

Chapter

The Jini Model

Topics in This Chapter

• The goals of Jini

• What Jini is; what Jini isn’t

• Basic concepts: discovery, lookup, leasing, remote events,
transactions

• Downloadable proxies as the key to service delivery

chap3.fm Page 60 Friday, November 17, 2000 11:37 AM

61

Chapter

3

ow that you’ve seen the benefits Java can bring to distributed comput-
ing, it’s time to see what Jini brings to Java. The Jini vision is simply
this: You can walk up with any Jini-enabled device—be it a digital

camera, a new printer, a PDA, or a cell phone—plug it into a TCP/IP network,
and automatically see and use the variety of other Jini-enabled devices in your
vicinity. Any resource available on the network is available to your Jini-enabled
device, as if it were directly attached to it, or the device had been explicitly pro-
grammed to use it. And adding a new device to this “network community” is as
simple as plugging it in.

Likewise, new software services can be added or moved without extensive
configuration, and without having to tweak the clients of those services.

In this chapter, you’ll learn about what Jini is: both in terms of the “center of
gravity” of its design—what aspects the Jini developers considered crucial to
focus on—and in terms of the new concepts Jini introduces.

Jini Design Center

In this section, I’ll talk about Jini’s “design center.” This is the set of areas that
the Jini designers felt were the most important to focus on.

N

chap3.fm Page 61 Friday, November 17, 2000 11:37 AM

 62 Chapter 3 The Jini Model

Simplicity

Bill Joy, one of the inspirations and champions of Jini, once stated, “Large suc-
cessful systems start out as small successful systems.” This philosophy is very
much a part of the Jini motivation. Essentially, if you already know Java, you
almost know Jini. Jini is built using the fundamental Java concepts—especially
as they relate to the distributed computing issues discussed in the last chapter—
and adds only a thin veneer to allow services on the network to work with each
other more easily.

This is important: Jini is, at its heart, about how services connect to one
another—not about what those services are or what they do or how they work. In
fact, Jini services can even be written in a language other than Java; the only
requirement is that there exists, somewhere on the network, a bit of code that

is

written in Java that can participate in the mechanisms Jini uses to find other Jini
devices and services.

I’ve been using the terms “devices” and “services” pretty interchangeably so
far. But from the Jini perspective, everything—even a device such as a scanner or
printer or telephone—is really a service. To use an object-oriented metaphor,
everything in the world, even hardware devices, can be understood in terms of the
interfaces they present to the world. These interfaces are the services they offer,
so Jini uses the term “service” explicitly to refer to some entity on the network
that can be used by other Jini participants. The services these entities offer may
be implemented (here’s the OO terminology again) by some hardware device or
combination of devices, or some pure software component or combination of
components.

Reliability

I’ve said that Jini provides the infrastructure that allows these services to find
and use one another on a network. But what does this really mean? Is Jini sim-
ply a name server like the Internet’s Domain Name Service (DNS) or the Light-
weight Directory Access Protocol (LDAP) within an organization? As it turns
out, Jini does have similarities to a name server; it even provides a service for
finding other services in a community (though this service is actually much
richer than a traditional name service, as you will see). But there are two essen-
tial differences between what Jini does and what simple name servers do:

• Jini supports serendipitous interactions among services and users
of those services. That is, services can appear and disappear on a
network in a very lightweight way. Interested parties can be

chap3.fm Page 62 Friday, November 17, 2000 11:37 AM

Jini Design Center 63

automatically notified when the set of available services changes.
Jini allows services to come and go without requiring any static
configuration or administration. In this way, Jini supports what
might be called “spontaneous networking”—services close to one
another form a community automatically, with no need for
explicit user involvement. This means that you don’t have to edit
configuration files, shut down or restart name servers, configure
gateways, or anything else to use a Jini service—you literally just
plug it in and Jini does the rest. Furthermore, every device or
service that connects to a Jini community carries with it all the
code necessary for it to be used by any other participant in the
community.

• Communities of Jini services are largely self-healing. This is a
key property built into Jini from the ground up: Jini doesn’t make
the assumption that networks are perfect, or that software never
fails. Given time, the system will repair damage to itself. Jini also
supports redundant infrastructure in a very natural way, to reduce
the possibility that services will be unavailable if key machines
crash.

Taken together, these properties make Jini virtually unique among commer-
cial-grade distributed systems infrastructures. These properties ensure that a Jini
community will be virtually administration-free. Spontaneous networking means
that the configuration of the network can be changed without involving systems
administrators. And the ability for a service to carry with it the code needed to
use it means that there is no need for driver or software installation to use a ser-
vice (other than installing the core Jini software itself, of course). Furthermore,
the self-healing nature of Jini also reduces administrative load, and user head-
aches. A cooperating group of Jini services will be resilient to changes in network
topology, service loss, and network partitions in a clean way. Jini services are
able to cope with network failures. Perhaps they will not be able to fully do their
jobs (even the telephone network may report errors to the user at times), but at
least they will work predictably in the face of failures, and will recover by them-
selves over time.

Scalability

I’ve said that groups of Jini services join together in cooperating sets. In Jini,
these groups of services are called

communities

; all services in a community
are aware of each other and able to use each other.

1

chap3.fm Page 63 Friday, November 17, 2000 11:37 AM

 64 Chapter 3 The Jini Model

So Jini services band together to form communities. But how large are these
communities? What did the Jini designers envision as the “target” size for a com-
munity? This is an important question. If Jini’s design favors very large groups—
say, a group composed of every Jini-enabled device in the continental United
States—it will have very different performance and interaction characteristics
than a design that favors very small groups. The key issue here is

scalability

—
how Jini is designed to accommodate varying numbers of services, from the very
large to the very small.

Jini addresses scalability through

federation.

 Federation is the ability for Jini
communities to be linked together, or federated, into larger groups. Ideally, the
size for a single Jini community is about the size of a workgroup—that is, the
number of printers, PDAs, cell phones, scanners, and other devices and network
services needed by a group of 10 to 100 people. The reason for this workgroup
focus is that, most often, people tend to collaborate with those they work closely
with. Jini makes it easy to bring together this group of people into a community,
and makes their resources shareable.

Even if you’re part of a workgroup community, you may occasionally need
access to resources “further” away (in the network sense)—for example, that fast,
new color laser printer up in marketing. Jini supports access to services in other
communities via federating them together into larger units. Specifically, the Jini
lookup service—the entity responsible for keeping track of all the services in a
community—is

itself

 a Jini service. The lookup service for a given community
can register itself in other communities, essentially offering itself up as a resource
for users and services there. (As you’ll see later, Jini actually bootstraps itself:
Many of the core Jini features are themselves Jini services that can be shared and
used by other services using the normal Jini mechanisms.)

