activities of the Lookup-
Cache: It halts al threads and cancels any event registrations with lookup ser-
vices. This method is irreversible, and is typically caled when the client is no
longer interested in the contents of the cache.

The di scar d() method is used to drop a service from the cache. The argu-
ment here should be the service's proxy object. Once a proxy has been dropped,
al references to it in the cache are removed, and the cache's Ser vi ceDi scov-
eryLi st ener s will benotified. This operation is often doneif aservice seemsto
have failed or has become unreachable—you will usually detect this because the
service's proxy will begin to raise Renot eExcept i ons. Discarding the service
means that the service may be rediscovered later, if it recovers and registersitself
with lookup services.

Core Note: Under standing the semantics of discard

As mentioned, calling di scar d() causes a reference to a service to
be dropped from the cache so that it can be rediscovered. Generally,
the only time you will explicitly discard a service is when it seemsto
have failed—meaning that attempts to use its proxy result in

Renot eExcept i on being thrown.

If the service has genuinely crashed or been shut down then, over
time, its registrations with lookup services will expire. When the
service comes back online, it will reregister with these lookup
services, the lookup cache will detect this fact, and the service will
be rediscovered and added to the cache once again. Any listeners
registered with the cache will be notified.

Thereis, however, an insidious condition which the LookupCache
must deal with. What happensiif the service hasn't actually crashed,
but merely become unreachable because of some network partition?
In this case, your attemptsto use it will certainly result in

Chapter 10 Using the ServiceDiscoveryM anager

Renot eExcept i ons being raised. But it may be possible, depending
on the partition, that the serviceis still in perfect communication
with all of the lookup services with which it is registered!

In this case, the service will never * reappear” in the lookup
service, since it will never have left it. Does this mean that the
LookupCache will never rediscover the service, and that it is lost
forever?

Fortunately, no. The algorithm that the LookupCache usesto
determine when a service is to be rediscovered is a bit more complex
than you might first think; it can be helpful to understand how this
works in case you're debugging problems with service discovery.

When you first call di scard() on a service, the LookupCache
removes the reference to the service from the cache. But it also keeps
a copy of thisreference in a separate “ limbo” storage area. It then
waits for a some amount of time to pass; typically this will be some
span that islonger than the typical lease duration with a lookup
service. If, during this interval, the service disappears from the
lookup services, then the cache assumes that the service has in fact
crashed, and removesits reference fromthe limbo area. If the service
returns later, it will then be rediscovered.

However, if this timeout elapses and the service is still registered
with the lookup services, the cache assumes that the service has not
actually crashed—since it is apparently renewing its leases with the
lookup services. In this case, the service is then “ rediscovered” by
the cache, and its reference is moved from limbo back into the
cache'sregular storage space. Any listeners are informed of this
fact. This mechanism provides a way for the cache to recover from
network partitions and “ rediscover” inaccessible services, even if
those services have never left the community.

The timeout period can be controlled by the property
com sun. jini.sdm di scardvait, andis set to 10 minutes by
default (which is twice the maximum lease granted by reggie).

Servicel temFilter

The Ser vi cel tenfFi | t er interface provides away to do client-side “filtering”
of service query results. The basic idea is that you provide a class that imple-
ments the Servi cel t enFi | ter interface to cals that create caches or do a
I ookup() . Any results returned by matching a Ser vi ceTenpl at e are returned

Supporting Classes

to your client, where your filter gets a chance to veto whether a service should
be returned.

package net.jini.| ookup;

public interface ServiceltenFilter {
publ i c bool ean check(Serviceltemiten);

}

The check() method will be caled to evaluate whether a service is consid-
ered to match the filter. The filter should return true if the service matches, or
false otherwise.

Filtering provides you with away to do searches that are impossible using the
standard Ser vi ceTenpl at e semantics. For example, you can write filters that
apply numerical comparison tests to attributes.

ServiceDiscoveryListener

The Ser vi ceDi scover yLi st ener interface is used by clients that wish to be

asynchronously notified of changes in the available services known to a Look-

upCache. You can install a Ser vi ceDi scover yLi st ener when you first cre-

ate acacheviaacall to cr eat eLookupCache() , and you can also add listeners

after the fact by calling addLi st ener () directly on the LookupCache.
Theinterfaceitsalf isfairly smple:

package net.jini.| ookup;

public interface ServiceDi scoverylListener {
public void servi ceAdded(Servi ceDi scoveryEvent event);
public void servi ceChanged(Servi ceDi scoveryEvent event);
public void servi ceRenoved(Servi ceDi scoveryEvent event);

In many ways, the information available through this interface is analogous to
the information available through the low-level Servi ceEvent s that are sent
from lookup services. The primary differences are that the Ser vi ceDi scover y-
Li st ener methods are locally invoked from the cache (rather than remotely by
the lookup service), and correspond to changes in the cache rather than just one
particular lookup service. This means that the LookupCache will try to coalesce
multiple Ser vi ceEvent s into single Ser vi ceDi scover yEvent s.

Why is this? Think about how services are registered in Jini. Typicaly, a
service will start up and join any and all lookup services that it finds that are

AJ
4

,w,

Chapter 10 Using the ServiceDiscoveryM anager

“relevant” (meaning that they are members of a group, or named by alocator,
that the service is searching for). So any given service will usually be regis-
tered with many lookup services. The LookupCache will register with each of
these to receive notifications in changes in the set of services each provides.

But of course, when you're interested in a service, you typically just want
to acquire a referenceto it, not all referencesto it. So the LookupCache, even
though it receives multiple Ser vi ceEvent s about a given service, will typi-
cally generate only a single corresponding event to its listeners.

Thisis donein the following way:

» Theservi ceAdded() method is called when a cache receives
notification that a service has been registered for thefirsttimeina
community. This means that even if aservice registersitself with
multiple lookup services, the cache will notice these multiple
registrations, determine that the multiple registrations are for the
same service, and generate only one invocation of ser vi ce-
Added() .

e TheserviceRenoved() method is called when aservice
disappears from all of the lookup servicesthat it knows about.
The method will not be called if aserviceisdropped merely from
one of aset of lookup services with which it is registered.

» Theservi ceChanged() method isinvoked once for each
distinct change in attributes it detects. That is, the cache keeps
one “canonical” set of attributes associated with each servicein
the cache. When the attributes change at one lookup service, the
cache updatesits record of the service's attributes and generates
an event. Future notifications of updates do not generate events, if
those updates produce attributes that are the same as those
already known to the cache. Typically, when aservice changesits
attributes, it does so by updating each lookup service with which
itisregistered. Thefirst such change will be detected by the
cache and will result in an event. Asthe other lookup services are
updated to the same attribute set, further events are not generated
by the cache.

