

Chapter

Using the

ServiceDiscoveryManager

Topics in This Chapter

• Basics of the

ServiceDiscoveryManager

• Common programming idioms

• Creating

LookupCaches

• Soliciting events

chap10.fm Page 354 Friday, November 17, 2000 12:50 PM

355

Chapter

10

n the previous chapter, you learned how to use the

ServiceRegistrar

interface. This interface, common to all lookup service implementations, is
the “lowest common denominator” API for accessing lookup functionality.

You can count on the basic interfaces for

lookup()

 and

register()

 being
available on every lookup service you encounter.

Now, in this chapter, you’ll learn about how to use the

ServiceDiscovery-

Manager

 class. This class is built using the “raw”

ServiceRegistrar

 interface,
and provides higher level functionality on top of it. In this chapter, you’ll learn
how to use the

ServiceDiscoveryManager

 to maintain client-side caches of
services, search for services, and receive event notifications when services
appear, disappear, or are modified. While you can certainly do all of these func-
tions directly using

ServiceRegistrar

, in most cases, the

ServiceDiscov-

eryManager

 will provide a simpler programming model and more functionality.
I’ll talk about the API provided by this important class, and cover the most

common programming “idioms” that it supports. As you’ll see, the

ServiceDis-

coveryManager

 is a complicated class that can support a number of styles of
interaction. Beginners are often confused by the behavior of this class because
they don’t understand the different ways to use it, and how those programming
styles interact. In this chapter, I’ll cover each of these styles, and provide example
programs that show you practical details about how to use them.

I

chap10.fm Page 355 Friday, November 17, 2000 12:50 PM

356 Chapter 10 Using the ServiceDiscoveryManager

Higher Level APIs for Client Lookup

You’ve no doubt noticed that many of the clients you’ve seen so far exhibit
many of the same behaviors—they discover lookup services, search for desired
services, and solicit events to be informed of changes in the available services.
In the examples in this book, I’ve typically done some bookkeeping to keep
track of the lookup services and service proxies that I’m using. Certainly much
of the

ServiceInfoWatcher

 and

ServiceInfoSearcher

 code from the last
chapter is devoted to these sorts of chores.

There are a number of good reasons for this bookkeeping. First, by holding on
to the proxies for lookup services, you don’t have to reinitiate the costly discov-
ery process if you need to do future queries or event solicitations. Second, by
holding on to the services found at these lookup services, you can very quickly
iterate over the available services, perhaps to present them to a user. Keeping
information about the service IDs of lookup—and other—services allows you to
recognize duplicate registrations, which is a useful thing to do.

Of course, not

all

 clients will, or should, do this bookkeeping. Limited mem-
ory clients, for instance, may be willing to pay the time penalty required to query
lookup services again and again, rather than keeping references to many service
proxies around. But, many clients will follow the “cache and bookkeep” para-
digm. (And, now is probably a good time to point out that many services will
themselves be clients of other services. So, they are likely to follow many of
these same patterns and have the same requirements for bookkeeping.) Sun real-
ized this common behavior and created a class—called the

ServiceDiscov-

eryManager

—to support it in Jini 1.1.

The ServiceDiscoveryManager

The

ServiceDiscoveryManager

 is an incredibly flexible class. It can serve as
a “substitute” for using the raw

ServiceRegistrar

 methods for doing lookup.
It can also create a cache of services based on some search criteria. This cache
can be polled by a client application that wishes to determine what services are
available, and the cache can also deliver events to the client when a service is
added, removed, or changed. One of its benefits is that it largely hides the entire
notion of lookup services and the

ServiceRegistrar

 API. You only deal with
services—the

ServiceDiscoveryManager

 takes care of finding lookup ser-
vices, eliminating duplicate services, and so on. Most client applications writ-
ten to Jini 1.1 or later will use the

ServiceDiscoveryManager

 class as their
sole interface for service location.

chap10.fm Page 356 Friday, November 17, 2000 12:50 PM

The ServiceDiscoveryManager 357

Here is the declaration of the class:

package net.jini.lookup;

public class ServiceDiscoveryManager {
public ServiceDiscoveryManager(

 DiscoveryManagement discoveryMgr,
 LeaseRenewalManager leaseMgr)

 throws IOException;

public LookupCache createLookupCache(
ServiceTemplate tmpl,
ServiceItemFilter filter,
ServiceDiscoveryListener listener)

 throws RemoteException;

public ServiceItem lookup(ServiceTemplate tmpl,
 ServiceItemFilter filter);
public ServiceItem lookup(ServiceTemplate tmpl,
 ServiceItemFilter filter,
 long waitDur)
 throws InterruptedException, RemoteException;
public ServiceItem[] lookup(ServiceTemplate tmpl,
 int maxMatches,
 ServiceItemFilter filter);
public ServiceItem[] lookup(ServiceTemplate tmpl,
 int minMatches,
 int maxMatches,
 ServiceItemFilter filter,
 long waitDur)
 throws InterruptedException, RemoteException;

public DiscoveryManagement getDiscoveryManager();
public LeaseRenewalManager getLeaseRenewalManager();
public void terminate();

}

I’ll cover how the constructor for this class works before jumping in to the
other methods on the class and how they’re used.

The constructor for

ServiceDiscoveryManager

 takes as arguments an
object implementing the

DiscoveryManagement

 interface, and a

LeaseRe-

newalManager

. The semantics are much the same as for the service-side

Join-

Manager

: You can pass in any object that implements

DiscoveryManagement

(typically a

LookupDiscoveryManager

) to have control over the discovery pro-

chap10.fm Page 357 Friday, November 17, 2000 12:50 PM

358 Chapter 10 Using the ServiceDiscoveryManager

cess. You can also pass in your own

LeaseRenewalManager

 if you wish to reuse
an instance of this class that you may already have “sitting around” in your pro-
gram. If you pass null for either of these parameters, a default implementation
will be created (a

LookupDiscoveryManager

 initialized to find lookup services
in the public group, and a “fresh”

LeaseRenewalManager).

Notice that the constructor is declared as raising

IOException

. This is
because the constructor may have to initiate the multicast discovery protocols,
which can cause this exception.

A Word on Usage Patterns

The

ServiceDiscoveryManager

 is a commonly misunderstood class, not
only because it provides a lot of functionality, but because it supports three
broad patterns of usage. Before I continue with the description of the other
methods in the class, I should say a few words about these patterns, how they
work, and how they relate to one another.

In the first pattern, there is no need to create a

LookupCache

 at all. In this
style of use, you only need to create a

ServiceDiscoveryManager

 and then
invoke whichever version of

lookup()

—on the

ServiceDiscoveryManager

itself—that is applicable to the needs of your application.

In the other two usage patterns, after creating a

ServiceDiscoveryManager

,
you use that object to create one or more

LookupCaches

. From that point on,
you

typically

 interact only with the

LookupCache

, not the

ServiceDiscovery-

Manager

 that you initially created. Of course, you are free to invoke methods on

ServiceDiscoveryManager

 at any time, even if you’ve created a

Lookup-

Cache

, although this style of programming isn’t common in the two patterns that
involve

LookupCaches

.

Once a

LookupCache

 has been created, if you need to query for a particular
service, you will typically invoke one of the versions of

lookup()

 provided by
the

LookupCache

, not the

ServiceDiscoveryManager

. This is the second
usage pattern.

The third and final usage pattern involves the event mechanisms of the

Lookup-

Cache

. That is, if you wish to be notified of the arrival, departure, or modification
of services, you must register for events with the

LookupCache

, not with the

Ser-

viceDiscoveryManger

 or the underlying

ServiceRegistrar

.

These three patterns will become more clear as I walk through the rest of the
methods on the class. But it’s important to keep these in mind in the discussions
below, so that you can see the “big picture.”

chap10.fm Page 358 Friday, November 17, 2000 12:50 PM

The ServiceDiscoveryManager 359

Creating Lookup Caches

Perhaps the most important method on this class, because it’s used in the two
most common usage patterns, is

createLookupCache(). Clients use this
method to instruct the ServiceDiscoveryManager to create a cache of all of
the available services that match some search criteria. The ServiceDiscov-
eryManager will discover lookup services and then search them to find the
desired services. It will also solicit events from these lookup services to ensure
that the cache is kept relatively up-to-date—as new matching services appear in
the community, they will also appear in the cache.

The cache that is returned by this method is a local repository of all matching
services, and is “back-filled” by the ServiceDiscoveryManager (meaning that
the set of services it contains may change, even after you’ve acquired a reference
to the cache). You should be sure that you understand this point: The proxies and
attributes of any matching services will be stored locally by the cache. So, if your
client is running in a memory-constrained environment, you should take great
care when using caches.

Using methods that you’ll see below, you can use the cache to return all
matching services, and can ask the cache to inform you about changes in the sta-
tus of matched services.

The createLookupCache() method takes three arguments. The first is an
instance of ServiceTemplate, which works just as in the earlier examples of
the previous chapter: The template is used to query lookup services to find
desired services, using the normal template-matching semantics. The second
argument is a ServiceItemFilter. This is a client-side filtering mechanism
that lets you have fine-grained control over which services show up in the cache.