The topology of these communities is very lightweight. When you install the
Jini software, the system will, by itself, create communities that form along net-
work boundaries. So, for example, if your engineering and marketing departments
are on different networks, each will form a unique Jini community. If you want to
federate these communities, it’s trivial to do a tiny bit of administration to ensure
that the lookup services for each community are known to the other.

1. If you peruse some older Jini technical documentation, you may see the word

djinn

used to refer to a community of Java services. Rather than using an obscure word
(the original Arabic word from which “genie” is derived), I’ll stick to the more
meaningful “community.” Often you may see the word “federation” used to describe
a Jini community, and some wags, particularly those with a bent toward Star Trek,
may refer to a Jini community as a “collective,” reminiscent of the Borg.

chap3.fm Page 64 Friday, November 17, 2000 11:37 AM

Jini Design Center 65

Core Note: Jini and administration

Jini is designed to work well in an administration-free setting. But
of course you can apply a bit of hand-holding to tailor the system for
your particular circumstances.

Federating communities along organizational boundaries is a
prime example of this sort of hand-holding: Jini knows enough by
itself to form communities along network lines, but has no idea what
your company’s organizational structure is. So you have to tell Jini

that information yourself.

Device Agnosticism

This was alluded to in the previous section, but is important enough that it
deserves restating: Jini is agnostic with regard to devices. What does this
mean? Essentially it means that Jini is designed to support a wide variety of
entities that can participate in a Jini community. These “entities” may be
devices or software or some combination of both; in fact, it’s generally impos-
sible for the user of one of these things to know which it is. This is one of the
key contributions of Jini. To use something you don’t have to know—and
indeed, don’t even care—whether that something is hardware or software. You
only have to understand the interface it presents.

If an actual hardware device is connected to the network, Jini is flexible about
how much computational power it needs to have. Jini can work with full-blown
desktop or server computers, capable of running multiple JVMs and connecting
with each other at gigabit speeds. It can also work with such devices as PDAs and
cell phones that may have only limited Java capabilities—say, a Java 2 Micro Edi-
tion (J2ME) implementation with a limited set of class libraries.

In fact, Jini is actually able to accommodate devices that are so simple they
may have no computation on them at all. As you’ll see in the next chapter, Jini
can accommodate devices with the computational intelligence of—literally—a
light switch. The only requirement is that some other, perhaps shared, computa-
tional resource that can participate in the Jini community-building protocols on
behalf of that device must exist.

Furthermore, and this may be somewhat surprising, Jini doesn’t even require
that the device or service be written in or understand Java! Again, all that is
required is that some Java-speaking device be willing to act as a proxy on behalf
of the Java-challenged device or service. You’ll see how this works in the next
chapter.

chap3.fm Page 65 Friday, November 17, 2000 11:37 AM

 66 Chapter 3 The Jini Model

What Jini Is Not

Now that I’ve talked a bit about what Jini is, I should say a few words about
what Jini is not.

Jini Is Not a Name Server

As mentioned previously, Jini is not just a name server. Some of what Jini
does—like keeping track of the services known within a community—looks
like a name server, and even uses the Jini lookup facilities, which provide func-
tionality similar to (but not quite the same as) a name server. But Jini is much
more. It is a paradigm for building distributed systems that support spontane-
ous appearance and disappearance in a community, and the ability to self-heal
when things go wrong.

Jini Is Not JavaBeans

JavaBeans provides a way for software components—called beans—to find
each other, use services provided by other beans, introspect each other, and so
forth. But JavaBeans has a very different design center from Jini. Beans is
largely intended for use within a single address space. The mechanisms used
for communication between beans are based on direct method invocation, not
remote protocols. The beans model, flexible as it is, is also far less dynamic
than Jini. When a new bean appears on your system, the current beans in your
application don’t suddenly know about it and start using it. You—the designer
of the system—have to explicitly link the bean into your application and “wire
it up” to the other beans. JavaBeans is intended largely for design-time, and to a
lesser degree for run-time use in a single address space. Jini is all about run-
time use across address spaces. (This isn’t to say that Jini and JavaBeans are
incompatible systems, however. Jini can leverage JavaBeans in some nice
ways. Later, you’ll see how to use the JavaBeans event model from Jini, and
how to attach beans to Jini services.)

Jini Is Not Enterprise JavaBeans

Likewise, Jini is not Enterprise JavaBeans (EJB). EJB has, on the surface, some
characteristics of Jini. It provides the notion of services on the network. Enter-
prise beans can, and usually do, live in different address spaces. But again, the
design center of EJB is quite different than that of Jini. EJB is designed to hook

chap3.fm Page 66 Friday, November 17, 2000 11:37 AM

What Jini Is Not 67

together legacy enterprise systems, covered by Java wrappers, to form the
back-end business logic of enterprise applications. It is designed to support
easy construction of this logic, and leverages the transaction, messaging, and
database services already on the enterprise network. As such, EJB is largely
used to configure relatively static pathways between enterprise software com-
ponents. As long as the logic of the system doesn’t change, there’s probably lit-
tle need to reorganize the connections between the beans. Again, defining how
these connections will take place happens mostly at design time. In contrast,
Jini is about dynamic, run-time discovery of services and run-time connectivity
between them. (This is not to say that Jini and EJB can’t interact. For example,
an enterprise JavaBean could be “Jini-ized” so that it could discover and join a
Jini community of services.)

Jini Is Not RMI

Jini is not the same thing as Java RMI. While Jini

uses

 the RMI semantics
extensively, particularly its rules for mobile code, Jini is a set of services and
conventions built atop these semantics. As such, services that speak Jini can
enjoy the full benefits of Jini’s spontaneous networking and self-healing abili-
ties. While it would be possible (although a lot of work) to build these abilities
into a generic RMI application, they are not a part of RMI itself, and generic
RMI applications do not see these advantages.

Jini Is Not a Distributed Operating System

Finally, Jini is not a distributed operating system. In some ways, it is much
larger than a distributed operating system because pieces of it must run atop
some platform that provides a JVM at a minimum; in other ways, it is much
smaller than a distributed operating system—the facilities offered and the con-
cepts used by Jini are very limited. Jini only has the notion of services, and the
facilities for finding those services. True distributed operating systems provide
all the services of traditional operating systems (file access, CPU scheduling,
user logins), but do this over a connected group of machines. Jini allows much
simpler devices to participate in Jini communities than would devices that rely
on running a copy of a full-blown distributed operating system.

chap3.fm Page 67 Friday, November 17, 2000 11:37 AM

 68 Chapter 3 The Jini Model

What Jini Is

So far in this chapter I’ve spent some time talking about the design center in
Jini, as well as what Jini is not. Now it’s time to say exactly what Jini is. I’ve
said that conceptual simplicity was one of the key design goals of Jini, and now
you’ll get to see what that means in practice.