* Finally, theser vi ceChanged() method isinvoked when a
unique change occurs in the service's proxy object.

Be sure to note that the servi ceChanged() method, in addition to being
called when an attribute on a service changes, will also be called when the proxy
for a service changes. This may happen if a service updates or revises its pub-
lished proxy. But, two proxies for the same service that are registered at different

Supporting Classes

lookup services may not be “equa” if you don't take specid precautions. If you
write your own services, you should be aware that proxies that have inconsistent
equality comparisons with each other can cause the LookupCache to report that
aproxy has changed.

CoreAlert: Controlling proxy changes

As a service writer, you will often want to have control over whether
the proxies for your service are considered equal to, or different
from, each other. The best way to do this—and a good rule of thumb
to follow in any case—is to override the equal s() and hashCode()
methods on your service proxies.

Think about what happens if your service registersitself at
multiple lookup services. Each registration will result in a new copy
of the proxy being stored at each of those lookup services. If your
service doesn’'t override equal s() and hashCode() , you've
effectively given up control over how the LookupCache will
determine if these proxies are the same or not. And, without doing
anything explicit, the default implementation of these methods is
likely to report that each proxy is different from all others, resulting
in many ser vi ceChanged() invocations.

(If your proxies are simply RMI stubs, then you'll get the correct
behavior—since stubs override equal s() and hashCode() to be
based on whether the remote objects referred to by the stubs are
egual to each other. If, asis commonly the case, you're using smart
proxies that contain a single remote reference to a back-end server, a
common implementation for equal s() isto simply invoke the
equal s() method on the remote reference.)

The rule of thumb is to always provide “ smart” implementations
of these two methods on your service proxies. Remember that if two
objects are equal to each other, they must return the same hash code.

ServiceDiscoveryEvent

The Servi ceDi scoveryEvent encapsulates the information about service
changes, additions, and removals that the LookupCache produces.

package net.jini.l| ookup;

public class ServiceDi scoveryEvent
extends java.util.Event Object {

Chapter 10 Using the ServiceDiscoveryM anager

/1l ... constructor elided ...
public Serviceltem get Post Event Servi celtem();
public Serviceltem getPreEvent Servicelten();

The declaration here doesn’t show the constructor for the class, sinceit’s only
of interest to the implementors of the LookupCache class. The two methods of
interest here are get Post Event Ser vi cel t en(), which returns the Ser vi ce-
Item for the changed service after the change has taken place, and get -
PreEvent Servi cel t en(), which returns the Ser vi cel t em for the changed
service before the change has taken place.

If the event is being sent because a service was removed, then get -
Post Event Servi cel ten() will return null. Likewise, if the event is sent
because a service was added, get PreEvent Ser vi cel t en() will return null. If
the service merely changed (it wasn't added or removed), then neither will return
null—the pre-event method returns the state before the change and the post-event
method returns the state after the change.

Neither of these methods actually copy the cached Servi cel t em before
returning it, since this can be a potentially expensive operation. So you should
take care to not maodify the Ser vi cel t ens returned by these methods, or you
will seriously corrupt your LookupCache.

The only other method of interest on this class is get Sour ce(), which is
inherited fromj ava. uti | . Event Qbj ect . This method will return the Lookup-
Cache that generated the event.

CoreTip: Troubleshooting multiple service events

One common problem symptom when you use the event facilitiesin
the Ser vi ceDi scover yManager isthat you may receive mulitple,
repeated Ser vi ceDi scover yEvent s for the same service. Often
these will show the service constantly appearing and disappearing
rapidly.

Such problems are typically the result of one of two errors. The
first, and easiest to fix, is that you are not correctly exporting the
remote event listener that the Ser vi ceDi scover yManager USeSto
receive events. Without this working, the
Ser vi ceDi scover yManager will be unable to correctly determine
when services come or go after initial discovery time See the section,
Receiving Remote Events for details.

The second, and somewhat more insidious cause, results from
services that do not properly override equal s() and hashCode()

A Basic Example

on their proxies. This means that each proxy registration islikely to
look like a new and different proxy version to the
Ser vi ceDi scover yManager , resulting in unnecessary events. See
the section on Ser vi ceDi scover yLi st ener for details.

If you're experience this symptom, check both of these potential
causes.

A Basic Example

In this example, you'll see how to use the Ser vi ceDi scover yManager in its
most straightforward settings. The example demonstrates how to use both the
blocking and non-blocking forms of lookup, as well as the LookupCache. You
should pay special attention to the output of this program! Misunderstanding
how the Ser vi ceDi scover yManager reportsits resultsis a common source of
errors.

Look at the codein Listing 10-1:

Chapter 10 Using the ServiceDiscoveryM anager

Listing 10-1 ClientLookupExample.java
/'l Explore the ServiceD scoveryManager

package corejini.chapterl0;

i mport net.jini.core.lookup. Serviceltem

i mport net.jini.core.lookup. ServiceTenpl at €;

i mport net.jini.lookup.ServiceDi scoveryManager;

i mport net.jini.lookup.LookupCache;

i mport net.jini.lookup.ServiceltenFilter;

i mport net.jini.lookup.ServiceDi scoverylLi stener;
i mport net.jini.discovery.LookupDi scoveryManager;
i mport net.jini.lease.LeaseRenewal Manager;

i mport java.io.| OException;

i mport java.rm .RenoteException;

i mport java.rm .RM SecurityManager;

i nport corejini.chapter9. Servicel nf oSear cher;

public class dientLookupExanple {
protected LookupDi scoveryManager di scoveryMyr;
prot ect ed LeaseRenewal Manager | easeMyr;
protected Servi ceDi scoveryManager | ookupMyr;

public dientLookupExanmpl e() throws | OException {
if (System getSecurityManager() == null) {
Syst em set Securi t yManager (
new RM SecurityManager());

}

| ookupMgr =
new Servi ceDi scoveryManager (null, null);

A Basic Example

Listing 10-1 ClientLookupExample.java (continued)

/'l Subcl asses may override. .
public ServiceDi scoveryLi stener getListener() {
return null;

}

/'l subcl asses may override. .
public ServiceltenFilter getFilter() {
return null;

}

/1 Do a bit of work here..
public void runTests() {
ServiceTenplate tnmpl =
new ServiceTenplate(null, null, null);
Serviceltem service = null

service = | ookupMyr. | ookup(tnpl, null);

if (service == null) {
System out. printl n(“Non-bl ocking | ookup “ +
found no services.”);
} else {
System out. print (“Non- bl ocki ng | ookup found: *);
Servi cel nf oSear cher. pri nt Servi cel nf o(service);

}

try {
service = | ookupMyr. | ookup(tnpl, null, 20000);