I talked in the last chapter about how ServiceTemplates, while powerful
and simple-to-use, don’t always give you all of the control over service matching
that you may like. They don’t, for instance, allow you to do any comparisons over
numeric attributes other than simple equality. The ServiceItemFilter used
here allows you greater control over matching. Any ServiceItems that match
the template are returned to the client where they are evaluated by the filter. The
filter has a method that can return true or false to indicate whether the service is
considered a match or not.

Core Tip: Optimizing your searches

Be sure you understand the relationship between
ServiceTemplates and ServiceItemFilters.
ServiceTemplates are sent “over the wire” to lookup services. The
matching of services against ServiceTemplates happens inside the

chap10.fm Page 359 Friday, November 17, 2000 12:50 PM

360 Chapter 10 Using the ServiceDiscoveryManager

lookup service, using the fast (but relatively coarse) rules I outlined
before. Any matched services are then returned to the client, where
ServiceItemFilters—which execute completely in the client—
have an opportunity to further prune the results.

Usually, you will look for a design that partitions a search
between these two classes in a way that minimizes the amount of
data returned from the lookup service. Since sending a lot of data
over a network is a relatively expensive operation, you should use
ServiceTemplates that, as closely as possible, cull out only the
services that you’re interested in. Once this small set of possibly
interesting services is returned, you can use ServiceFilters to
refine the result set.

The final argument to the constructor is an object that implements the Ser-
viceDiscoveryListener interface. This argument allows you to supply a
listener to the cache that will be called whenever the cache updates its state to
reflect the addition, removal, or change of a service. The cache will deliver a
ServiceDiscoveryEvent that encapsulates this information. Unlike Servi-
ceEvents, which are sent from lookup services to reflect their changes in
state, ServiceDiscoveryEvents are purely local events; that is, they origi-
nate in the cache in the client’s VM, rather than some remote VM.

There are some other important differences between ServiceDiscovery-
Events and ServiceEvents in addition to just the local versus remote dis-
tinction. In particular, the cache will try to coalesce multiple remote
ServiceEvents into a single ServiceDiscoveryEvent. I’ll talk more about
this in the section on ServiceDiscoveryListeners a bit later.

I’ll continue walking through the rest of the methods in ServiceDiscovery-
Manager, and then talk about the supporting classes such as LookupCache,
ServiceDiscoveryEvent, and so on.

New Versions of Lookup()

The ServiceDiscoveryManager, in addition to supporting the ability to cre-
ate caches of services, also provides “wrapper” implementations of the lookup
method that appears in the ServiceRegistrar interface. I call these imple-
mentations “wrappers” because they allow clients to essentially search a whole
set of lookup services at once. That is, while the ServiceRegistrar version
searches only one particular lookup service, these versions are “front ends” that
provide a slightly richer API and can search all of the lookup services that have
been discovered so far.

chap10.fm Page 360 Friday, November 17, 2000 12:50 PM

The ServiceDiscoveryManager 361

All versions of the lookup() method take a ServiceTemplate and a Ser-
viceItemFilter as arguments; these parameters are used in exactly the same
way as described above. The ServiceDiscoveryManager uses the template to
get an initial set of matching services from the lookup services it has discovered,
and then uses the filter to further cull this list.

The first two versions of lookup() return only a single ServiceItem. If the
template and filter together match multiple services, an arbitrary one is selected
and returned. If no matching services are available at the lookup services (that is,
if the template query returns no matches), then the filter will not be run and a null
will be returned to the caller.

The second two versions return an array of all matching service items. Note
that these versions of lookup() take extra parameters describing how many
matches should be returned. If no matches are found, then an empty array will be
returned to callers.

One single-valued version of lookup() and one multi-valued version of
lookup() are also defined to be blocking. This means that they will wait for
some specified amount of time until the requested number of matches is found.
The versions of lookup() that take a wait duration parameter have this behavior.

If the wait duration expires without the requested number of services being
found (either one service for the single-valued version, or minMatches for the
multi-valued version), then the blocking methods will return an empty result.
Otherwise, they complete successfully and return the service items they have
found.

Contrast this to the non-blocking versions (the versions without the wait dura-
tion parameter), which return a result immediately. Be aware that if these ver-
sions of lookup() report that no matching services have been found, it may be
because there actually are no matching services in the community, or it may be
because no lookup services have been discovered yet.

This is a common mistake when using this class! Callers create a Service-
DiscoveryManager and immediately use the non-blocking version of
lookup(), which will often return null. The error isn’t that the service isn’t avail-
able—it’s just that the lookup service holding it may not have been discovered
yet.

Note that the blocking methods may raise java.lang.InterruptedExcep-
tion. This is because, sometimes, a caller may wish to interrupt a thread that is
blocked executing one of these methods. If you interrupt a thread in this way (by
calling Thread.interrupt()), then the method will raise an InterruptedEx-
ception.

The blocking methods provide you with an easy-to-use way to allot a fixed
period of time to try to find a service.

chap10.fm Page 361 Friday, November 17, 2000 12:50 PM

362 Chapter 10 Using the ServiceDiscoveryManager

Core Tip: Know when to use lookup(), and when to use a cache

The cache feature of ServiceDiscoveryManager is typically used
by clients that need frequent access to a whole set of services (such
as browsers), or clients that are running on high-resource platforms.

The lookup() method, on the other hand, is most commonly used
by clients that need access to only one (or a few) particular services,
or by clients running in resource-constrained environments.

Miscellaneous Methods

After the lookup() methods, there are a handful of useful utility methods on
ServiceDiscoveryManager. The getDiscoveryManager() and getLease-
RenewalManager() methods return the DiscoveryManagement object and
LeaseRenewalManager object in use, respectively. If you explicitly passed in
instances in the constructor, these methods will return these same objects; oth-
erwise, they will return the implicit objects created by the ServiceDiscov-
eryManager.

The terminate() method is used to shut down the ServiceDiscovery-
Manager. Specifically, this means that all DiscoveryListeners and Remote-
EventListeners will be removed, and any leases on event registrations will be
cancelled. All internal threads will also be stopped.

Much as in the case of JoinManager, calling terminate() is an irreversible
operation. Calling any method on ServiceDiscoveryManager after calling
terminate() will result in a RuntimeException.

Receiving Remote Events

You’ve no doubt noticed that some of the methods of this class raise Remote-
Exceptions while others do not. This is because the methods that raise Remo-
teExceptions (including createLookupCache() and the blocking versions
of lookup()) register remote event listeners with lookup services so that they
can be informed of changes in the set of available services.

This fact isn’t a mere curiosity of the implementation, though—it puts require-
ments on you to ensure that your client program correctly exports the listener
code that lookup services will use to call back to the ServiceDiscoveryMan-
ager.

Remember that remote events are delivered from one JVM to a listener in
another. The actual mechanics of how this happens are that the listener is defined
as an RMI remote object, typically extending java.rmi.Unicast-RemoteOb-

chap10.fm Page 362 Friday, November 17, 2000 12:50 PM

Supporting Classes 363

ject. The stub for this object is automatically downloaded into the caller—the
program that will generate the remote event—so that it can know how to connect
back to the receiving listener.

Just like any remote event listener, ServiceDiscoveryManager comes with
a listener class that will receive events, and an rmic-generated stub class that is
meant to be downloaded into callers. Even though the stub comes as a part of the
standard Jini client libraries, it is your responsibility to provide the facilities for
this stub to be downloaded by lookup services.

The common way to do this is to extract the stub class along with the classes it
uses from the Jini JAR files and bundle them into a separate JAR file that will be
served by the client’s HTTP server. You can, of course, bundle these into the JAR
file that contains any other client-exported code so that you have everything in
one place. After doing this, you must set a codebase that tells the lookup service
where the needed code can be found.

The stub class is called net.jini.lookup.ServiceDiscoveryMan-

ager$LookupCacheImpl$LookupListener_Stub.class, and it lives in
jini-ext.jar. This class depends only on net.jini.core.event.Remote-
EventListener.class, from jini-core.jar. While technically you don’t
need to export the class file for the RemoteEventListener interface—because
any lookup service should already have it—it’s a good idea to keep all necessary
code together, just in case.

Remember that you must make some provision for exporting these class files,
or the methods on ServiceDiscoveryManager that use events—which are the
most powerful and useful methods—will not be useable by you!

In the interest of keeping the descriptions of how to run the example programs
short, I will take the expedient approach of simply placing these class files in the
client’s downloadable code directory, where they will be served by the “normal”
HTTP server that exports the rest of the client’s code. I would recommend pro-
ducing a single JAR file of all downloadable code exported by the client for a
“production” system, though.

Supporting Classes

As you saw above, there are a number of supporting classes used alongside the
ServiceDiscoveryManager.

chap10.fm Page 363 Friday, November 17, 2000 12:50 PM

364 Chapter 10 Using the ServiceDiscoveryManager

LookupCache

For many clients, the most common idiom of using the ServiceDiscovery-
Manager will be to create one or more LookupCaches, each of which reflects a
different pool of services that the client is interested in. LookupCache is actu-
ally an interface, which allows future implementations of ServiceDiscov-
eryManager to provide different sorts of caches, perhaps with different
performance characteristics.