Broadly speaking, there are three main concepts that form the foundation for
Jini. These work in concert to provide the ability for Jini services to spontane-
ously interconnect with each other, without cumbersome administration. The
short sections below introduce these concepts briefly; I’ll talk about them in more
detail later in the chapter.

Services Carry the Code Needed to Use Them

Applications use services through objects called

proxies

, which provide all of
the code needed to connect to a particular service. You can think of proxies as
being similar to device drivers in that they allow an application program to
interact with a service while shielding it from the details of that service.

But unlike device drivers, which are typically installed by some systems
administrator and have to be in place before the device can be used, Jini proxies
are carried by the services themselves, and are dynamically downloaded by cli-
ents when they wish to use a service. In essence, Jini services can “teach” clients
how to use them by extending the capabilities of clients on-the-fly, using all the
benefits of mobile code discussed in the last chapter. Applications don’t have to
know the implementation details of these proxies, and they don’t have to be
“compiled in”—or even known—when the applications are written.

These proxy objects typically communicate over the network with the back-
end portion of the service using whatever protocols the back end was written to
understand. Importantly, though, clients are shielded from having to know or care

how

 a proxy does its communication with the back end.

A “Meta Service” Provides Access to All Other
Services

The ability to dynamically download proxy code isn’t enough, though. Simple
dynamic downloading says nothing about how you know

what

 services are
available to you in the first place. Jini provides an interesting solution to this
“service discovery” problem. It uses a special service that keeps track of all the

chap3.fm Page 68 Friday, November 17, 2000 11:37 AM

What Jini Is 69

other services in the community. This service, called the

lookup service

, is
essentially a meta-service that provides access to all other services.

When a service wishes to make itself available, it “publishes” its proxy by
storing it in a lookup service. Clients can then connect to the lookup service and
ask it what services are available. The lookup service is the indispensible bit of
infrastructure in a Jini community. It keeps track of the proxies of the services in
the community, makes them available (and searchable) by clients, and can inform
interested parties when new services appear or when services leave the commu-
nity.

And yet, while the lookup service plays a very special role in Jini communi-
ties, it is still just a service, with all the characteristics of any other Jini service
(including the ability to be deployed redundantly, the fact that lookup services are
largely administration free, and so on).

A Bootstrapping Process is Used to Find Proxies
for the Lookup Service

As I mentioned, the essential tasks of service discovery are performed by a Jini
service, the lookup service. This begs the question: If applications use services
by downloading their proxies from the lookup service, and yet the lookup ser-
vice is

itself

 a service, how do applications get the proxies for the lookup ser-
vice? This is the bootstrapping problem—lookup services are the things that
make other services available, but there has to be a way for lookup services
themselves to be made available to applications.

You could imagine a couple of solutions to this problem, including providing
some fixed “root” lookup service that provides proxies for all other lookup ser-
vices in the known universe. But this solution isn’t in keeping with the Jini spirit,
since it depends on a centralized node (and a single point of failure). Another
solution might be to simply pre-compile the proxy code that’s used for talking to
lookup services into every application. But this approach would negate the chief
advantage of using downloadable proxies: that applications don’t have to know
ahead of time how a particular service is implemented. Ideally you’d like to have
potentially many different implementations of the lookup service tuned for differ-
ent environments, and thus each with their own proxy implementations for talk-
ing to the service’s back end.

Jini’s solution is simple and yet powerful. Jini uses a process called

discovery

by which lookup services, and the applications that wish to use them, periodi-
cally send out messages on the network. The end result of these messages is that
an application will automatically find any lookup service in its vicinity, and will
have an IP address and port number from which to download the proxy from the

chap3.fm Page 69 Friday, November 17, 2000 11:37 AM

 70 Chapter 3 The Jini Model

lookup service directly. This “out of band” protocol for discovering lookup ser-
vices is how Jini services “self assemble” into communities. (There are other dis-
covery protocols that allow other types of assembly; I’ll talk about these later in
this chapter.)

Fleshing Out The Key Ideas

Lookup and discovery are the key notions that Jini uses to allow an important
Java feature—mobile code—to be used to allow applications to find and use
services they may never have heard of before. Together, these technologies
form the core infrastructure of Jini. If you only understand one key fact about
how Jini works, this is the one to remember.

But while these features form the key to Jini, they’re really only the most basic
substrate on top of which other Jini concepts are layered. For example, the high-
level descriptions above say nothing about the

particulars

 of how these features
are used. For example, they don’t say anything about how lookup services come
and go, or how clients actually use a lookup service to find services. In this sec-
tion, I’ll talk in more detail about the details of dynamic proxies, discovery, and
lookup.

And, of course, these features aren’t all there is to Jini. Layered atop these
essential mechanisms are several other important concepts that affect the way
you build Jini applications in practice. These include aspects of the Jini program-
ming model such as remote events and transactions, as well as Jini’s strategy for
self-healing, called leasing. In the rest of this section, I’ll flesh out the most fun-
damental concepts in Jini. In the next section, I’ll talk about other important
“supporting technologies” that you also need to understand to use Jini effectively.

Downloadable Proxies

Much of the power of Jini comes from its ability to effectively leverage a fea-
ture central to Java—the ability to download Java bytecodes from the network
and execute them securely. In Jini, services are always accessed via an object
provided by the service itself, called a proxy. This proxy is downloaded to the
client—code and all—at the time the client wishes to use the service. The client
then makes calls on it, just as it would any other object, to control and use the
service.

This idea of downloadable service proxies is the key idea that gives Jini its abil-
ity to use services and devices without doing any explicit driver or software instal-
lation

. Services publish the code that can be used to access them. A printer, for
instance, publishes a proxy that understands how to control that particular printer.

chap3.fm Page 70 Friday, November 17, 2000 11:37 AM

Fleshing Out The Key Ideas 71

A scanner publishes a proxy that knows how to talk to that particular scanner. An
application that uses these services downloads their proxies and uses them without
needing any understanding of how the proxies are implemented or how (or even
whether) they talk to any back-end device or process.