} catch (RenpteException ex) {

Systemout.printin(“Error: “ + ex);
} catch (InterruptedException ex) {
}
if (service == null) {
System out. println(*“Bl ocking | ookup found “ +
“no services.”);
} else {
System out. print (“Bl ocking | ookup found: “);
Servi cel nf oSear cher. pri nt Servi cel nf o(service);
}

LookupCache cache = null

Chapter 10 Using the ServiceDiscoveryM anager

Listing 10-1 ClientLookupExample.java (continued)

try {
cache = | ookupMyr. cr eat eLookupCache(t nmpl,

getFilter(),
get Listener());
} catch (RenpteException ex) {
Systemout.println(“Error: “ + ex);

}

service = cache. | ookup(null);

if (service == null) {
System out. println(“Cache | ookup found “ +
“no services.”);
} else {
System out . print (“Cache | ookup found: “);
Servi cel nf oSear cher. pri nt Servi cel nf o(service);

}

Systemout. println(“Pausing...”);
try {

Thr ead. sl eep(5000) ;
} catch (Exception ex) {

}

Systemout.println(“Trying again...”);

service = cache. | ookup(null);

if (service == null) {
System out. println(“Cache | ookup found “ +

“no services.”);

} else {
System out. print(“Cache | ookup found: “);
Servi cel nf oSear cher. pri nt Servi cel nf o(service);

}

Systemout.println(“Getting all cached services.”);
Servicelten]] services = cache. | ookup(null
I nt eger. MAX_VALUE) ;

A Basic Example

Listing 10-1 ClientLookupExample.java (continued)

if (services == null || services.length == 0) {
Systemout.println(“No services in cache”);
} else {
for (int i=0 ; i<services.length ; i++) {

Systemout.print(“[“ + i + “] “);
Servi cel nf oSear cher. print Servi cel nf o(
services[i]);

}

cache.term nate();

}

public static void main(String[] args) {
try {
Cl i ent LookupExanple cle =
new O i ent LookupExanpl e();
cle.runTests();
} catch (I OException ex) {
Systemerr.println(ex.toString());

}

System exit(0);

The mai n() for this example creates an instance of C i ent LookupExanpl e
and then callsrunTest s(), which exercises the Ser vi ceDi scover yManager .
Note that the constructor for the example installs a security manager—which it
must do in order to download code, just the same as all the rest of the examplesin
this book—and creates a new Ser vi ceDi scover yManager , passing in nulls as
arguments. This causes the Servi ceDi scover yManager to create its own
LookupDi scover yManager and LeaseRenewal Manager .

Mogt of the work here happensinrunTest s() . The code exercisesthe Ser -
vi ceDi scover yManager in severa ways. Fird, it cals | ookup() directly,
using the non-blocking APIs. In this example, the program always uses a tem-
plate that matches all services. After this, it tries the blocking version of
| ookup() with await duration of 20000 milliseconds (20 seconds). It then cre-
atesalLookupCache, andinvokes! ookup() onit tofetch aservice. Note that
the code callsget Fil ter () and get Li st ener () to get aServicel tenfFil -

Chapter 10 Using the ServiceDiscoveryM anager

ter andaSer vi ceDi scover yLi st ener to use when creating the cache. In this
example, these methods always return null; later examples will override these to
test filtering and event processing. The code then deeps for a few seconds, does
another lookup, and—finally—prints out the entire contents of the cache. Any
servicesthat are found are printed by calling the pri nt Ser vi cel nf o() method
from the earlier Ser vi cel nf oSear cher program.

While this example may seem to be going al over the map, invoking
| ookup() over and over again, first on the Ser vi ceDi scover yManager and
then on the LookupCache, it's important to understand the different behaviors
that these calls can produce. So, the next step is to move on and compile the
example and see what it does.

Compiling and Running the Example

Compile this example using the standard operating procedure. Remember that
the client will need to export downloadable code to services. For this to work,
you must ensure that you're running an HTTP server to export the client's
downloadable code. Refer back to the client examples in Chapter 5 if you
haven't started this Web server.

OnWndows:

javac -classpath C\files;
C\jinil_2\lib\jini-core.jar;
C\jinil_1\lib\jini-ext.jar;
C\jini1_2\Ilib\sun-util.jar;
C\client
-d C\client
C\files\corejini\chapter10\d ientLookupExanple.java

The one extra step you must take is to ensure that the class files for the Ser -
vi ceDi scover yManager 's remote event listener are also exported correctly!
Here, I'm taking the quick-and-dirty approach of extracting the needed files
from the Jini JARs directly into the client’s download directory. This makes
them available from the same codebase, and uses the same HTTP server, asthe
rest of the client’s code.

The syntax to extract a single file from a JAR isjar xvf <jar_file>
<file_to_extract>. Makesureyou'reintheclient-dl directory whenyou
run the extraction commands.

cd C\client-dl
jar xvf C\jinil _1\lib\jini-ext.jar net\jini\lookup\Service-
Di scover yManager $LookupCachel npl $LookupLi st ener _St ub. cl ass

A Basic Example

jar xvf C\jini1_2\lib\jini-core.jar
net\jini\core\event\Renot eEvent Li st ener. cl ass

If you look at the contents of thecl i ent - dI directory, you should seethat j ar
created anet directory, aswell as subdirectories, to contain the classfiles.

java -cp C\jinil_2\lib\jini-core.jar;
C\jinil_Nlib\jini-ext.jar;
C\jini1_2\Ilib\sun-util.jar;
C\client
-Djava. security. policy=C \files\policy
-Djava. rnm . server. codebase=http:// nyhost: 8086/
corejini.chapter10.d ientLookupExanpl e

On UNIX:

javac -classpath /files:
/files/jinil 1/lib/jini-core.jar:
[files/jinil _1/1ib/jini-ext.jar:
/files/jinil 1/1ib/sun-util.jar:
/[files/client

-d /files/client
/files/corejini/chapter8/ CientlLookupExanple.java
C.\files\corejini\chapter10\d i ent LookupExanpl e.java

The one extra step you must take is to ensure that the class files for the Ser -
vi ceDi scover yManager 's remote event listener are al'so exported correctly!
Here, I'm taking the quick-and-dirty approach of extracting the needed files
from the Jini JARs directly into the client’s download directory. This makes
them available from the same codebase, and uses the same HTTP server, as the
rest of the client’s code.