The cache provides a handful of methods that allows clients to retrieve ser-
vices out of the cache, and ask the cache to notify them upon changes.

package net.jini.lookup;

public interface LookupCache {
public ServiceItem lookup(ServiceItemFilter filter);
public ServiceItem[] lookup(ServiceItemFilter filter,
 int maxMatches);

public void addListener(ServiceDiscoveryListener l);
public void removeListener(ServiceDiscoveryListener l);

public void discard(Object serviceReference);
public void terminate();

}

The lookup() methods work similarly to the versions in ServiceDiscov-
eryManager that you saw before, with a couple of important differences. First,
these methods do not take the ServiceTemplate parameter. This is because
they do not actually cause any network traffic to go between the client and the
lookup service. Instead, the query is answered completely from the services that
happen to be contained in the cache at the time the call to lookup() is made.
Recall that the contents of the cache will eventually be all of the services that
match both the template and the filter specified when the cache was set up (I say
“eventually” because it may take some time for the cache to fill). The Service-
ItemFilter provided here allows you to further refine the services you select
from the cache.

A second difference is that both versions of lookup() here are non-blocking.
The first will return a matching ServiceItem if it exists in the cache, or null oth-
erwise, but will return immediately. Likewise, the second will return a matching
array of ServiceItems, or an empty array if no matches exist, but will still
return immediately. Again, this behavior is because both of these methods

chap10.fm Page 364 Friday, November 17, 2000 12:50 PM

Supporting Classes 365

involve no remote calls—they go directly to the cache and try to satisfy the
requests based on the information available locally.

While the lookup() calls allow you to “poll” the cache to find out if desired
services are available, sometimes you may want the cache to asynchronously
notify you when services are available. Thus, the LookupCache provides a way
for you to install and remove listeners for service-related events. The addLis-
tener() and removeListener() methods let you install and uninstall Ser-
viceDiscoveryListeners that will be called when services are added,
removed, or changed. (See below for details on ServiceDiscoveryListeners
and the ServiceDiscoveryEvents that they will receive.)

Finally, the last two methods are used for housekeeping in the cache. The
terminate() method simply shuts down all of the activities of the Lookup-
Cache: It halts all threads and cancels any event registrations with lookup ser-
vices. This method is irreversible, and is typically called when the client is no
longer interested in the contents of the cache.

The discard() method is used to drop a service from the cache. The argu-
ment here should be the service’s proxy object. Once a proxy has been dropped,
all references to it in the cache are removed, and the cache’s ServiceDiscov-
eryListeners will be notified. This operation is often done if a service seems to
have failed or has become unreachable—you will usually detect this because the
service’s proxy will begin to raise RemoteExceptions. Discarding the service
means that the service may be rediscovered later, if it recovers and registers itself
with lookup services.

Core Note: Understanding the semantics of discard

As mentioned, calling discard() causes a reference to a service to
be dropped from the cache so that it can be rediscovered. Generally,
the only time you will explicitly discard a service is when it seems to
have failed—meaning that attempts to use its proxy result in
RemoteException being thrown.

If the service has genuinely crashed or been shut down then, over
time, its registrations with lookup services will expire. When the
service comes back online, it will reregister with these lookup
services, the lookup cache will detect this fact, and the service will
be rediscovered and added to the cache once again. Any listeners
registered with the cache will be notified.

There is, however, an insidious condition which the LookupCache
must deal with. What happens if the service hasn’t actually crashed,
but merely become unreachable because of some network partition?
In this case, your attempts to use it will certainly result in

chap10.fm Page 365 Friday, November 17, 2000 12:50 PM

366 Chapter 10 Using the ServiceDiscoveryManager

RemoteExceptions being raised. But it may be possible, depending
on the partition, that the service is still in perfect communication
with all of the lookup services with which it is registered!

In this case, the service will never “reappear” in the lookup
service, since it will never have left it. Does this mean that the
LookupCache will never rediscover the service, and that it is lost
forever?

Fortunately, no. The algorithm that the LookupCache uses to
determine when a service is to be rediscovered is a bit more complex
than you might first think; it can be helpful to understand how this
works in case you’re debugging problems with service discovery.

When you first call discard() on a service, the LookupCache
removes the reference to the service from the cache. But it also keeps
a copy of this reference in a separate “limbo” storage area. It then
waits for a some amount of time to pass; typically this will be some
span that is longer than the typical lease duration with a lookup
service. If, during this interval, the service disappears from the
lookup services, then the cache assumes that the service has in fact
crashed, and removes its reference from the limbo area. If the service
returns later, it will then be rediscovered.

However, if this timeout elapses and the service is still registered
with the lookup services, the cache assumes that the service has not
actually crashed—since it is apparently renewing its leases with the
lookup services. In this case, the service is then “rediscovered” by
the cache, and its reference is moved from limbo back into the
cache’s regular storage space. Any listeners are informed of this
fact. This mechanism provides a way for the cache to recover from
network partitions and “rediscover” inaccessible services, even if
those services have never left the community.

The timeout period can be controlled by the property
com.sun.jini.sdm.discardWait, and is set to 10 minutes by
default (which is twice the maximum lease granted by reggie).

ServiceItemFilter

The ServiceItemFilter interface provides a way to do client-side “filtering”
of service query results. The basic idea is that you provide a class that imple-
ments the ServiceItemFilter interface to calls that create caches or do a
lookup(). Any results returned by matching a ServiceTemplate are returned

chap10.fm Page 366 Friday, November 17, 2000 12:50 PM

Supporting Classes 367

to your client, where your filter gets a chance to veto whether a service should
be returned.

package net.jini.lookup;

public interface ServiceItemFilter {
public boolean check(ServiceItem item);

}

The check() method will be called to evaluate whether a service is consid-
ered to match the filter. The filter should return true if the service matches, or
false otherwise.

Filtering provides you with a way to do searches that are impossible using the
standard ServiceTemplate semantics. For example, you can write filters that
apply numerical comparison tests to attributes.

ServiceDiscoveryListener

The ServiceDiscoveryListener interface is used by clients that wish to be
asynchronously notified of changes in the available services known to a Look-
upCache. You can install a ServiceDiscoveryListener when you first cre-
ate a cache via a call to createLookupCache(), and you can also add listeners
after the fact by calling addListener() directly on the LookupCache.

The interface itself is fairly simple:

package net.jini.lookup;

public interface ServiceDiscoveryListener {
public void serviceAdded(ServiceDiscoveryEvent event);
public void serviceChanged(ServiceDiscoveryEvent event);
public void serviceRemoved(ServiceDiscoveryEvent event);

}

In many ways, the information available through this interface is analogous to
the information available through the low-level ServiceEvents that are sent
from lookup services. The primary differences are that the ServiceDiscovery-
Listener methods are locally invoked from the cache (rather than remotely by
the lookup service), and correspond to changes in the cache rather than just one
particular lookup service. This means that the LookupCache will try to coalesce
multiple ServiceEvents into single ServiceDiscoveryEvents.

Why is this? Think about how services are registered in Jini. Typically, a
service will start up and join any and all lookup services that it finds that are

chap10.fm Page 367 Friday, November 17, 2000 12:50 PM

368 Chapter 10 Using the ServiceDiscoveryManager

“relevant” (meaning that they are members of a group, or named by a locator,
that the service is searching for). So any given service will usually be regis-
tered with many lookup services. The LookupCache will register with each of
these to receive notifications in changes in the set of services each provides.

But of course, when you’re interested in a service, you typically just want
to acquire a reference to it, not all references to it. So the LookupCache, even
though it receives multiple ServiceEvents about a given service, will typi-
cally generate only a single corresponding event to its listeners.

This is done in the following way:

• The serviceAdded() method is called when a cache receives
notification that a service has been registered for the first time in a
community. This means that even if a service registers itself with
multiple lookup services, the cache will notice these multiple
registrations, determine that the multiple registrations are for the
same service, and generate only one invocation of service-
Added().

• The serviceRemoved() method is called when a service
disappears from all of the lookup services that it knows about.
The method will not be called if a service is dropped merely from
one of a set of lookup services with which it is registered.

• The serviceChanged() method is invoked once for each
distinct change in attributes it detects. That is, the cache keeps
one “canonical” set of attributes associated with each service in
the cache. When the attributes change at one lookup service, the
cache updates its record of the service’s attributes and generates
an event. Future notifications of updates do not generate events, if
those updates produce attributes that are the same as those
already known to the cache. Typically, when a service changes its
attributes, it does so by updating each lookup service with which
it is registered. The first such change will be detected by the
cache and will result in an event. As the other lookup services are
updated to the same attribute set, further events are not generated
by the cache.

• Finally, the serviceChanged() method is invoked when a
unique change occurs in the service’s proxy object.

Be sure to note that the serviceChanged() method, in addition to being
called when an attribute on a service changes, will also be called when the proxy
for a service changes. This may happen if a service updates or revises its pub-
lished proxy. But, two proxies for the same service that are registered at different

chap10.fm Page 368 Friday, November 17, 2000 12:50 PM

Supporting Classes 369

lookup services may not be “equal” if you don’t take special precautions. If you
write your own services, you should be aware that proxies that have inconsistent
equality comparisons with each other can cause the LookupCache to report that
a proxy has changed.

Core Alert: Controlling proxy changes

As a service writer, you will often want to have control over whether
the proxies for your service are considered equal to, or different
from, each other. The best way to do this—and a good rule of thumb
to follow in any case—is to override the equals() and hashCode()
methods on your service proxies.