In some ways, Jini proxies are analogous to Java applets: applets provide a
zero-administration way to acquire and use an application; Jini proxies provide a
zero-administration way to acquire and use the “glue logic” for communicating
with any arbitrary service. But whereas applets are typically designed for “human
consumption”—meaning that they usually appear in a Web page when a user
asks for them, and come with a graphical interface—Jini proxies are designed to
be found, downloaded, and used programmatically. They are essentially secure,
network-aware, on-demand device drivers.

The particulars of how a proxy interacts with its service are completely up to
the creator of the service/proxy pair. There are a number of common scenarios,
though.

• The proxy can sometimes actually perform the service itself. In
this case, the object that is sent to clients implements all of the
service’s functionality itself (and therefore, calling it a “proxy” is
really unfair). This strategy is used when the service is
implemented purely in software, and there are no external
resources that need to be used. An example might be a language
translation service that is completely implemented as in Java code
and has no need to talk to any external processes to do its job.

• The proxy can be an RMI stub for talking to some remote service.
If you’ve already got an RMI-based service running on the
network, the stub for the service is fine for use as a Jini proxy.
This is a particuarly easy and minimal way to bring an RMI-
based service into the Jini world. In this case, the proxy is a
minimal, automatically-generated bit of code that has only the
“intelligence” necessary to speak RMI.

• The proxy can be a “smart” proxy that can use any private
protocol necessary to communicate with the service. Using a
“smart” proxy (as opposed to an automatically generated RMI
stub) allows more processing to be embedded in the client. For
example, a smart proxy may cache data in the client. It may be
able to “fail over” to multiple back-end services. And it fully
hides the details of the communications protocol from the client.
Smart proxies can be used to provide a Jini interface to legacy
(non-Java) services that speak sockets or CORBA or some other

chap3.fm Page 71 Friday, November 17, 2000 11:37 AM

 72 Chapter 3 The Jini Model

protocol, and they can provide access to hardware devices that
have their own communications protocols.

Proxies are the key to Jini’s ability for clients to use services they may never
have heard of before, and without any administration or driver installation. Even
better, the client has no idea how the proxy is implemented. All the user of a
printer service has to know is that the proxy implements the

Printer

 interface—
not the particulars of how it will talk to any specific printer.

Using Lookup Services

As mentioned earlier in the quick run-through of the main ideas in Jini, services
store their proxies with lookup services, where clients can then find them.

You can think of Jini lookup services as being like name servers, since they
keep track of all of the services that have joined a Jini community. But unlike a
traditional name server, which provides a mapping from strings to stored objects,
Jini lookup services support a much richer set of semantics. For one thing, the
lookup service understands the Java type system. So you can search for proxies
that implement particular Java interfaces, and the lookup service will return to
you proxies that implement that interface. You can even search by looking for
superclasses and superinterfaces of proxies.

How the internals of the lookup service are actually implemented is hidden
from you. It may be built using a simple hashtable that gets saved to disk periodi-
cally, or it may be a high-powered directory service with lightning-fast lookups
and logged writes to persistent storage. All you as the user of a lookup service
knows is that the proxy for the lookup service implements the

ServiceRegis-

trar

 interface, which is common to all lookup service implementations. You do
not know the details of how it communicates with the lookup service itself—it
may be using Java RMI, vanilla sockets, or smoke signals for all you know. This
permits multiple, wildly varying implementations of the lookup service, with all
of the details hidden behind the object you get that implements the lookup inter-
faces.

Publishing a Service

The most important thing a Jini service has to do is publish its proxy with the
lookup service so that clients may use it. Abstractly, you can think of the
lookup service as storing a set of “service items,” each of which contains the
proxy for a service, a unique ID for the service, and a set of descriptive

chap3.fm Page 72 Friday, November 17, 2000 11:37 AM

Fleshing Out The Key Ideas 73

“attributes” associated with the service. In Figure 3–1, you see a lookup service
that’s holding three service items.

If you are publishing a service (say, a printer) that you wish to make available
to anyone who wants to use it, you

join

 all the lookup services you find from the
discovery process. The

ServiceRegistrar

 interface has a method called

reg-

ister()

 that lets you join a lookup service. Figure 3–2 shows a service joining a
community by registering its proxy with a lookup service.

Core Tip: Join every lookup service for your community

Note that any given community (that is, each unique group name on
a given network) may have any number of lookup services supporting
it. For fault-tolerance purposes, many redundant lookup services may
be active.

Typically, a service that needs to join a community will join all the
lookup services that support that community, so that if one lookup
service fails, others can stand in for it. Unless you have some special
need, or need to explicitly limit the scope of visibility of your service,

you should usually join all of the lookup services that you discover.

Figure 3–1 Lookup services maintain lists of service items

chap3.fm Page 73 Friday, November 17, 2000 11:37 AM

 74 Chapter 3 The Jini Model

You invoke the

register()

 method by passing in a service item object as an
argument. You fill in the attributes with objects that may describe your service.
There are some standardized attributes provided by Jini for this purpose—service
name, service location, comments, and so on. If your company sells a number of
Jini services, you may even have your own standardized set of attributes that
reveal extra information about the services.

Jini calls the process of publishing a proxy the

join protocol

. This isn’t a proto-
col in the network sense, but rather a series of steps that services should take to
ensure that they’re well-behaved with respect to the other services in a commu-
nity. Chapter 8 goes into quite a bit of detail on the join protocol and other
aspects of how services interact with lookup services to publish their proxies.

Finding a Service

Once a service has joined a community by publishing its proxy, clients can use
the service. Typically, clients will search the lookup services they have found for
services that implement particular interfaces that they know how to use.

Figure 3–2 A service joins a Jini community

chap3.fm Page 74 Friday, November 17, 2000 11:37 AM

Fleshing Out The Key Ideas 75

The lookup service provides a number of ways to search—you can search
based on the type of the proxy, you can search for the service’s unique ID if you
happen to know it, or you can search based on the descriptive attributes associ-
ated with the service’s proxy.

This process of finding the services you want to use is the core functionality of
the lookup service and so, not surprisingly, the

ServiceRegistrar

 interface
defines a method called

lookup()

 that does exactly this. By using this method,
clients can retrieve the proxies needed to use the services they desire.

Chapters 9 and 10 go into detail on how clients interact with lookup services,
but Figure 3–3 illustrates the high-level view of the process. Here you see a client
application downloading the proxy for a particular service from a lookup service.
Once the proxy has been downloaded, the client uses it as a “front end” to com-
municate directly with the service’s “back end,” which is typically a long-lived
process or a hardware device connected to the network.