The syntax to extract a single file from a JAR isjar xvf <jar_file>
<file_to_extract>. Makesureyou'reintheclient-dl directory whenyou
run the extraction commands. On most UNIX shells, you will have to preface the
dollar sign character by abackdash to “escape” it.

cd /files/client-dI
jar xvf [files/jinil 1/lib/jini-ext.jar net/jini/lookup/Ser-
vi ceDi scover yManager \ $LookupCache-
| npl \ $LookuplLi st ener _St ub. cl ass
jar xvf /[files/jinil_1/lib/jini-core.jar
net/jini/corel/ event/ Renot eEvent Li st ener. cl ass

Chapter 10 Using the ServiceDiscoveryM anager

If you look at the contents of thecl i ent - dI directory, you should see that j ar
created anet directory, as well as subdirectories, to contain the classfiles.

java -cp /files/jinil 1/1ib/jini-core.jar:
/files/jinil _1/1ib/jini-ext.jar:
/files/jinil _1/1ib/sun-util.jar:
/[files/client
-Djava. security. policy=/files/policy
-Djava. rm . server. codebase=http:// nyhost: 8086/
corejini.chapter10.d ient LookupExanpl e

The results that you see will actually vary depending on the performance of the
machine you run the example on, and the performance of the machines running
lookup servicesin your community. Here's a sample run, though:
Non-blocking lookup found no services.
Blocking lookup found: Name = Lookup
Manufacturer = Sun Microsystems, Inc.
Vendor = Sun Microsystems, Inc.
\erson = 1.1 alpha
Model =
Serial Number =
Proxy is com.sun.jini.reggie.Registrar Proxy@af330156
Cache lookup found no services.
Pausing...
Trying again...
Cache lookup found: Name = Address Book Service
Manufacturer = Xerox PARC
Vendor = Xerox PARC
\erson= 1.0
Model = null
Serial Number = null
Proxy is com.xerox.dispatch.addressbook. AddressBookServiceProxy@0
Getting all cached services...
[0] Name= Address Book Service
Manufacturer = Xerox PARC
\endor = Xerox PARC

Verson= 1.0
Model =
Serial Number =

Proxy is com.xerox.dispatch.addressbook. AddressBookSer viceProxy@0
[1] Name= Lookup

D s
A Basic Example &79’%
> \

Manufacturer = Sun Microsystems, Inc.
Vendor = Sun Microsystems, Inc.

Verson= 1.0
Modd =
Serial Number =

Proxy is com.sun.jini.reggie Registrar Proxy@f16dfd46
[2] Name= Authentication Service

Manufacturer = Xerox PARC

Vendor = Xerox PARC

Verson= 1.0
Modedl =
Serial Number =

Proxy is com.xerox.dispatch.authenti cator. Authenti cator Proxy@0
[3] Name= Lookup

Manufacturer = Sun Microsystems, Inc.

\endor = Sun Microsystens, Inc.

\Version = 1.1 alpha

Model =

Serial Number =

Proxy is com.sun.jini.reggie Registrar Proxy@af330156

Note that, here, thefirst call tol ookup() returns null while the second findsa
valid servicel Remember that invoking | ookup() on the Ser vi ceDi scovery-
Manager only searchesfor services on the lookup servicesthat have been discov-
ered so far. In this run, the first call to | ookup() happens before any lookup
services have been found, so it returns null. The second blocks for afew seconds,
and then gives a chance for some lookup services to be discovered, so it returnsa
service. These two similar cals produce different results, and you should make
sure you understand why.

After this, the program creates and exercisesthe LookupCache. Thefirst oper-
aionisto cal | ookup() on this cache. In the example run you see here, notice
that the cache returns no service. Thisisbecause calling | ookup() onthe cache
only returns results that have already been stored in the cache. In this case, the
cache has not yet been filled with any services and so nothing is returned. After
deeping for a bit, the next call to | ookup() returns a service. Again, it'simpor-
tant to notice the differences here. Even though prior callsto | ookup() on the
Servi ceDi scoveryManager itself may return results, here the cdl to
| ookup() on the cache returns nothing. A later call, made after apause, returnsa
service because the cache has had a chance to fill.

Chapter 10 Using the ServiceDiscoveryM anager

Finally, the example dumps out all of the services in the cache; in this exam-
ple, there are severa—they’ve just taken afew moments to show up.

Be sure you understand the differences in behavior between the “raw” Ser -
vi ceRegi strar version of | ookup() and the versions here. The versions here
have timing dependencies that do not exist in the Ser vi ceRegi strar verson—
and these timing dependencies are acommon source of confusion when using the
Ser vi ceDi scover yManager . Even though you must understand these differ-
ences, most users will still prefer to use the LookupCache, since it provides so
many benefits (the ability to search for services across many lookup services, the
fact that it essentialy “hides’ the existence of lookup servicesat all, the ability to
run client-side filtering predicates, and so on).

Using Filters

Listing 10-2 demonstrates how to use Ser vi cel t enFi | t er s. In this program,
you'll see three filters, and learn how to combine them together to extract spe-
cific servicesin waysthat areimpossible using just Ser vi ceTenpl at es.

Using Filters

Thefirg filter shows how you can do substring matching of attributes. Thisfil-
ter allowsyou to find al servicesthat contain agiven string inthe vendor field of
their Ser vi cel nf o atributes.

Li sting 10-2 Servi cel nfoVendorFilter.java

/!l Afilter that matches servi ces whose Servicel nfo. vendor
/1 contains a given substring.

package corejini.chapterl0;

i mport net.jini.core.lookup. Serviceltem
i mport net.jini.lookup.ServiceltenFilter;
import net.jini.lookup.entry. Servicelnfo;
inmport net.jini.core.entry.Entry;

public class ServicelnfoVendorFilter
i mpl ements ServiceltenFilter {
protected String substring;

public ServicelnfoVendorFilter(String substring) {
this.substring = substring;

}

public bool ean check(Serviceltemiten) ({
Entry[] attrs = itemattributeSets;
for (int i=0; i<attrs.length ; i++) {
/1 1f it's a Servicelnfo or subcl ass
i f (Servicelnfo.class.isAssignabl eFron(
attrs[i].getdass())) {
return ((Servicel nfo)
attrs[i]).vendor.indexOh(substring) !'= -1;

}

return fal se;

The Ser vi cel nf oVendor Fi | t er is pretty simple. Instances of the class are
congtructed with a string to search for. The check() method iterates over the
atribute set on the service item, looking for Ser vi cel nf o attributes or its sub-

Chapter 10 Using the ServiceDiscoveryM anager

classes. When one is found, the method simply looks to see if the parameter
occurs as a substring in the vendor string. If it does, the method returns true.

The second filter is a little more complicated. It lets you match services that
have a certain version number in the versi on fields of their Servi cel nfo
attributes. Using this filter, you can find services that are exactly at a given ver-
sion (say, version “1.0.1"), or services that are greater than a given version (ver-
son“1.2.7" isgreater than version “1.2" or version “1.2.6").