Think about what happens if your service registers itself at
multiple lookup services. Each registration will result in a new copy
of the proxy being stored at each of those lookup services. If your
service doesn’t override equals() and hashCode(), you’ve
effectively given up control over how the LookupCache will
determine if these proxies are the same or not. And, without doing
anything explicit, the default implementation of these methods is
likely to report that each proxy is different from all others, resulting
in many serviceChanged() invocations.

(If your proxies are simply RMI stubs, then you’ll get the correct
behavior—since stubs override equals() and hashCode() to be
based on whether the remote objects referred to by the stubs are
equal to each other. If, as is commonly the case, you’re using smart
proxies that contain a single remote reference to a back-end server, a
common implementation for equals() is to simply invoke the
equals() method on the remote reference.)

The rule of thumb is to always provide “smart” implementations
of these two methods on your service proxies. Remember that if two
objects are equal to each other, they must return the same hash code.

ServiceDiscoveryEvent

The ServiceDiscoveryEvent encapsulates the information about service
changes, additions, and removals that the LookupCache produces.

package net.jini.lookup;

public class ServiceDiscoveryEvent
extends java.util.EventObject {

chap10.fm Page 369 Friday, November 17, 2000 12:50 PM

370 Chapter 10 Using the ServiceDiscoveryManager

// ... constructor elided ...

public ServiceItem getPostEventServiceItem();

public ServiceItem getPreEventServiceItem();

}

The declaration here doesn’t show the constructor for the class, since it’s only
of interest to the implementors of the LookupCache class. The two methods of
interest here are getPostEventServiceItem(), which returns the Service-
Item for the changed service after the change has taken place, and get-
PreEventServiceItem(), which returns the ServiceItem for the changed
service before the change has taken place.

If the event is being sent because a service was removed, then get-
PostEventServiceItem() will return null. Likewise, if the event is sent
because a service was added, getPreEventServiceItem() will return null. If
the service merely changed (it wasn’t added or removed), then neither will return
null—the pre-event method returns the state before the change and the post-event
method returns the state after the change.

Neither of these methods actually copy the cached ServiceItem before
returning it, since this can be a potentially expensive operation. So you should
take care to not modify the ServiceItems returned by these methods, or you
will seriously corrupt your LookupCache.

The only other method of interest on this class is getSource(), which is
inherited from java.util.EventObject. This method will return the Lookup-
Cache that generated the event.

Core Tip: Troubleshooting multiple service events

One common problem symptom when you use the event facilities in
the ServiceDiscoveryManager is that you may receive mulitple,
repeated ServiceDiscoveryEvents for the same service. Often
these will show the service constantly appearing and disappearing
rapidly.

Such problems are typically the result of one of two errors. The
first, and easiest to fix, is that you are not correctly exporting the
remote event listener that the ServiceDiscoveryManager uses to
receive events. Without this working, the
ServiceDiscoveryManager will be unable to correctly determine
when services come or go after initial discovery time See the section,
Receiving Remote Events for details.

The second, and somewhat more insidious cause, results from
services that do not properly override equals() and hashCode()

chap10.fm Page 370 Friday, November 17, 2000 12:50 PM

A Basic Example 371

on their proxies. This means that each proxy registration is likely to
look like a new and different proxy version to the
ServiceDiscoveryManager, resulting in unnecessary events. See
the section on ServiceDiscoveryListener for details.

If you’re experience this symptom, check both of these potential
causes.

A Basic Example

In this example, you’ll see how to use the ServiceDiscoveryManager in its
most straightforward settings. The example demonstrates how to use both the
blocking and non-blocking forms of lookup, as well as the LookupCache. You
should pay special attention to the output of this program! Misunderstanding
how the ServiceDiscoveryManager reports its results is a common source of
errors.

Look at the code in Listing 10-1:

chap10.fm Page 371 Friday, November 17, 2000 12:50 PM

372 Chapter 10 Using the ServiceDiscoveryManager

Listing 10–1 ClientLookupExample.java

// Explore the ServiceDiscoveryManager

package corejini.chapter10;

import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.lookup.ServiceDiscoveryManager;
import net.jini.lookup.LookupCache;
import net.jini.lookup.ServiceItemFilter;
import net.jini.lookup.ServiceDiscoveryListener;
import net.jini.discovery.LookupDiscoveryManager;
import net.jini.lease.LeaseRenewalManager;
import java.io.IOException;
import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;
import corejini.chapter9.ServiceInfoSearcher;

public class ClientLookupExample {
 protected LookupDiscoveryManager discoveryMgr;
 protected LeaseRenewalManager leaseMgr;
 protected ServiceDiscoveryManager lookupMgr;

 public ClientLookupExample() throws IOException {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(
 new RMISecurityManager());
 }

 lookupMgr =
 new ServiceDiscoveryManager(null, null);
 }

chap10.fm Page 372 Friday, November 17, 2000 12:50 PM

A Basic Example 373

 // Subclasses may override...
 public ServiceDiscoveryListener getListener() {
 return null;
 }

 // subclasses may override...
 public ServiceItemFilter getFilter() {
 return null;
 }

 // Do a bit of work here...
 public void runTests() {
 ServiceTemplate tmpl =
 new ServiceTemplate(null, null, null);
 ServiceItem service = null;

 service = lookupMgr.lookup(tmpl, null);

 if (service == null) {
 System.out.println(“Non-blocking lookup “ +
 found no services.”);
 } else {
 System.out.print(“Non-blocking lookup found: “);
 ServiceInfoSearcher.printServiceInfo(service);
 }

 try {
 service = lookupMgr.lookup(tmpl, null, 20000);

 } catch (RemoteException ex) {
 System.out.println(“Error: “ + ex);

 } catch (InterruptedException ex) {
 }

 if (service == null) {
 System.out.println(“Blocking lookup found “ +
 “no services.”);
 } else {

 System.out.print(“Blocking lookup found: “);
 ServiceInfoSearcher.printServiceInfo(service);

 }

 LookupCache cache = null;

Listing 10–1 ClientLookupExample.java (continued)

chap10.fm Page 373 Friday, November 17, 2000 12:50 PM

374 Chapter 10 Using the ServiceDiscoveryManager

 try {
 cache = lookupMgr.createLookupCache(tmpl,

 getFilter(),
 getListener());

 } catch (RemoteException ex) {
 System.out.println(“Error: “ + ex);

 }

 service = cache.lookup(null);

 if (service == null) {
 System.out.println(“Cache lookup found “ +
 “no services.”);
 } else {
 System.out.print(“Cache lookup found: “);
 ServiceInfoSearcher.printServiceInfo(service);
 }

 System.out.println(“Pausing...”);
 try {
 Thread.sleep(5000);
 } catch (Exception ex) {
 }

 System.out.println(“Trying again...”);
 service = cache.lookup(null);
 if (service == null) {
 System.out.println(“Cache lookup found “ +
 “no services.”);
 } else {
 System.out.print(“Cache lookup found: “);
 ServiceInfoSearcher.printServiceInfo(service);
 }

 System.out.println(“Getting all cached services.”);
 ServiceItem[] services = cache.lookup(null,
 Integer.MAX_VALUE);

Listing 10–1 ClientLookupExample.java (continued)

chap10.fm Page 374 Friday, November 17, 2000 12:50 PM

A Basic Example 375

The main() for this example creates an instance of ClientLookupExample
and then calls runTests(), which exercises the ServiceDiscoveryManager.
Note that the constructor for the example installs a security manager—which it
must do in order to download code, just the same as all the rest of the examples in
this book—and creates a new ServiceDiscoveryManager, passing in nulls as
arguments. This causes the ServiceDiscoveryManager to create its own
LookupDiscoveryManager and LeaseRenewalManager.

Most of the work here happens in runTests(). The code exercises the Ser-
viceDiscoveryManager in several ways. First, it calls lookup() directly,
using the non-blocking APIs. In this example, the program always uses a tem-
plate that matches all services. After this, it tries the blocking version of
lookup() with a wait duration of 20000 milliseconds (20 seconds). It then cre-
ates a LookupCache, and invokes lookup() on it to fetch a service. Note that
the code calls getFilter() and getListener() to get a ServiceItemFil-

 if (services == null || services.length == 0) {
 System.out.println(“No services in cache”);
 } else {
 for (int i=0 ; i<services.length ; i++) {
 System.out.print(“[“ + i + “] “);
 ServiceInfoSearcher.printServiceInfo(
 services[i]);
 }
 }

 cache.terminate();
 }

 public static void main(String[] args) {
 try {

 ClientLookupExample cle =
 new ClientLookupExample();

 cle.runTests();
 } catch (IOException ex) {
 System.err.println(ex.toString());
 }

 System.exit(0);
 }
}

Listing 10–1 ClientLookupExample.java (continued)

chap10.fm Page 375 Friday, November 17, 2000 12:50 PM

376 Chapter 10 Using the ServiceDiscoveryManager

ter and a ServiceDiscoveryListener to use when creating the cache. In this
example, these methods always return null; later examples will override these to
test filtering and event processing. The code then sleeps for a few seconds, does
another lookup, and—finally—prints out the entire contents of the cache. Any
services that are found are printed by calling the printServiceInfo() method
from the earlier ServiceInfoSearcher program.

While this example may seem to be going all over the map, invoking
lookup() over and over again, first on the ServiceDiscoveryManager and
then on the LookupCache, it’s important to understand the different behaviors
that these calls can produce. So, the next step is to move on and compile the
example and see what it does.