Say you are writing the software for a digital camera and you want to be able
to print from the camera directly to a printer when you detect that one is nearby.
In this case, the most likely scenario is that the camera does a search of all the
lookup services in its community, looking for proxies that implement the

Printer

 interface. The lookup services may return one or more proxies that
implement this interface, and the camera may choose to present them, possibly

Figure 3–3 Using a Jini service

chap3.fm Page 75 Friday, November 17, 2000 11:37 AM

 76 Chapter 3 The Jini Model

annotated with name, location, or comment information from their attributes, to
the user on the LCD display of the camera. When the user prints a picture to a
particular printer, the

Printer

 methods on the front-end proxy object are
invoked, and output is sent to the printer.

Common Interfaces, Divergent
Implementations

You may be asking yourself, “How did the camera know to look for service
items for the

Printer

 interface?” Clearly, applications need to have at least

some

 understanding of the semantics of the interfaces they are calling. You, as
the writer of the digital camera software, may not know

how

 the

Printer

 inter-
face works, but you have at least a basic idea of

what

 it does—it causes things
to be sent to the printer. If you were to encounter an interface with some unin-
telligible name, say the

Fleezle

 interface, you would have no idea what it did,
or what to pass as arguments to its methods, or what to do with its return val-
ues. In such a case, it’s impossible to really use this unknown interface pro-
grammatically, without some end-user involvement to tell you what to do. For
this reason, most Jini services will be written to implement well-known inter-
faces, and to expect the other services in a community to implement well-
known interfaces. This is the only way they can know

how

to programmatically
interact with services they encounter.

Sun, along with its partners and the wider Jini community of users, is working
to define a set of common interfaces for printers, scanners, cellular telephones,
storage services, and other common network devices and services. Development
of these is ongoing at the time of this writing. If at all possible, writers of new
services should use standardized interfaces wherever appropriate to ensure that
Jini services can take advantage of each other.

It is, of course, possible to use unknown interfaces if the user can tell you what
to do with them. For this reason, it’s a good idea to create user interfaces (in addi-
tion to programmatic interfaces) to your services. Such interfaces can be dis-
played to a user and may allow them to interact “manually” with a service, even
if a client doesn’t know how to use it programmatically. Thus, a user might rec-
ognize the

Fleezle

 service from its user interface, and control it directly from
the camera, even if the camera’s software could not.

chap3.fm Page 76 Friday, November 17, 2000 11:37 AM

Fleshing Out The Key Ideas 77

Discovery

Before a Jini-aware application—either a service or client—can take advantage
of Jini services, it must first find one or more Jini communities. The way it does
this is by finding the lookup services that keep track of the shared resources of
that community—this process of finding the available lookup services is called
discovery.

There is not necessarily a one-to-one mapping of communities to lookup ser-
vices. Each lookup service on a network may provide service for one or more
communities, and each community may have one or more lookup services that
support it, depending on how the lookup services were started.

The Discovery Protocols
There is not just a single discovery protocol—Jini supports several useful pro-
tocols in different situations.

• The Multicast Request Protocol is used when an application or
service first becomes active, and needs to find the “nearby”
lookup services that may be active.

• The Multicast Announcement Protocol is used by lookup services
to announce their presence. When a new lookup service that is
part of an existing community starts up, any interested parties
will be informed via the Multicast Announcement Protocol.

• The Unicast Discovery Protocol is used when an application or
service already knows the particular lookup service it wishes to
talk to. The Unicast Discovery Protocol is used to talk directly to
a lookup service, which may not be a part of the local network,
when the name of the lookup service is known. Lookup services
are named using a URL syntax with jini as the protocol
specifier (jini://turbodog.parc.xerox.com specifies the
lookup service running on the host turbodog.parc.xerox.com
on the default port, for example). Unicast lookup is used when
there is a need to create static connections between services and
lookup services, such as when explicitly federating lookup
services together.

The end result of the discovery process is that proxies for the discovered
lookup services are returned to the application doing the discovery. As mentioned
earlier, these proxies will all implement the ServiceRegistrar interface, and
allow services to publish proxies, and clients to find them.

chap3.fm Page 77 Friday, November 17, 2000 11:37 AM

 78 Chapter 3 The Jini Model

Supporting Multiple Communities

In Jini, communities can have names. In the Jini APIs, these names are called
“groups,” and during the discovery process, a service or application can specify
the groups it wishes to find. The discovery protocols will return all of the
lookup services it can find that are members of those groups. Lookup services
can be members of multiple groups. (And, even though other types of services
can register with any number of lookup services which have membership in
any number of groups, you typically don’t think of those services as being
members of those groups. The Jini team thinks of “group membership” as
being a trait of lookup services only, whereas other services simply join lookup
services that are members of those groups.)

You can, in most cases, think of “groups” and “communities” as being the
same things—groups are simply the names used to specify and represent com-
munities. The most important difference to note between communities and
groups is that because of network separation, different communities may have the
same group name—the “public” group at Xerox PARC does not refer to the same
“public” group at Javasoft, for example. Even though the names are the same,
these names can refer to different actual communities depending on where they
are. Put a different way, group names are not globally unique, nor are they neces-
sarily globally accessible. But, for most purposes, you can think of groups and
communities as being interchangeable.

How does a service know which community to join? In most cases, services
will simply look for the “default” group, which is named by the empty string
and—by convention—is treated as a “public” community, and then use the multi-
cast protocols to connect to any and all lookup services they can find. The multi-
cast protocols are designed to ensure that the discovery process will only reach
lookup services running on the local network, to keep from blasting the entire
Internet with discovery protocol packets.

In some cases, a service may need to join a non-default community. For exam-
ple, a product development lab may test out new services in an “experimental”
community that happens to exist on the same subnet as the “production” commu-
nity, which might be the default. These two communities can share resources (if
services join both communities), and even share lookup services (if the lookup
services are members of both communities). To join the non-default experimental
community, services would use the group name “experimental” to find the lookup
services that are members of that community.

In other cases, a service may need to join a non-local community that is “out
of range” of multicast discovery. Such services can be explicitly configured with
a set of lookup services that they will connect to via unicast discovery. Since uni-

chap3.fm Page 78 Friday, November 17, 2000 11:37 AM

Supporting Technology 79

cast discovery doesn’t have the same range restrictions as multicast discovery,
services can use this feature to join communities no matter where they are. The
ability to use the unicast discovery protocol allows Jini to be flexible in creating
its community structure.

While Chapter 6 goes into quite a bit of detail on the various discovery proto-
cols, using them in practice is thankfully easy. Most applications will use a set of
convenient utility classes that come with Jini and will never have to worry about
interacting with discovery directly.