Version numbering isablack art at best, and this particular filter (Listing 10-3)
only makes a best effort attempt at comparing versions. But, it shows the power
of being able to use arbitrary filters to prune the set of matched services.

Li sting 10-3 Servi cel nfoVersionFilter.java

/1 Afilter that matches servi ces whose Servicel nfo. version
/'l matches a search paraneter

package corejini.chapterl0;

i mport net.jini.core.lookup. Serviceltem

i mport net.jini.lookup.ServiceltenFilter;
i mport net.jini.lookup.entry. Servicelnfo;
inmport net.jini.core.entry.Entry;

import java.util.Arraylist;

import java.util.StringTokeni zer;

public class ServicelnfoVersionFilter
i mpl ements ServiceltenFilter {
public static final int EQUAL = 1;
public static final int EQUAL_OR GREATER = 2;

protected String test;
protected String[] testTokens;
protected int cond;

public ServicelnfoVersionFilter(String test, int cond){
this.test test;
t his.cond cond;
t est Tokens = nmakeVer si onTokens(test);

Using Filters

Li sting 10-3 Servi cel nfoVersi onFilter.java(continued)

/'l Version nunbering is an inexact science, but
/1l this covers nmany cases.
publ i c bool ean check(Serviceltemiten) {
Entry[] attrs = itemattributeSets;
for (int i=0; i<attrs.length ; i++) {
/1 1f it’s a Servicelnfo or subclass
if (Servicelnfo.class.isAssignabl eFrom
attrs[i].getCass())) {
String target = ((Servicel nfo)
attrs[i]).version;

if (target.equals(test)) {
return true;

}

switch (cond) {
case EQUAL:
return fal se
case EQUAL_OR GREATER:
String[] targetTokens =
nmakeVer si onTokens(t arget);

/'l Cycle through each. If any el enent
/1 in target is less than the
/'l corresponding el ement in test,
/'l report false.
int min = Math.nmn(testTokens.|ength
t ar get Tokens. | engt h) ;

Chapter 10 Using the ServiceDiscoveryM anager

Li sting 10-3 Servi cel nfoVersi onFilter.java(continued)

for (int j=0; j<min ; j++) {
try {
int testVal =
I nt eger. parsel nt (test Tokens[j]);
int targetVal =
I nt eger. parsel nt (target Tokens[j]);

if (targetVal < testVal) {
return fal se;
}
} catch (Nunber For mat Excepti on ex) {

Systemerr. println(
“Unexpected format: “ +
test Tokens[i] + “, “ +
target Tokens[i]);

ex. printStackTrace();

}

return testTokens.length <=
t ar get Tokens. | engt h;

}

return false;

Using Filters

Li sting 10-3 Servi cel nfoVersi onFilter.java(continued)

/1l Convert a string of the form1.2.2.1 into a
/1 string array.
static String[] nakeVersionTokens(String v) {
String str = v;
/1 Jettison everything after a space.
if (str.indexOr(*) !'=-1) {
str = str.substring(0, str.indexOr(* “));
}
StringTokeni zer t = new StringTokeni zer(str, “.”");
ArraylList arr = new ArrayList();
whil e (t.hasMoreTokens()) {
arr.add(t. next Token());

}
return (String[]) arr.toArray(new String[0]);

This filter is quite a bit more complicated than the previous one. Instances of
the Ser vi cel nf oVer si onFi | t er are constructed with a string representing a
version and a parameter indicating whether the filter should look for exact ver-
sion matches, or versions that are equal to or greater than the specified version.
Theinput version number is“tokenized” into an array of strings.

The check() method finds any Ser vi cel nf o attribute that is on the service
and checksits version against the original input version. If the two match exactly,
then the predicate method returns true. The complicated case is when thefilter is
looking for versions that are greater than or equal to the input version. The code
here tokenizes the service's version and walks down the two token arrays, pair-
wise matching version numbers. If any token in the input version is greater than
the service's version, the method returns false. While this code isn't perfect, it is
capable of comparing many styles of version numbers correctly.

The previous two filters give you a way to do very flexible matching over
fields of the Ser vi cel nf o attribute. But this begs a question: How can you use
two filters at the same time? The Ser vi ceDi scover yManager APIsonly alow
you to passin asinglefilter to any call to | ookup() or cr eat eLookupCache() .

The answer isto use afilter that can aggregate other filters, and this is exactly
what the third filter example does. Thisfilter lets you connect up other filters by
logical operators (either AND or OR), and evaluates all of them in turn. The

Chapter 10 Using the ServiceDiscoveryM anager

AggregationFilter can be a useful way to chain together sets of filtering
operations, as shownin Listing 10-4.

Li sting 10-4 AggregationFilter.java
/1 Afilter that joins other filters together.
package corejini.chapterl0;

i mport net.jini.core.lookup. Serviceltem
i mport net.jini.lookup.ServiceltenFilter;
import java.util.Arraylist;
inmport java.util.lterator;

Using Filters

Li sting 10-4 AggregationFilter.java(continued)

public class AggregationFilter
i mpl enents ServiceltenFilter {
private ArrayList list = new ArrayList();
private int operator

public static final int AND = 1;// all nust match
public static final int OR = 2;// any must match

public AggregationFilter(int operator) {
if (operator == AND || operator == OR) {
thi s. operator = operator;
} else {
throw new |11 egal Argunment Excepti on(
“Bogus operator”);

}

public void add(ServiceltenFilter filter) {
list.add(filter);

}

publ i c bool ean check(Serviceltemiten) {
if (list.size() == 0) {
return true

}

Iterator iter = list.iterator();

while (iter.hasNext()) {
ServiceltenFilter filter =
(ServiceltenFilter) iter.next();

bool ean result = filter.check(iten);

if (result && operator == OR) {
return true;

}

if ('result &% operator == AND) {
return fal se

}

, ym»‘,«'J

Chapter 10 Using the ServiceDiscoveryM anager

Li sting 10-4 AggregationFilter.java(continued)

/1 If we’ve made it to the end wi thout shortcutting,
/1l then we’re in OR and have seen not hing but fal ses
/1l (and should return false), or we're in AND and
/1 we’ve seen nothing but trues (and should return
/'l true).

return (operator == AND);

The Aggregati onFi | ter is created by specifying an operand that dicates
whether the supplied filters are to be combined by alogical AND operation or a
logical OR operation. Filters are added to the aggregation by the add() method.
The implementation of check() simply iterates through the supplied filters,
evaluating each in turn according to the specified combination rule.

Finally, the last bit of code is an example to show off how these filters work.
Listing 10-5 is an extension of the origina C i ent LookupExanpl e. The only
major differenceisthat the get Fi | t er () method has been overridden to use the
AggregationFilter to connect together a Servi cel nfoVersionFilter
withaSer vi cel nfoVendorFi | ter.