Compiling and Running the Example

Compile this example using the standard operating procedure. Remember that
the client will need to export downloadable code to services. For this to work,
you must ensure that you’re running an HTTP server to export the client’s
downloadable code. Refer back to the client examples in Chapter 5 if you
haven’t started this Web server.

On Windows:

javac -classpath C:\files;
C:\jini1_1\lib\jini-core.jar;
C:\jini1_1\lib\jini-ext.jar;
C:\jini1_1\lib\sun-util.jar;
C:\client

-d C:\client
C:\files\corejini\chapter10\ClientLookupExample.java

The one extra step you must take is to ensure that the class files for the Ser-
viceDiscoveryManager’s remote event listener are also exported correctly!
Here, I’m taking the quick-and-dirty approach of extracting the needed files
from the Jini JARs directly into the client’s download directory. This makes
them available from the same codebase, and uses the same HTTP server, as the
rest of the client’s code.

The syntax to extract a single file from a JAR is jar xvf <jar_file>

<file_to_extract>. Make sure you’re in the client-dl directory when you
run the extraction commands.

cd C:\client-dl
jar xvf C:\jini1_1\lib\jini-ext.jar net\jini\lookup\Service-
DiscoveryManager$LookupCacheImpl$LookupListener_Stub.class

chap10.fm Page 376 Friday, November 17, 2000 12:50 PM

A Basic Example 377

jar xvf C:\jini1_1\lib\jini-core.jar
net\jini\core\event\RemoteEventListener.class

If you look at the contents of the client-dl directory, you should see that jar
created a net directory, as well as subdirectories, to contain the class files.

java -cp C:\jini1_1\lib\jini-core.jar;
C:\jini1_1\lib\jini-ext.jar;
C:\jini1_1\lib\sun-util.jar;
C:\client

-Djava.security.policy=C:\files\policy
-Djava.rmi.server.codebase=http://myhost:8086/

corejini.chapter10.ClientLookupExample

On UNIX:

javac -classpath /files:
/files/jini1_1/lib/jini-core.jar:
/files/jini1_1/lib/jini-ext.jar:
/files/jini1_1/lib/sun-util.jar:
/files/client

-d /files/client
/files/corejini/chapter8/ClientLookupExample.java
 C:\files\corejini\chapter10\ClientLookupExample.java

The one extra step you must take is to ensure that the class files for the Ser-
viceDiscoveryManager’s remote event listener are also exported correctly!
Here, I’m taking the quick-and-dirty approach of extracting the needed files
from the Jini JARs directly into the client’s download directory. This makes
them available from the same codebase, and uses the same HTTP server, as the
rest of the client’s code.

The syntax to extract a single file from a JAR is jar xvf <jar_file>

<file_to_extract>. Make sure you’re in the client-dl directory when you
run the extraction commands. On most UNIX shells, you will have to preface the
dollar sign character by a backslash to “escape” it.

cd /files/client-dl
jar xvf /files/jini1_1/lib/jini-ext.jar net/jini/lookup/Ser-
viceDiscoveryManager\$LookupCache-
Impl\$LookupListener_Stub.class
jar xvf /files/jini1_1/lib/jini-core.jar

net/jini/core/event/RemoteEventListener.class

chap10.fm Page 377 Friday, November 17, 2000 12:50 PM

378 Chapter 10 Using the ServiceDiscoveryManager

If you look at the contents of the client-dl directory, you should see that jar
created a net directory, as well as subdirectories, to contain the class files.

java -cp /files/jini1_1/lib/jini-core.jar:
/files/jini1_1/lib/jini-ext.jar:
/files/jini1_1/lib/sun-util.jar:
/files/client

-Djava.security.policy=/files/policy
-Djava.rmi.server.codebase=http://myhost:8086/

corejini.chapter10.ClientLookupExample

The results that you see will actually vary depending on the performance of the
machine you run the example on, and the performance of the machines running
lookup services in your community. Here’s a sample run, though:

Non-blocking lookup found no services.
Blocking lookup found: Name = Lookup
 Manufacturer = Sun Microsystems, Inc.
 Vendor = Sun Microsystems, Inc.
 Version = 1.1 alpha
 Model =
 Serial Number =
 Proxy is com.sun.jini.reggie.RegistrarProxy@af330156
Cache lookup found no services.
Pausing...
Trying again...
Cache lookup found: Name = Address Book Service
 Manufacturer = Xerox PARC
 Vendor = Xerox PARC
 Version = 1.0
 Model = null
 Serial Number = null
 Proxy is com.xerox.dispatch.addressbook.AddressBookServiceProxy@0
Getting all cached services...
[0] Name = Address Book Service
 Manufacturer = Xerox PARC
 Vendor = Xerox PARC
 Version = 1.0
 Model =
 Serial Number =
Proxy is com.xerox.dispatch.addressbook.AddressBookServiceProxy@0
[1] Name = Lookup

chap10.fm Page 378 Friday, November 17, 2000 12:50 PM

A Basic Example 379

 Manufacturer = Sun Microsystems, Inc.
 Vendor = Sun Microsystems, Inc.
 Version = 1.0
 Model =
 Serial Number =
 Proxy is com.sun.jini.reggie.RegistrarProxy@f16dfd46
[2] Name = Authentication Service
 Manufacturer = Xerox PARC
 Vendor = Xerox PARC
 Version = 1.0
 Model =
 Serial Number =
 Proxy is com.xerox.dispatch.authenticator.AuthenticatorProxy@0
[3] Name = Lookup
 Manufacturer = Sun Microsystems, Inc.
 Vendor = Sun Microsystems, Inc.
 Version = 1.1 alpha
 Model =
 Serial Number =
 Proxy is com.sun.jini.reggie.RegistrarProxy@af330156

Note that, here, the first call to lookup() returns null while the second finds a
valid service! Remember that invoking lookup() on the ServiceDiscovery-
Manager only searches for services on the lookup services that have been discov-
ered so far. In this run, the first call to lookup() happens before any lookup
services have been found, so it returns null. The second blocks for a few seconds,
and then gives a chance for some lookup services to be discovered, so it returns a
service. These two similar calls produce different results, and you should make
sure you understand why.

After this, the program creates and exercises the LookupCache. The first oper-
ation is to call lookup() on this cache. In the example run you see here, notice
that the cache returns no service. This is because calling lookup() on the cache
only returns results that have already been stored in the cache. In this case, the
cache has not yet been filled with any services and so nothing is returned. After
sleeping for a bit, the next call to lookup() returns a service. Again, it’s impor-
tant to notice the differences here. Even though prior calls to lookup() on the
ServiceDiscoveryManager itself may return results, here the call to
lookup() on the cache returns nothing. A later call, made after a pause, returns a
service because the cache has had a chance to fill.

chap10.fm Page 379 Friday, November 17, 2000 12:50 PM

380 Chapter 10 Using the ServiceDiscoveryManager

Finally, the example dumps out all of the services in the cache; in this exam-
ple, there are several—they’ve just taken a few moments to show up.

Be sure you understand the differences in behavior between the “raw” Ser-
viceRegistrar version of lookup() and the versions here. The versions here
have timing dependencies that do not exist in the ServiceRegistrar version—
and these timing dependencies are a common source of confusion when using the
ServiceDiscoveryManager. Even though you must understand these differ-
ences, most users will still prefer to use the LookupCache, since it provides so
many benefits (the ability to search for services across many lookup services, the
fact that it essentially “hides” the existence of lookup services at all, the ability to
run client-side filtering predicates, and so on).

Using Filters

Listing 10-2 demonstrates how to use ServiceItemFilters. In this program,
you’ll see three filters, and learn how to combine them together to extract spe-
cific services in ways that are impossible using just ServiceTemplates.

chap10.fm Page 380 Friday, November 17, 2000 12:50 PM

Using Filters 381

The first filter shows how you can do substring matching of attributes. This fil-
ter allows you to find all services that contain a given string in the vendor field of
their ServiceInfo attributes.

The ServiceInfoVendorFilter is pretty simple. Instances of the class are
constructed with a string to search for. The check() method iterates over the
attribute set on the service item, looking for ServiceInfo attributes or its sub-

Listing 10–2 ServiceInfoVendorFilter.java

// A filter that matches services whose ServiceInfo.vendor
// contains a given substring.

package corejini.chapter10;

import net.jini.core.lookup.ServiceItem;
import net.jini.lookup.ServiceItemFilter;
import net.jini.lookup.entry.ServiceInfo;
import net.jini.core.entry.Entry;

public class ServiceInfoVendorFilter
 implements ServiceItemFilter {
 protected String substring;

 public ServiceInfoVendorFilter(String substring) {
 this.substring = substring;
 }

 public boolean check(ServiceItem item) {
 Entry[] attrs = item.attributeSets;
 for (int i=0 ; i<attrs.length ; i++) {
 // If it’s a ServiceInfo or subclass
 if (ServiceInfo.class.isAssignableFrom(
 attrs[i].getClass())) {
 return ((ServiceInfo)
 attrs[i]).vendor.indexOf(substring) != -1;
 }
 }

 return false;
 }
}

chap10.fm Page 381 Friday, November 17, 2000 12:50 PM

382 Chapter 10 Using the ServiceDiscoveryManager

classes. When one is found, the method simply looks to see if the parameter
occurs as a substring in the vendor string. If it does, the method returns true.