Supporting Technology

While the use of discovery and lookup to deliver service proxies is the central
notion in Jini, this isn’t enough in itself to really support rich, robust, distrib-
uted systems. So on top of this basic substrate, Jini layers some more technolo-
gies that are used to provide features like reliability and the ability to detect
changes in services.

In this last section of the chapter, I’ll talk about these supporting technologies
and introduce several new concepts. You’ll need to understand the ideas here—
and the programming libraries that support them—to build real Jini software.

There are three particularly important ideas that are layered atop the basic Jini
facilities:

• Jini’s approach to self-healing is through a technique called
leasing. Essentially, Jini never grants access to resources in
perpetuity, but requires that resource holders continually “renew”
their leases on resources.

• Jini provides a flexible remote event system to allow distributed
applications to communicate with one another.

• Jini supports a lightweight model for distributed transactions to
ensure that computations can reach a “safe” state.

The rest of this chapter provides an overview of these three important concepts
in the Jini programming model.

Leasing

All the talk in this chapter about discovery and lookup covers the aspects of Jini
that allow communities of applications to form spontaneously and exchange
code. But I haven’t said anything yet about how to ensure that these communi-

chap3.fm Page 79 Friday, November 17, 2000 11:37 AM

 80 Chapter 3 The Jini Model

ties are stable, self-healing, and resilient in the face of (inevitable) network fail-
ures, machine crashes, and software errors.

Consider an example: Suppose our digital camera service joins a community
by registering itself with a lookup service; presumably this happens whenever the
camera is attached to a computer that is itself on the network. The camera pub-
lishes the fact that it is available for use, and all is well. That is, all is well until
the user unceremoniously yanks the camera out of its cradle without turning it off
first. What happens here? To the other members of the community, this may look
like a classic partial failure situation—they may not be able to tell if the remote
host to which the camera is connected has gone down, if it’s simply slow to
answer, if it’s not answering network traffic because of a change in its configura-
tion, if the camera’s software has crashed, or even if the camera has been
smashed with a hammer. But, regardless of how it was disconnected, the fact is
that it has not had a chance to unregister itself before disconnecting because of its
abrupt “termination.”

The result of the user disconnecting the camera without shutting down prop-
erly—a completely understandable and common occurrence—is that, without
some special facilities, a “stale” registration will linger in the lookup service for
the community. Services that wish to use the camera will see it registered but will
not be able to use it. But even more severe are the problems that the lookup ser-
vice itself faces—if service registrations are never properly cleaned up, it will
accrete registrations and slowly bog down under the weight of stale data.

This accumulation of state is a serious problem in long-lived distributed sys-
tems. You simply cannot ensure that services will never crash or become discon-
nected before they’ve had a chance to deregister themselves.

In the case I’ve described, the camera holds a resource in the lookup service—
it is asking the lookup service to use some of its (possibly scant or expensive)
storage and computation to maintain the camera’s registration. If the Jini infra-
structure used a traditional approach to resource reservation, the registration
would simply stay active until it was canceled, or until some human administrator
went through the logs and cleaned out the stale services.

Obviously, this solution violates everything that you want from Jini. First, it
doesn’t ensure that the system self-heals: Partial failures aren’t recognized and
cleaned up, and services that hold resources on behalf of others may grow with-
out bound. Second, and perhaps even worse, it requires explicit human interven-
tion to administer the system.

Time-Based Resource Reservation
To get around these problems, Jini uses a technique called leasing. Leasing is
based on the idea that, rather than granting access to a resource for an unlimited

chap3.fm Page 80 Friday, November 17, 2000 11:37 AM

Supporting Technology 81

amount of time, the resource is “loaned” to some consumer for a fixed period
of time. Jini leases require demonstrable proof-of-interest on the part of the
resource consumer to continue to hold onto the resource.

Jini leases work much like leases in “real life.” Jini leases may be denied by
the grantor of the lease. They can be renewed by the holder. Leases will expire at
a predetermined date unless they are renewed. They can be canceled early (and,
unlike in real life, Jini imposes no penalty on early lease cancellation). Finally,
leases can be negotiated, but, as in real life, the grantor has the final word on the
terms of the lease that is offered.

Leases provide a consistent means to free unused or unneeded resources
throughout Jini: If a service goes away, either intentionally or unintentionally,
without cleaning up after itself, its leases will eventually expire and the service
will be forgotten. Leasing is used extensively by the lookup service and in other
aspects of Jini, so it’s important to understand how leases work.

One of the great aspects of leases is that they make it very hard to screw up the
entire system: The system acts conservatively, so if you forget to do lease man-
agement, or a programming bug causes you to never renew your leases, your
unreliable code simply drops out of the community without causing widespread
damage to others. From the perspective of a community, buggy programs that
forget to renew their leases look exactly the same as network errors and machine
crashes—all the community sees is that the service’s lease has expired and that it
is no longer available.

The second great aspect of leasing is that it makes the persistent storage used
by the members of a Jini community virtually maintenance-free. A systems
administrator will never have to crawl through logs, trying to determine which
services are active, which are inactive, and which have left stale data scattered
throughout the system. Given a bit of time, the community will identify unused
resources and free them, like antibodies attacking a virus. Certainly it would be a
great day if we could erase all traces of unwanted applications, unused drivers,
and obsolete OS upgrades from our PCs so easily.

Leasing is a rich topic in Jini, and there are many aspects of leases that don’t
warrant discussion in this (already long) chapter. I’ll discuss leasing in detail in
Chapters 12 and 13, though.

Remote Events

Jini services, like many software components in a system, whether distributed
or local, occasionally need to be notified when some interesting change hap-
pens in the world. For example, in the local programming model, a software

chap3.fm Page 81 Friday, November 17, 2000 11:37 AM

 82 Chapter 3 The Jini Model

component may need to be notified when the user clicks a mouse, or when the
user closes a window.

These are examples of asynchronous notifications. They are messages sent
directly to a software component, and they are handled outside the normal flow
of control of the component. That is, rather than continually polling to see
whether some interesting change has occurred, a method on the component will
be “automatically” called when the change occurs. The asynchronous nature of
these notifications can often simplify programming, since you don’t have to
insert code to periodically check the state of some external entity.

Jini, like most of Java, uses events to do asynchronous notifications. An event
is an object that contains information about some external state change that a
software component may be interested in. For example, in AWT, a MouseEvent
is sent whenever the mouse changes state—whenever it moves, or a mouse but-
ton is pressed or released. Events are injected into the system by an event genera-
tor that is watching for state changes. In AWT, there is a thread called the
AWTEventGenerator that performs this service. In Java, once an event is intro-
duced into the system, it is “sent” to the interested parties that want to hear about
it. In this regard, Jini’s event model works exactly the same as the standard event
model used by JavaBeans and the Java Foundation Classes—all of these models
support events and asynchronously call methods on listeners when events arrive.