Using Filters

Li sting 10-5 C i ent LookupWthFiltering.java
/'l A version of CientlLookupExanple to use filtering
package corejini.chapterl0;

i mport net.jini.lookup.ServiceltenFilter;
i mport java.io.| OException;

public class CientLookupWthFiltering
extends C i ent LookupExanpl e {
public CientLookupWthFiltering() throws | OException {
}

public ServiceltenFilter getFilter() {
AggregationFilter filt =
new AggregationFilter(AggregationFilter.AND);

filt.add(new Servicel nfoVendorFilter(“Sun”));
filt.add(new ServicelnfoVersionFilter(“1.0",
Servi cel nfoVersi onFi | ter. EQUAL_OR GREATER)) ;

return filt;

}
public static void main(String[] args) {
try {
Client LookupWthFiltering cle =
new C i ent LookupWthFiltering();
cle.runTests();
} catch (Exception ex) {
Systemerr.println(ex.toString());
}
System exit(0);
}

This short snippet of codeissimply an extension of the original Ser vi ceDi s-
cover yManager . The only significant change is that this version overrides the
get Fi | ter () method, which is used when the example creates alookup cache.

Chapter 10 Using the ServiceDiscoveryM anager

Here, get Fil ter () creates an Aggregati onFilter holding a Servi cel n-
f oVendor Fil ter andaServi cel nfoVersionFil ter.

Compiling and Running the Example

Before running, make sure that the class files needed for the Ser vi ceDi scov-
er yManager 's remote event listener are still present in the cl i ent - dl direc-
tory—you’ll need them for this example too. If you've deleted them, follow the
instructions from the earlier example to extract them again.

OnWndows:

javac -classpath C\files;
C\jinil_2\lib\jini-core.jar;
C\jinil_2\lib\jini-ext.jar;
C\jini1_1\lib\sun-util.jar;
C\client
-d C\client
C\files\corejini\chapter10\d ientLookupWthFiltering.java

java -cp C\jini1_2\lib\jini-core.jar;
C\jinil_Nlib\jini-ext.jar;
C\jinil1 _1\lib\sun-util.jar;
C\client
-Djava. security.policy=C \files\policy
-Djava.rm . server. codebase=http:// nyhost: 8086/
corejini.chapterl10.d ientLookupWthFiltering

On UNIX:

javac -classpath /files:
/[files/jinil_1/1ib/jini-core.jar:
[files/jinil 1/lib/jini-ext.jar:
[files/jinil 1/1ib/sun-util.jar:
/[files/client
-d /files/client
/files/corejini/chapter10/d ientLookupWthFiltering.java

java -cp /files/jinil _1/1ib/jini-core.jar:
/files/jinil _1/1ib/jini-ext.jar:
[files/jinil 1/1ib/sun-util.jar:
/[files/client
-Djava. security. policy=/files/policy
-Djava. rm . server. codebase=htt p:// nyhost: 8086/
corejini.chapterl10.d ientLookupWthFiltering

Using Filters

This program runs the same sequence of tests that the previous example ran.
But here you see that the searches involving the cache return only a select few
services—those that contain the string “Sun” in the vendor identification, and
those with aversion greater than or equal to “1. 0.” (Thefirst callsto | ookup()
do not use a filter, and thus here you see a “Xerox PARC’ service being
returned.)
Non-blocking lookup found no services.
Blocking lookup found: Name = Address Book Service
Manufacturer = Xerox PARC
\endor = Xerox PARC

Verson= 1.0
Modedl =
Serial Number =

Proxy is com.xerox.dispatch.addressbook. AddressBookSer viceProxy@0
Cache lookup found no services.
Pausing...
Trying again...
Cache lookup found: Name = Lookup
Manufacturer = Sun Microsystems, Inc.
\endor = Sun Microsystens, Inc.

Verson= 1.0
Modd =
Serial Number =

Proxy is com.sun.jini.reggie.Registrar Proxy@f16dfd46
Getting all cached services...
[0] Name= Lookup

Manufacturer = Sun Microsystems, Inc.

Vendor = Sun Microsystems, Inc.

Verson = 1.1 alpha

Model =

Serial Number =

Proxy is com.sun.jini.reggie Registrar Proxy@af330156
[1] Name= Lookup

Manufacturer = Sun Microsystems, Inc.

\endor = Sun Microsystens, Inc.

Verson= 1.0
Modéd =
Serial Number =

Proxy is com.sun.jini.reggie.Registrar Proxy@f16dfd46

Chapter 10 Using the ServiceDiscoveryM anager

Using Events

The final example of this chapter shows you how to use the event mechanisms
provided by the Ser vi ceDi scover yManager . In both of the earlier examples,
you saw how the LookupCache initialy contained no information. The first
call to 1 ookup() on this cache returned no results; only after waiting for the
cachetofill did | ookup() return servicesto the caler.

For many clients, this will be perfectly acceptable behavior. Certain clients
may be content to examine the contents of the cache only after it has had time to
fill, perhaps after some predetermined blocking period has expired.

Other clients, though, may want fine-grained information about available ser-
vices, asthey become available. A Jini service browser, for instance, may want to
display services to the user as they “trickle in.” You probably wouldn’'t want to
write a browser so that it had to wake up every few seconds and do a | ookup()
on the cache to try to figure out what’s changed.

Such clients will want to use the event mechanisms provided by Lookup-
Cache to get information about changes in the state of the cache, as described in
the discussion of events earlier.

This example presents an extension of the earlier code, modified to install an
event listener to detect changes in the cache. The code you'll see here creates an
instance of aclass called Di f f Li st ener, which isa Ser vi ceDi scoverylLi s-
t ener that prints out information about changes in the state of the cache. Once
this listener is installed, you can see the services trickle in to the LookupCache
between the time the example program first calls| ookup() and after the wait.

Listing 10-6 showsthe codefor Di f f Li st ener .