The second filter is a little more complicated. It lets you match services that
have a certain version number in the version fields of their ServiceInfo
attributes. Using this filter, you can find services that are exactly at a given ver-
sion (say, version “1.0.1”), or services that are greater than a given version (ver-
sion “1.2.7” is greater than version “1.2” or version “1.2.6”).

Version numbering is a black art at best, and this particular filter (Listing 10-3)
only makes a best effort attempt at comparing versions. But, it shows the power
of being able to use arbitrary filters to prune the set of matched services.

Listing 10–3 ServiceInfoVersionFilter.java

// A filter that matches services whose ServiceInfo.version
// matches a search parameter

package corejini.chapter10;

import net.jini.core.lookup.ServiceItem;
import net.jini.lookup.ServiceItemFilter;
import net.jini.lookup.entry.ServiceInfo;
import net.jini.core.entry.Entry;
import java.util.ArrayList;
import java.util.StringTokenizer;

public class ServiceInfoVersionFilter
 implements ServiceItemFilter {
 public static final int EQUAL = 1;
 public static final int EQUAL_OR_GREATER = 2;

 protected String test;
 protected String[] testTokens;
 protected int cond;

 public ServiceInfoVersionFilter(String test, int cond){
 this.test = test;
 this.cond = cond;
 testTokens = makeVersionTokens(test);
 }

chap10.fm Page 382 Friday, November 17, 2000 12:50 PM

Using Filters 383

 // Version numbering is an inexact science, but
 // this covers many cases.
 public boolean check(ServiceItem item) {
 Entry[] attrs = item.attributeSets;
 for (int i=0 ; i<attrs.length ; i++) {
 // If it’s a ServiceInfo or subclass
 if (ServiceInfo.class.isAssignableFrom(
 attrs[i].getClass())) {
 String target = ((ServiceInfo)
 attrs[i]).version;

 if (target.equals(test)) {
 return true;
 }

 switch (cond) {
 case EQUAL:
 return false;
 case EQUAL_OR_GREATER:
 String[] targetTokens =
 makeVersionTokens(target);

 // Cycle through each. If any element
 // in target is less than the
 // corresponding element in test,
 // report false.
 int min = Math.min(testTokens.length,
 targetTokens.length);

Listing 10–3 ServiceInfoVersionFilter.java(continued)

chap10.fm Page 383 Friday, November 17, 2000 12:50 PM

384 Chapter 10 Using the ServiceDiscoveryManager

 for (int j=0 ; j<min ; j++) {
 try {
 int testVal =
 Integer.parseInt(testTokens[j]);
 int targetVal =
 Integer.parseInt(targetTokens[j]);

 if (targetVal < testVal) {
 return false;
 }
 } catch (NumberFormatException ex) {
 System.err.println(
 “Unexpected format: “ +
 testTokens[i] + “, “ +
 targetTokens[i]);
 ex.printStackTrace();
 }
 }

 return testTokens.length <=
 targetTokens.length;
 }
 }
 }

 return false;
 }

Listing 10–3 ServiceInfoVersionFilter.java(continued)

chap10.fm Page 384 Friday, November 17, 2000 12:50 PM

Using Filters 385

This filter is quite a bit more complicated than the previous one. Instances of
the ServiceInfoVersionFilter are constructed with a string representing a
version and a parameter indicating whether the filter should look for exact ver-
sion matches, or versions that are equal to or greater than the specified version.
The input version number is “tokenized” into an array of strings.

The check() method finds any ServiceInfo attribute that is on the service
and checks its version against the original input version. If the two match exactly,
then the predicate method returns true. The complicated case is when the filter is
looking for versions that are greater than or equal to the input version. The code
here tokenizes the service’s version and walks down the two token arrays, pair-
wise matching version numbers. If any token in the input version is greater than
the service’s version, the method returns false. While this code isn’t perfect, it is
capable of comparing many styles of version numbers correctly.

The previous two filters give you a way to do very flexible matching over
fields of the ServiceInfo attribute. But this begs a question: How can you use
two filters at the same time? The ServiceDiscoveryManager APIs only allow
you to pass in a single filter to any call to lookup() or createLookupCache().

The answer is to use a filter that can aggregate other filters, and this is exactly
what the third filter example does. This filter lets you connect up other filters by
logical operators (either AND or OR), and evaluates all of them in turn. The

 // Convert a string of the form 1.2.2.1 into a
 // string array.
 static String[] makeVersionTokens(String v) {
 String str = v;
 // Jettison everything after a space.
 if (str.indexOf(‘ ‘) != -1) {
 str = str.substring(0, str.indexOf(‘ ‘));
 }
 StringTokenizer t = new StringTokenizer(str, “.”);
 ArrayList arr = new ArrayList();
 while (t.hasMoreTokens()) {
 arr.add(t.nextToken());
 }
 return (String[]) arr.toArray(new String[0]);
 }
}

Listing 10–3 ServiceInfoVersionFilter.java(continued)

chap10.fm Page 385 Friday, November 17, 2000 12:50 PM

386 Chapter 10 Using the ServiceDiscoveryManager

AggregationFilter can be a useful way to chain together sets of filtering
operations, as shown in Listing 10-4.

Listing 10–4 AggregationFilter.java

// A filter that joins other filters together.

package corejini.chapter10;

import net.jini.core.lookup.ServiceItem;
import net.jini.lookup.ServiceItemFilter;
import java.util.ArrayList;
import java.util.Iterator;

chap10.fm Page 386 Friday, November 17, 2000 12:50 PM

Using Filters 387

public class AggregationFilter
 implements ServiceItemFilter {
 private ArrayList list = new ArrayList();
 private int operator;

 public static final int AND = 1;// all must match
 public static final int OR = 2;// any must match

 public AggregationFilter(int operator) {
 if (operator == AND || operator == OR) {
 this.operator = operator;
 } else {
 throw new IllegalArgumentException(
 “Bogus operator”);
 }
 }

 public void add(ServiceItemFilter filter) {
 list.add(filter);
 }

 public boolean check(ServiceItem item) {
 if (list.size() == 0) {
 return true;
 }

 Iterator iter = list.iterator();

 while (iter.hasNext()) {
 ServiceItemFilter filter =
 (ServiceItemFilter) iter.next();

 boolean result = filter.check(item);

 if (result && operator == OR) {
 return true;
 }

 if (!result && operator == AND) {
 return false;
 }
 }

Listing 10–4 AggregationFilter.java(continued)

chap10.fm Page 387 Friday, November 17, 2000 12:50 PM

388 Chapter 10 Using the ServiceDiscoveryManager

The AggregationFilter is created by specifying an operand that dicates
whether the supplied filters are to be combined by a logical AND operation or a
logical OR operation. Filters are added to the aggregation by the add() method.
The implementation of check() simply iterates through the supplied filters,
evaluating each in turn according to the specified combination rule.

Finally, the last bit of code is an example to show off how these filters work.
Listing 10-5 is an extension of the original ClientLookupExample. The only
major difference is that the getFilter() method has been overridden to use the
AggregationFilter to connect together a ServiceInfoVersionFilter
with a ServiceInfoVendorFilter.

 // If we’ve made it to the end without shortcutting,
 // then we’re in OR and have seen nothing but falses
 // (and should return false), or we’re in AND and
 // we’ve seen nothing but trues (and should return
 // true).
 return (operator == AND);
 }
}

Listing 10–4 AggregationFilter.java(continued)

chap10.fm Page 388 Friday, November 17, 2000 12:50 PM

Using Filters 389

This short snippet of code is simply an extension of the original ServiceDis-
coveryManager. The only significant change is that this version overrides the
getFilter() method, which is used when the example creates a lookup cache.

Listing 10–5 ClientLookupWithFiltering.java

// A version of ClientLookupExample to use filtering

package corejini.chapter10;

import net.jini.lookup.ServiceItemFilter;
import java.io.IOException;

public class ClientLookupWithFiltering
 extends ClientLookupExample {
 public ClientLookupWithFiltering() throws IOException {
 }

 public ServiceItemFilter getFilter() {
 AggregationFilter filt =

 new AggregationFilter(AggregationFilter.AND);

 filt.add(new ServiceInfoVendorFilter(“Sun”));
 filt.add(new ServiceInfoVersionFilter(“1.0”,

 ServiceInfoVersionFilter.EQUAL_OR_GREATER));

 return filt;
 }

 public static void main(String[] args) {
 try {
 ClientLookupWithFiltering cle =
 new ClientLookupWithFiltering();
 cle.runTests();
 } catch (Exception ex) {
 System.err.println(ex.toString());
 }

 System.exit(0);
 }
}

chap10.fm Page 389 Friday, November 17, 2000 12:50 PM

390 Chapter 10 Using the ServiceDiscoveryManager

Here, getFilter() creates an AggregationFilter holding a ServiceIn-
foVendorFilter and a ServiceInfoVersionFilter.

Compiling and Running the Example

Before running, make sure that the class files needed for the ServiceDiscov-
eryManager’s remote event listener are still present in the client-dl direc-
tory—you’ll need them for this example too. If you’ve deleted them, follow the
instructions from the earlier example to extract them again.