How Jini Uses Events
There are many cases when a Jini application may need to receive a notification
of a change in the state of the world. Earlier, I gave the example of a digital
camera that wants to be able to use any printers available in its Jini community.
I said that this camera would contact all of the lookup services it could find,
and then search for services that implement the Printer interface. This exam-
ple makes a grievous assumption that I completely glossed over: It assumes
that the printers will be connected to the network and available for use before
the camera. What if the inverse is true? In this case, there are no printers avail-
able when the camera first connects, although printers may come on line later.
Certainly, you’d still like to be able to print, regardless of the order in which
you plug in your devices.

The answer is that the camera needs to be notified when any services that it
might be able to use appear in a community. It’s easy to imagine the user inter-
face to such a camera. The “Print” button on the LCD is grayed out. You plug a
printer into the network, and suddenly the Print button comes alive! The camera
has just received a notification that a printer is now active on the network.

This is only one example of how events are used in Jini. Obviously, the lookup
service will generate events to interested parties when services appear, disappear,

chap3.fm Page 82 Friday, November 17, 2000 11:37 AM

Supporting Technology 83

or change. But other Jini entities may generate or consume events as well. The
Printer service may let other services listen for events that denote special
printer conditions, such as OutOfPaper or PrinterJammed. Thus, events don’t
just have to go between the existing Jini infrastructure and services; they can fly
among services themselves.

Remote vs. Local Events
But the Jini event model has some differences vs. the “normal” Java event
model. Why this distinction? Aren’t the Java event models good enough? As it
turns out, the Java models are fine for what they were designed for: delivering
asynchronous notifications within a single Java VM. The distributed computing
world is a very different place, though, and calls for a slightly different event
model to fully accommodate the kinds of programs that will run there.

There are a number of very important differences between events that are
intended to be delivered locally and events that are intended for distributed
delivery.

• In the local case, it’s much easier to cause events to be delivered
in the order in which they were generated. This is because local
event delivery schemes can use a centralized queue that acts as a
“choke point,” forcing the events into a serial order. Distributed
systems, because they lack this centralized event manager, and
because of the issues of transporting the events over the network,
cannot make this guarantee without serious performance
penalties. (Java’s AWT event dispatch mechanisms actually do
not provide this guarantee of deterministic ordering for local
events—but in general, local event delivery schemes can
implement such an ordering relatively easily.)

• In the local case, an event that is sent will always be delivered,
barring catastrophic failure (such as a crash of the entire
application). Stand-alone systems are not susceptible to the kinds
of partial failures that distributed systems are. Partial failures in a
distributed system, whether a machine crash or a network
partition, can cause events to go undelivered.

• The cost of sending a local event is typically small compared to
the work that may be done to handle the event. Typically,
“sending” an event is simply a method call to tell the interested
party that the event has arrived. The computation that the
recipient does as a result will likely dwarf the time required to
send the event. In the remote case, the situation is reversed.

chap3.fm Page 83 Friday, November 17, 2000 11:37 AM

 84 Chapter 3 The Jini Model

Delivery of the event may require orders of magnitude more time
than the local case, and dominate the time spent in handling the
event. The performance differences mean that distributed systems
are likely to be architected to generate as few events as possible.

• Finally, in the local case, if a component has asked to be a
recipient of events, the sender knows that it can safely deliver the
event to that recipient. The remote case is far more complicated.
The remote recipient of an event may be temporarily
disconnected from the network, in which case the sender should
probably keep trying to send. The recipient may have crashed, in
which case the sender may wish to discard the event. Or, the
recipient may be “inactive” for a period of time and not able to
process the event. With this range of possibilities it’s often
impossible for a sender to know what the right response is.

As you can see, there are many more policy decisions to be made in the remote
case—many more “knobs” that are available for turning. Does the order of deliv-
ery of events matter? Should events be delivered at all costs? If the recipient can-
not be contacted, should the event be dropped? Stored until asked for? Resent?

There are no single answers to these questions. Each application must make its
own decisions about what makes sense for it. An on-line banking application will
almost certainly require very conservative answers to these questions—events
should arrive, in order, and at all costs. If a recipient is down, the events should be
logged until they can be resent. Other applications may have far less stringent
requirements. An on-line game may be able to tolerate a few missed or badly
sequenced events and still be fine.

Jini takes an interesting approach to solving this dilemma of how to express so
many application constraints: It supports none of them directly, but provides
generic mechanisms by which applications can extend the event processing
behavior of the system. I’ll talk about this ability in detail in Chapter 16, but the
basic idea is that you can write new services that can receive and process any type
of event from any Jini service, even if the new service doesn’t understand the par-
ticular events types it’s dealing with. These new services can implement particu-
lar policies that may be needed by applications.

The good news for application writers, though, is that for the most part, pro-
gramming with Jini events looks very much like programming with “normal”
events. Most of the time, you only need to understand the remote programming
model insofar as you need to understand remote exception types and RMI. Only
if you’re planning on using (or writing) a new service to process events do you
typically have to understand all the ins and outs of the Jini remote event model.

chap3.fm Page 84 Friday, November 17, 2000 11:37 AM

Supporting Technology 85

Distributed Transactions

The last major concept in the Jini programming model is distributed transac-
tions. Unfortunately, this concept is one of the most difficult to master in Jini,
but luckily many applications will never have to use transactions.

I’ve talked a lot about the need for reliability and robustness in distributed sys-
tems, and the evils that partial failures can cause. Recall that partial failures are
when one stage of a computation fails, or when one component that’s needed in a
computation fails. If every stage that participated in a computation failed, then
recovery would be easy—you would know that none of them had successfully
completed, and you could simply retry the entire computation later. And, obvi-
ously, if every stage succeeded, then you would have no need to recover at all.

But the worst scenario, from the programmer’s perspective, is when only a
subset of the work that has to be done completes. Let’s look at a classic example
from database programming that exists in the local case. Bank databases need to
be reliable, because millions or billions of dollars are moved through the data-
bases each day. Many of the monetary exchanges are in the form of transfers
between two accounts: The money is extracted from one account and added to
another. Think about how you would program this transfer. Likely, you would
write a bit of code to decrement the total in account A, and then write a bit of
code to increment the total in account B by the same amount.