Using Events

Listing 10-6 Di ffListener.java

/'l A ServiceDi scoverylLi stener that shows what's changed
package corejini.chapterl0;

i mport net.jini.core.lookup. Serviceltem

i mport net.jini.lookup.ServiceDi scoverylLi stener;
i mport net.jini.lookup.ServiceD scoveryEvent;

i mport net.jini.lookup.LookupCache;

inmport net.jini.core.entry.Entry;

public class DiffListener inplenents ServiceDi scoverylLis-

tener {
public DiffListener() {
}
/'l The preEventServiceltemw ||l be null, while the

/'l postEventServiceltemw ||l hold the new y-added

/1 service item

public void servi ceAdded(Servi ceDi scoveryEvent ev) {
System out . println("+++ SERVI CE ADDED");
Serviceltemitem = ev. get Post Event Serviceltem();
printServicelten(item;

}

/'l The preEvent Servi celtem hol ds the new y-renoved
/'l service, while the postEventServiceltemis null
public void servi ceRenoved(Servi ceDi scoveryEvent ev) {
System out. printl n("+++ SERVI CE REMOVED') ;
Serviceltemitem = ev. get PreEvent Serviceltem);
Systemout.println("Service's ID was " +
itemservicelD);

Chapter 10 Using the ServiceDiscoveryM anager

Listing 10-6 Di ffLi stener.java

public void servi ceChanged(Servi ceDi scoveryEvent ev) {
System out . printl n("+++ SERVI CE CHANGED") ;

/1 Get both the pre and post service itens.
Serviceltem pre = ev. get PreEvent Servicelten();

Servi celtem post = ev. get Post Event Servi celten();

/1 This shoul dn't happen!

if (pre == null && post == null) {
Systemout.println("Null service itenms!?");
return;
}
/1 This block of code | ooks at the proxies to determ ne
/1 if they've changed. It also |ooks for some common
/1 error cases...notably, if the proxy is null, chances
// are you've got codebase probl ens.
if (pre.service == null && post.service == null) {
System out. println(
"The service's proxy is still null");
System out. println("Codebase problen?");
} else if (pre.service == null && post.service != null) {

Systemout.println("The service's proxy is no " +
"l onger null");

Systemout. println("Proxy now " + post.service +
G
post. service. get G ass(). get Nane()
+ "))
} else if (pre.service != null && post.service == null) {

System out. println(
"The service's proxy has becone null");
System out. printl n("Check codebase");
} else if (!pre.service.equal s(post.service)) {
Systemout. println("The service's proxy has changed");

Systemout.println("Proxy was: " + pre.service +
pr(e. s;rvi ce.getd ass().get Nane() +
System out. println(" F)’r c)»;y now. " + post.service +
" "+
postf servi ce. get Cl ass(). get Nanme()
)

Using Events

Listing 10-6 Di ffListener.java

// The 1D of a service should *never* change. If it
/1 does change, chances are you've changed the ID
/1 in a Serviceltemin the cache! Renenber that you
/1 should never wite to Serviceltens in the cache.
if (!pre.servicelD. equal s(post.servicelD)) ({
Systemerr.println("Uh oh, the ID has changed");
Systemerr. println(
"Don't muck with the service itens!");

Systemout.printin("ID was: " + pre.servicelD);
Systemout.printIn("ID now. " + pre.servicelD);
} else {

Systemout.printin("ID: " + pre.servicelD);

}

/1 Other changes can happen because of attribute
/1 nodifications. This code doesn't detect those...

}

/1 A helper nmethod to print out a service item
public static void printServiceltem(Serviceltemitem ({
if (item==null) {
System out. println("Bogus: null service itent);

return;
}
if (itemservice == null) {
System out. println("Bogus: service proxy is null");
Systemout. println("This service's codebase is " +
"probably m sconfigured");
} else {
Systemout.println("Proxy: " + itemservice);
Systemout.println("Cass: " +
item service.getC ass().getNane());
}

Systemout.println("ID: " + itemservicelD);

Chapter 10 Using the ServiceDiscoveryM anager

Listing 10-6 Di ffLi stener.java

Entry[] attrs = itemattributeSets;
if (attrs == null || attrs.length == 0) {
Systemout. println("Service has no attributes");
} else {
for (int i=0; i<attrs.length ; i++) {
Systemout.print("[" +i + "] ");

if (attrs[i] == null) {
Systemout.println("null entry (possible " +
"codebase problem");
} else {
Systemout.println(attrs[i]);
}
}

To meet the Ser vi ceDi scoveryLi st ener interface, Di ff Li st ener must
implement three methods. Thefirst, ser vi ceAdded() , is called whenever anew
service has appeared in the cache. The implementation here smply getsthe Ser -
vi cel t emfor the new service and callsthe static method pri nt Ser vi ce() onit
to display some details about the service.

The second method, ser vi ceRenoved(), is called whenever a service has
been dropped from the cache. Typicaly this will be because the service has dis-
appeared from the lookup services for the community. Note that the code here
fetches the Servi cel tem for the service as it existed before the change, by
using get PreEvent Servi celten(). When a service is dropped from the
cache, theget Post Event Ser vi cel t em() method will return null.

Finaly, the last method this class must implement is ser vi ceChanged() .
The implementation of this method shown here does a bit of work to try to figure
out what aspects of the service changed. The code also looks a bit for common
error cases. The method first gets both the pre- and post-event Ser vi cel t ens. It
then examines the proxies for each service. A null proxy typically indicates that
you've got either a problem with codebase (meaning that the code for the proxy
can't be found), or you've got a problem with security (either no security man-
ager, or an overly-restrictive security policy, which means that no non-local code
will be loaded). The method will detect null proxies, and will note if a proxy
becomes null, or ceases to be null. The code here will aso compare the two prox-
ies (using equal s()) to seeif the proxiesreport that they are different.

Using Events

Next, the code compares the IDs for the two service items. Thisisabit of san-
ity checking: recall that services should always use the same ID, everywhere. If
you ever see different service IDsfor the “same” service, then chances are you've
modified one of the Servi cel t ens stored in the cache. Remember that any
Ser vi cel t ems returned to you from the cache should be considered immutabl g
if you change them, you are likely to corrupt the cache.

Change events for services will often be sent because the set of attributes on a
service changes. This code, unfortunately, doesn’t detect such changes. You could
easlly modify it to walk over the two sets of attributes, seeing if attributes were
added, removed, or modified.

Next, take alook at the final extension of the main example codein Listing 10-7:

Chapter 10 Using the ServiceDiscoveryM anager

Li sting 10-7 d i ent LookupWt hEvents. j ava

/'l A version of CientlLookupExanpl e that uses events
package corejini.chapterl0;

i mport net.jini.core.lookup. ServiceTenpl at €;

i mport net.jini.core.lookup. Serviceltem

i mport net.jini.lookup.ServiceDi scoverylLi stener;
i mport net.jini.lookup.LookupCache;

i mport java.io.l OException;

public class dientLookupWthEvents extends O i ent LookupEx-
ampl e {
protected ServiceDi scoverylLi stener nyLi stener;

public dientLookupWthEvents() throws | CException {
Systemout.println("Creating with events");
nyLi stener = new Di ffListener();

}

public ServiceDi scoveryLi stener getListener() {
return mylLi st ener;

}

public static void main(String[] args) {
try {
Cli ent LookupWt hEvents cle =
new O i ent LookupWt hEvent s();

cle.runTests();
} catch (Exception ex) {
Systemerr.println(ex.toString());

}

System exit(0);

This class is a very short extension of the first C i ent LookupExanpl e. The
only substantial change hereisthat the get Li st ener () method isoverriddento
return an ingtance of the Di f f Li st ener class.