On Windows:

javac -classpath C:\files;
C:\jini1_1\lib\jini-core.jar;
C:\jini1_1\lib\jini-ext.jar;
C:\jini1_1\lib\sun-util.jar;
C:\client

-d C:\client
 C:\files\corejini\chapter10\ClientLookupWithFiltering.java

java -cp C:\jini1_1\lib\jini-core.jar;
C:\jini1_1\lib\jini-ext.jar;
C:\jini1_1\lib\sun-util.jar;
C:\client

-Djava.security.policy=C:\files\policy
-Djava.rmi.server.codebase=http://myhost:8086/

corejini.chapter10.ClientLookupWithFiltering

On UNIX:

javac -classpath /files:
/files/jini1_1/lib/jini-core.jar:
/files/jini1_1/lib/jini-ext.jar:
/files/jini1_1/lib/sun-util.jar:
/files/client

-d /files/client
 /files/corejini/chapter10/ClientLookupWithFiltering.java

java -cp /files/jini1_1/lib/jini-core.jar:
/files/jini1_1/lib/jini-ext.jar:
/files/jini1_1/lib/sun-util.jar:
/files/client

-Djava.security.policy=/files/policy
-Djava.rmi.server.codebase=http://myhost:8086/

corejini.chapter10.ClientLookupWithFiltering

chap10.fm Page 390 Friday, November 17, 2000 12:50 PM

Using Filters 391

This program runs the same sequence of tests that the previous example ran.
But here you see that the searches involving the cache return only a select few
services—those that contain the string “Sun” in the vendor identification, and
those with a version greater than or equal to “1.0.” (The first calls to lookup()
do not use a filter, and thus here you see a “Xerox PARC” service being
returned.)

Non-blocking lookup found no services.
Blocking lookup found: Name = Address Book Service
 Manufacturer = Xerox PARC
 Vendor = Xerox PARC
 Version = 1.0
 Model =
 Serial Number =
 Proxy is com.xerox.dispatch.addressbook.AddressBookServiceProxy@0
Cache lookup found no services.
Pausing...
Trying again...
Cache lookup found: Name = Lookup
 Manufacturer = Sun Microsystems, Inc.
 Vendor = Sun Microsystems, Inc.
 Version = 1.0
 Model =
 Serial Number =
 Proxy is com.sun.jini.reggie.RegistrarProxy@f16dfd46
Getting all cached services...
[0] Name = Lookup
 Manufacturer = Sun Microsystems, Inc.
 Vendor = Sun Microsystems, Inc.
 Version = 1.1 alpha
 Model =
 Serial Number =
 Proxy is com.sun.jini.reggie.RegistrarProxy@af330156
[1] Name = Lookup
 Manufacturer = Sun Microsystems, Inc.
 Vendor = Sun Microsystems, Inc.
 Version = 1.0
 Model =
 Serial Number =
 Proxy is com.sun.jini.reggie.RegistrarProxy@f16dfd46

chap10.fm Page 391 Friday, November 17, 2000 12:50 PM

392 Chapter 10 Using the ServiceDiscoveryManager

Using Events

The final example of this chapter shows you how to use the event mechanisms
provided by the ServiceDiscoveryManager. In both of the earlier examples,
you saw how the LookupCache initially contained no information. The first
call to lookup() on this cache returned no results; only after waiting for the
cache to fill did lookup() return services to the caller.

For many clients, this will be perfectly acceptable behavior. Certain clients
may be content to examine the contents of the cache only after it has had time to
fill, perhaps after some predetermined blocking period has expired.

Other clients, though, may want fine-grained information about available ser-
vices, as they become available. A Jini service browser, for instance, may want to
display services to the user as they “trickle in.” You probably wouldn’t want to
write a browser so that it had to wake up every few seconds and do a lookup()
on the cache to try to figure out what’s changed.

Such clients will want to use the event mechanisms provided by Lookup-
Cache to get information about changes in the state of the cache, as described in
the discussion of events earlier.

This example presents an extension of the earlier code, modified to install an
event listener to detect changes in the cache. The code you’ll see here creates an
instance of a class called DiffListener, which is a ServiceDiscoveryLis-
tener that prints out information about changes in the state of the cache. Once
this listener is installed, you can see the services trickle in to the LookupCache
between the time the example program first calls lookup() and after the wait.

Listing 10-6 shows the code for DiffListener.

chap10.fm Page 392 Friday, November 17, 2000 12:50 PM

Using Events 393

Listing 10–6 DiffListener.java

// A ServiceDiscoveryListener that shows what's changed

package corejini.chapter10;

import net.jini.core.lookup.ServiceItem;
import net.jini.lookup.ServiceDiscoveryListener;
import net.jini.lookup.ServiceDiscoveryEvent;
import net.jini.lookup.LookupCache;
import net.jini.core.entry.Entry;

public class DiffListener implements ServiceDiscoveryLis-
tener {
 public DiffListener() {
 }

 // The preEventServiceItem will be null, while the
 // postEventServiceItem will hold the newly-added
 // service item
 public void serviceAdded(ServiceDiscoveryEvent ev) {
 System.out.println("+++ SERVICE ADDED");
 ServiceItem item = ev.getPostEventServiceItem();
 printServiceItem(item);
 }

 // The preEventServiceItem holds the newly-removed
 // service, while the postEventServiceItem is null
 public void serviceRemoved(ServiceDiscoveryEvent ev) {
 System.out.println("+++ SERVICE REMOVED");
 ServiceItem item = ev.getPreEventServiceItem();
 System.out.println("Service's ID was " +
 item.serviceID);
 }

chap10.fm Page 393 Friday, November 17, 2000 12:50 PM

394 Chapter 10 Using the ServiceDiscoveryManager

 public void serviceChanged(ServiceDiscoveryEvent ev) {
 System.out.println("+++ SERVICE CHANGED");

 // Get both the pre and post service items.
 ServiceItem pre = ev.getPreEventServiceItem();
 ServiceItem post = ev.getPostEventServiceItem();

 // This shouldn't happen!
 if (pre == null && post == null) {
 System.out.println("Null service items!?");
 return;
 }

 // This block of code looks at the proxies to determine
 // if they've changed. It also looks for some common
 // error cases...notably, if the proxy is null, chances
 // are you've got codebase problems.
 if (pre.service == null && post.service == null) {

 System.out.println(
 "The service's proxy is still null");
 System.out.println("Codebase problem?");
 } else if (pre.service == null && post.service != null) {
 System.out.println("The service's proxy is no " +
 "longer null");
 System.out.println("Proxy now: " + post.service +
 “ (“ +
 post.service.getClass().getName()
 + ")");
 } else if (pre.service != null && post.service == null) {

 System.out.println(
 "The service's proxy has become null");
 System.out.println("Check codebase");
 } else if (!pre.service.equals(post.service)) {

 System.out.println("The service's proxy has changed");
 System.out.println("Proxy was: " + pre.service +
 " (" +
 pre.service.getClass().getName() +
 ")");

 System.out.println("Proxy now: " + post.service +
 " (" +
 post.service.getClass().getName()
 + ")");
 }

Listing 10–6 DiffListener.java

chap10.fm Page 394 Friday, November 17, 2000 12:50 PM

Using Events 395

 // The ID of a service should *never* change. If it
 // does change, chances are you've changed the ID
 // in a ServiceItem in the cache! Remember that you
 // should never write to ServiceItems in the cache.

 if (!pre.serviceID.equals(post.serviceID)) {
 System.err.println("Uh oh, the ID has changed");
 System.err.println(
 "Don't muck with the service items!");
 System.out.println("ID was: " + pre.serviceID);
 System.out.println("ID now: " + pre.serviceID);
 } else {
 System.out.println("ID: " + pre.serviceID);
 }

// Other changes can happen because of attribute
// modifications. This code doesn't detect those...

 }

 // A helper method to print out a service item
 public static void printServiceItem(ServiceItem item) {
 if (item == null) {
 System.out.println("Bogus: null service item");
 return;
 }

 if (item.service == null) {
 System.out.println("Bogus: service proxy is null");

 System.out.println("This service's codebase is " +
 "probably misconfigured");
 } else {
 System.out.println("Proxy: " + item.service);
 System.out.println("Class: " +
 item.service.getClass().getName());
 }

 System.out.println("ID: " + item.serviceID);

Listing 10–6 DiffListener.java

chap10.fm Page 395 Friday, November 17, 2000 12:50 PM

396 Chapter 10 Using the ServiceDiscoveryManager

To meet the ServiceDiscoveryListener interface, DiffListener must
implement three methods. The first, serviceAdded(), is called whenever a new
service has appeared in the cache. The implementation here simply gets the Ser-
viceItem for the new service and calls the static method printService() on it
to display some details about the service.

The second method, serviceRemoved(), is called whenever a service has
been dropped from the cache. Typically this will be because the service has dis-
appeared from the lookup services for the community. Note that the code here
fetches the ServiceItem for the service as it existed before the change, by
using getPreEventServiceItem(). When a service is dropped from the
cache, the getPostEventServiceItem() method will return null.

Finally, the last method this class must implement is serviceChanged().
The implementation of this method shown here does a bit of work to try to figure
out what aspects of the service changed. The code also looks a bit for common
error cases. The method first gets both the pre- and post-event ServiceItems. It
then examines the proxies for each service. A null proxy typically indicates that
you’ve got either a problem with codebase (meaning that the code for the proxy
can’t be found), or you’ve got a problem with security (either no security man-
ager, or an overly-restrictive security policy, which means that no non-local code
will be loaded). The method will detect null proxies, and will note if a proxy
becomes null, or ceases to be null. The code here will also compare the two prox-
ies (using equals()) to see if the proxies report that they are different.