This is all simple and obvious, until you think about ways the transfer can fail.
What if you crash just after you’ve decremented the total in account A? Account
A may be out millions of dollars, but the money hasn’t gone to B! It’s simply lost
in the ether, the victim of an accounting error caused by a program that wasn’t
resilient to partial failures.

Distributed systems compound the problems of partial failures: Each stage of
your computation may involve contacting components that live somewhere on
the network. These components may crash, or the network may become unstable,
at some point midway through the computation. What do you do now? You need
to either keep trying to contact the unreachable components (and you’d better
succeed before you, yourself, crash), or you need to contact the successful com-
ponents and tell them to undo whatever changes they’ve made. And, of course,
there’s always the chance that only a subset of the undo orders would succeed.

Ensuring Data Integrity

This is where transactions come to the rescue. Transactions are a way to group
a series of related operations so that there can be only two possible outcomes:
Either all of the operations succeed, or all of the operations fail. In either case,

chap3.fm Page 85 Friday, November 17, 2000 11:37 AM

 86 Chapter 3 The Jini Model

the system moves to a known state in which it is relatively easy to do the right
thing—either move on if the transaction succeeds, or try again later if the trans-
action failed.

Transactions provide what are often called the “ACID” properties to data
manipulations, so called because of the initials of the four individual properties.

• Atomicity. Either all of the operations grouped under a
transaction succeed, or they all fail: They execute as if they were
a single atomic operation.

• Consistency. After the transaction completes, the system should
be in a consistent, understandable state. The notion of
“consistency” is something that may only be discernible by the
human users of the system—therefore, transactions are merely a
way to help ensure consistency, not guarantees of consistency
itself.

• Isolation. Transactions don’t affect one another until they
complete. That is, the effects of a transaction that is in the middle
of executing will appear “invisible” to other computations outside
of that transaction. This property ensures that computations won’t
be based on bogus data that may change if a transaction fails.

• Durability. Once a transaction completes successfully—meaning
that all of its changes have been made permanent—then these
changes must not be lost due to any subsequent failure or crash.
The results of the transaction must be at least as persistent as the
entities that use them.

Transactions work by coordinating all of the cooperating parties through a
centralized entity. Essentially, this pushes the burden of getting all the parties to
agree or all disagree, and tracking their states, into a piece of software called a
transaction manager. Because the transaction manager is centralized with respect
to the participants, it can have a “privileged” viewpoint, from which it watches all
of the participants.

In the local cases, such as the bank database of our example, this centralized
transaction manager is typically the database itself. Commercial databases have
extensive facilities to ensure that sets of operations in a transaction either all com-
plete or fail together. The database keeps logging information so that it can know
whether a transaction has completed or failed if it crashes in the middle of exe-
cuting a transaction.

Distributed databases—or any system that involves components running on
multiple machines—are a little more complicated, though. In the local case, the
crash of the database means that all of the operations in the transaction that were

chap3.fm Page 86 Friday, November 17, 2000 11:37 AM

Supporting Technology 87

in progress also stopped at that point. The database can keep logs that are accu-
rate, because all of the operations in a transaction happen locally to the database
(they happen “within” the database itself).

In distributed databases, however, operations may be executed on remote
machines that the database has no direct control over; the database may not be
able to determine if an operation running on a remote machine has successfully
completed or failed. All this may sound complicated but, as I said at the start of
this section, the good news is that most Jini programmers are completely shielded
from this complexity. I’ll talk more about the nitty-gritty details of how transac-
tions work under the covers in Chapter 18 but, for now, let’s look at the program-
mer’s view of how transactions work.

Transactions in Jini
Using transactions in practice is pretty easy, for three reasons. First, chances
are you won’t have to do a lot with transactions. Of the current Jini services,
only the JavaSpaces storage service actively makes much use of transactions.
So, if you never have to see a transaction, dealing with them is quite easy!

Second, even when you do have to deal with transactions, you really don’t
have to understand any of the mechanics of how the underlying distributed trans-
action protocols actually work to use them effectively as a client. (If you are pro-
viding an operation that can work in a transaction, then you have to do more
work, though.)

Finally, when you do need to use transactions, the end-programmer transac-
tion APIs are quite simple: You just create a transaction, pass it to all the opera-
tions you want to be grouped, and then tell it to try to execute all the operations
atomically, which will either succeed or fail.

Programmatically, the first step in using transactions is to use the Jini Trans-
actionFactory object to create a Transaction object to “hold” the grouped
operations. Every service that knows how to participate in transactions will
accept a Transaction parameter to its “transactable” methods. This is how you
group an operation into a transaction: You simply pass in the Transaction
object to one or more transactable methods to cause them to be grouped.

Once you’ve collected together the operations, you call commmit() on the
Transaction object to call the Jini transaction system to attempt to execute all
of these operations. The commit() call will either succeed, or an exception will
be raised if one of the participants couldn’t complete the operation. If this is the
case, Jini will ensure that all of the other participants undo their operations.

In most cases, this simple explanation represents all you have to know about
transactions. There are more complicated cases in the programming model (such
as nested transactions), but these are rarely used. And, of course, if you wish to

chap3.fm Page 87 Friday, November 17, 2000 11:37 AM

 88 Chapter 3 The Jini Model

build a “transactable” service (meaning one that can participate in, rather than just
originate, transactions), then you have to understand the transaction model deeply.
But for most cases, using transactions is reasonably simple.

Because transactions are likely to be one of the aspects of Jini that you use the
least, I’ll save the in-depth discussion of them until near the end of this book.

What’s Next?

I’ve introduced the most fundamental concepts in Jini—the notion that services
carry the code needed to use them, the lookup process to finding and using that
code, and discovery as a means to “jumpstart” a Jini community. I’ve also
talked about three essential concepts in the Jini programming model that are
built atop these basic ideas—leasing as a way to support self-healing, remote
events for notifications, and distributed transactions for “safe” computing. I’ve
talked about how all of these work conceptually, but haven’t provided many
details yet on how to actually program using these ideas.

In the chapters in Part II, I’ll talk about each of these notions in greater detail.
You’ll see how to program against the Jini discovery and lookup APIs, see how to
write downloadable proxy code for your services, and write services that make
effective use of leasing, transactions, and remote events. You’ll also learn how to
use the various utility services that come with Jini.

Before Part II, however, there is one more chapter that provides a bit of intro-
ductory material before you jump into building real Jini services. If you’re eager
to get going, you may want to skip ahead. But if you do, I’d recommend revisit-
ing Chapter 4, which has details on some common strategies for actually building
and deploying “real world” Jini services later.

On to Chapter 4!

chap3.fm Page 88 Friday, November 17, 2000 11:37 AM