Using Events

If you look back to O i ent LookupExanpl e, you'll seethat get Li st ener ()
is caled when the program first creates its LookupCache. The listener that is
returned from this call is ingtalled so that it will receive Ser vi ceDi scovery-
Event s asthe cacheis updated.

Compiling and Running the Example

Once again, before running, make sure that the class files needed for the Ser -

vi ceDi scover yManager 's remote event listener are till present in the cl i -

ent - dl directory—you’ll need them for this example too. If you've deleted

them, follow the instructions from the earlier example to extract them again.
OnWndows:

javac -classpath C\files;
C\jinil_1\lib\jini-core.jar;
C\jinil_1\lib\jini-ext.jar;
C\jinil1 _1\lib\sun-util.jar;
C\client
-d C\client
C\files\corejini\chapter10\d ientLookupWthEvents.java

java -cp C\jini1_2\lib\jini-core.jar;
C\jini1_1\lib\jini-ext.jar;
C\jini1_2\lib\sun-util.jar;
C\client
-Djava. security. policy=C\files\policy
-Djava.rn . server. codebase=http:// nyhost: 8086/
corejini.chapter10.d ientLookupWthEvents

On UNIX:

javac -classpath /files:
/[files/jinil 1/1ib/jini-core.jar:
[files/jinil 1/1ib/jini-ext.jar:
[files/jinil_1/1ib/sun-util.jar:
[files/client
-d /files/client
/files/corejini/chapter10/dientlLookupWthEvents.java

java -cp /files/jinil 1/1ib/jini-core.jar:
/files/jinil _1/1ib/jini-ext.jar:
/files/jinil _1/1ib/sun-util.jar:
/files/client
-Djava. security. policy=/files/policy

Chapter 10 Using the ServiceDiscoveryM anager

-Djava.rm . server. codebase=http:// nyhost: 8086/
corejini.chapter10.d ientLookupWthEvents

This program runs exactly the same sequence of cals as the first example.
Again, note that the non-blocking lookup finds no services and, more interest-
ingly for the purposes of this example, the call to | ookup() on the Lookup-
Cache also reports that no services were found.
Non-blocking lookup found no services.
Blocking lookup found: Name = Lookup
Manufacturer = Sun Microsystens, Inc.
Vendor = Sun Microsystems, Inc.
\Verson = 1.1 alpha
Model =
Serial Number =
Proxy is com.sun.jini.reggie.Registrar Proxy@af330156
Cache lookup found no services.
Pausing...

After this sequence, however (which is the same as the previous run), you see
anumber of Ser vi ceDi scover yEvent s being received by theDi f f Li st ener.
These events show the changes to the cache as they happen.

+++ SERVICE ADDED

Proxy: com.xerox.dispatch.addressbook.AddressBookSer viceProxy@0

Class: com.xerox.dispatch.addressbook.AddressBookServiceProxy

ID: dbc234f7-defb-4dc4-9a22-97361fd89172

[O] net.jini.lookup.entry.Servicel nfo(name=Address Book Service manufac-
turer=Xerox PARC,vendor=Xerox PARC,version=1.0,model = ,serial Number=)

+++ SERVICE ADDED

Proxy: com.sun.jini.reggie.Registrar Proxy@dd2c2c30

Class: com.sun.jini.reggie.Registrar Proxy

ID: aaf8f7d8-e76c-424a-8862-a37c18da37de

[Q] net.jini.lookup.entry.Servicel nfo(name=Lookup,manufacturer=Sun
Microsystems, Inc.,vendor=Sun Microsystems, Inc.,version=1.0,model=,serial-
Number=)

+++ SERVICE ADDED

Proxy: com.xerox.dispatch.authenticator.Authenticator Proxy@O0

Class: com.xerox.dispatch.authenti cator.Authenti cator Proxy

ID: 3131ea32-e31d-4047-9e21-f1bf4eh95d60

[O] net.jini.lookup.entry.Servicel nfo(name=Address Book Service manufac-
turer=Xerox PARC,vendor=Xerox PARC,version=1.0,model=,serial Number=)

+++ SERVICE ADDED

Proxy: com.sun.jini.reggie Registrar Proxy@af330156

Class. com.sun.jini.reggie.Registrar Proxy

ID: 5b41c161-dab6-47a9-b22a-bbd29cee3cic

[Q] net.jini.lookup.entry.Servicel nfo(name=Lookup,manufacturer=Sun
Microsystems, Inc.,vendor=Sun Microsystems, Inc.,version=1.1
alpha,model=,serial Number=)

After anumber of events have been received, thefinal call to | cokup() shows
the new state of the cache, which reflects the changes represented by the various
Servi ceDi scoveryEvents.

Trying again...
Cache lookup found: Name = Address Book Service
Manufacturer = Xerox PARC
Vendor = Xerox PARC
\erson= 1.0
Modd = null
Serial Number = null
Proxy is com.xerox.dispatch.addressbook. AddressBookSer viceProxy@0
Getting all cached services...
[0] Name= Address Book Service
Manufacturer = Xerox PARC
\endor = Xerox PARC

Verson= 1.0
Mode =
Serial Number =

Proxy is com.xerox.dispatch.addressbook. AddressBookSer viceProxy@0
[1] Name= Lookup

Manufacturer = Sun Microsystems, Inc.

\endor = Sun Microsystems, Inc.

Verson= 1.0
Modedl =
Serial Number =

Proxy is com.sun.jini.reggie.Registrar Proxy@f16dfd46
[2] Name= Authentication Service

Manufacturer = Xerox PARC

\endor = Xerox PARC

Verson= 1.0

Model =

Serial Number =

Chapter 10 Using the ServiceDiscoveryM anager

Proxy is com.xerox.dispatch.authenti cator. Authenti cator Proxy@0
[3] Name= Lookup

Manufacturer = Sun Microsystems, Inc.

Vendor = Sun Microsystems, Inc.

\erson = 1.1 alpha

Model =

Serial Number =

Proxy is com.sun.jini.reggie.Registrar Proxy@af330156

Summary

This chapter has shown the details of how clients interact with lookup services
using the high-level—and very powerful—Ser vi ceDi scover yManager . This
class provides alayer of “insulation” between your application code and the low-
level Ser vi ceRegi strar interface.

The interfaces you've seen here will, in al likelihood, be the most common
APIsyou use when building Jini applications.

What's Next?

In the next chapter, you'll put your newly-found knowledge of lookup services
to good use by building a complete lookup service browser from the ground up.