 Entry[] attrs = item.attributeSets;

 if (attrs == null || attrs.length == 0) {
 System.out.println("Service has no attributes");
 } else {

 for (int i=0 ; i<attrs.length ; i++) {
 System.out.print("[" + i + "] ");
 if (attrs[i] == null) {

 System.out.println("null entry (possible " +
 "codebase problem)");
 } else {

 System.out.println(attrs[i]);
 }
 }
 }
 }
}

Listing 10–6 DiffListener.java

chap10.fm Page 396 Friday, November 17, 2000 12:50 PM

Using Events 397

Next, the code compares the IDs for the two service items. This is a bit of san-
ity checking: recall that services should always use the same ID, everywhere. If
you ever see different service IDs for the “same” service, then chances are you’ve
modified one of the ServiceItems stored in the cache. Remember that any
ServiceItems returned to you from the cache should be considered immutable;
if you change them, you are likely to corrupt the cache.

Change events for services will often be sent because the set of attributes on a
service changes. This code, unfortunately, doesn’t detect such changes. You could
easily modify it to walk over the two sets of attributes, seeing if attributes were
added, removed, or modified.

Next, take a look at the final extension of the main example code in Listing 10-7:

chap10.fm Page 397 Friday, November 17, 2000 12:50 PM

398 Chapter 10 Using the ServiceDiscoveryManager

This class is a very short extension of the first ClientLookupExample. The
only substantial change here is that the getListener() method is overridden to
return an instance of the DiffListener class.

Listing 10–7 ClientLookupWithEvents.java

// A version of ClientLookupExample that uses events

package corejini.chapter10;

import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceItem;
import net.jini.lookup.ServiceDiscoveryListener;
import net.jini.lookup.LookupCache;
import java.io.IOException;

public class ClientLookupWithEvents extends ClientLookupEx-
ample {
 protected ServiceDiscoveryListener myListener;

 public ClientLookupWithEvents() throws IOException {
 System.out.println("Creating with events");
 myListener = new DiffListener();
 }

 public ServiceDiscoveryListener getListener() {
 return myListener;
 }

 public static void main(String[] args) {
 try {
 ClientLookupWithEvents cle =
 new ClientLookupWithEvents();

 cle.runTests();
 } catch (Exception ex) {
 System.err.println(ex.toString());
 }

 System.exit(0);
 }
}

chap10.fm Page 398 Friday, November 17, 2000 12:50 PM

Using Events 399

If you look back to ClientLookupExample, you’ll see that getListener()
is called when the program first creates its LookupCache. The listener that is
returned from this call is installed so that it will receive ServiceDiscovery-
Events as the cache is updated.

Compiling and Running the Example

Once again, before running, make sure that the class files needed for the Ser-
viceDiscoveryManager’s remote event listener are still present in the cli-
ent-dl directory—you’ll need them for this example too. If you’ve deleted
them, follow the instructions from the earlier example to extract them again.

On Windows:

javac -classpath C:\files;
C:\jini1_1\lib\jini-core.jar;
C:\jini1_1\lib\jini-ext.jar;
C:\jini1_1\lib\sun-util.jar;
C:\client

-d C:\client
 C:\files\corejini\chapter10\ClientLookupWithEvents.java

java -cp C:\jini1_1\lib\jini-core.jar;
C:\jini1_1\lib\jini-ext.jar;
C:\jini1_1\lib\sun-util.jar;
C:\client

-Djava.security.policy=C:\files\policy
-Djava.rmi.server.codebase=http://myhost:8086/

corejini.chapter10.ClientLookupWithEvents

On UNIX:

javac -classpath /files:
/files/jini1_1/lib/jini-core.jar:
/files/jini1_1/lib/jini-ext.jar:
/files/jini1_1/lib/sun-util.jar:
/files/client

-d /files/client
 /files/corejini/chapter10/ClientLookupWithEvents.java

java -cp /files/jini1_1/lib/jini-core.jar:
/files/jini1_1/lib/jini-ext.jar:
/files/jini1_1/lib/sun-util.jar:
/files/client

-Djava.security.policy=/files/policy

chap10.fm Page 399 Friday, November 17, 2000 12:50 PM

400 Chapter 10 Using the ServiceDiscoveryManager

-Djava.rmi.server.codebase=http://myhost:8086/
corejini.chapter10.ClientLookupWithEvents

This program runs exactly the same sequence of calls as the first example.
Again, note that the non-blocking lookup finds no services and, more interest-
ingly for the purposes of this example, the call to lookup() on the Lookup-
Cache also reports that no services were found.

Non-blocking lookup found no services.
Blocking lookup found: Name = Lookup
 Manufacturer = Sun Microsystems, Inc.
 Vendor = Sun Microsystems, Inc.
 Version = 1.1 alpha
 Model =
 Serial Number =
 Proxy is com.sun.jini.reggie.RegistrarProxy@af330156
Cache lookup found no services.
Pausing...

After this sequence, however (which is the same as the previous run), you see
a number of ServiceDiscoveryEvents being received by the DiffListener.
These events show the changes to the cache as they happen.

+++ SERVICE ADDED
Proxy: com.xerox.dispatch.addressbook.AddressBookServiceProxy@0
Class: com.xerox.dispatch.addressbook.AddressBookServiceProxy
ID: dbc234f7-defb-4dc4-9a22-97361fd89172
[0] net.jini.lookup.entry.ServiceInfo(name=Address Book Service,manufac-

turer=Xerox PARC,vendor=Xerox PARC,version=1.0,model=,serialNumber=)
+++ SERVICE ADDED
Proxy: com.sun.jini.reggie.RegistrarProxy@dd2c2c30
Class: com.sun.jini.reggie.RegistrarProxy
ID: aaf8f7d8-e76c-424a-8862-a37c18da37de
[0] net.jini.lookup.entry.ServiceInfo(name=Lookup,manufacturer=Sun

Microsystems, Inc.,vendor=Sun Microsystems, Inc.,version=1.0,model=,serial-
Number=)

+++ SERVICE ADDED
Proxy: com.xerox.dispatch.authenticator.AuthenticatorProxy@0
Class: com.xerox.dispatch.authenticator.AuthenticatorProxy
ID: 3131ea32-e31d-4047-9e21-f1bf4eb95d60
[0] net.jini.lookup.entry.ServiceInfo(name=Address Book Service,manufac-

turer=Xerox PARC,vendor=Xerox PARC,version=1.0,model=,serialNumber=)
+++ SERVICE ADDED

chap10.fm Page 400 Friday, November 17, 2000 12:50 PM

Proxy: com.sun.jini.reggie.RegistrarProxy@af330156
Class: com.sun.jini.reggie.RegistrarProxy
ID: 5b41c161-dab6-47a9-b22a-bbd29cee3c4c
[0] net.jini.lookup.entry.ServiceInfo(name=Lookup,manufacturer=Sun

Microsystems, Inc.,vendor=Sun Microsystems, Inc.,version=1.1
alpha,model=,serialNumber=)

After a number of events have been received, the final call to lookup() shows
the new state of the cache, which reflects the changes represented by the various
ServiceDiscoveryEvents.

Trying again...
Cache lookup found: Name = Address Book Service
 Manufacturer = Xerox PARC
 Vendor = Xerox PARC
 Version = 1.0
 Model = null
 Serial Number = null
 Proxy is com.xerox.dispatch.addressbook.AddressBookServiceProxy@0
Getting all cached services...
[0] Name = Address Book Service
 Manufacturer = Xerox PARC
 Vendor = Xerox PARC
 Version = 1.0
 Model =
 Serial Number =
Proxy is com.xerox.dispatch.addressbook.AddressBookServiceProxy@0
[1] Name = Lookup
 Manufacturer = Sun Microsystems, Inc.
 Vendor = Sun Microsystems, Inc.
 Version = 1.0
 Model =
 Serial Number =
 Proxy is com.sun.jini.reggie.RegistrarProxy@f16dfd46
[2] Name = Authentication Service
 Manufacturer = Xerox PARC
 Vendor = Xerox PARC
 Version = 1.0
 Model =
 Serial Number =

chap10.fm Page 401 Friday, November 17, 2000 12:50 PM

402 Chapter 10 Using the ServiceDiscoveryManager

 Proxy is com.xerox.dispatch.authenticator.AuthenticatorProxy@0
[3] Name = Lookup
 Manufacturer = Sun Microsystems, Inc.
 Vendor = Sun Microsystems, Inc.
 Version = 1.1 alpha
 Model =
 Serial Number =
 Proxy is com.sun.jini.reggie.RegistrarProxy@af330156

Summary

This chapter has shown the details of how clients interact with lookup services
using the high-level—and very powerful—ServiceDiscoveryManager. This
class provides a layer of “insulation” between your application code and the low-
level ServiceRegistrar interface.

The interfaces you’ve seen here will, in all likelihood, be the most common
APIs you use when building Jini applications.

What’s Next?

In the next chapter, you’ll put your newly-found knowledge of lookup services
to good use by building a complete lookup service browser from the ground up.

chap10.fm Page 402 Friday, November 17, 2000 12:50 PM

