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Abstract

Earthquakes have been recognized as resulting from a stick-dip frictional
instability aong the faults between deformable rocks. An arbitrarily shaped
contact element strategy, named as node-to-point contact element strategy, is
proposed and applied with the static-explicit characters to handle the friction
contact between deformable bodies with stick and finite frictional dip and
extended here to simulate the active faults in the crust with a more general
nonlinear friction law. Also introduced is an efficient contact search algorithm
for contact problems among multiple small and finite deformation bodies.
Moreover, the efficiency of the parallel sparse solver for the nonlinear friction
contact problem is investigated. Finally, a model for the plate movement in the
Northeast zone of Japan under gravitation is taken as an example to be
andyzed with different friction behaviors.
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1. INTRODUCTION

Japan is located in one of the world’'s most earthquake-prone zones and has suffered the loss of
many valuable human lives in the earthquake history. To further investigate the occurrence of
earthquake and to predict it in the future, as a part of the Earth Simulator Project of Japan, a finite
element software system for large-scale computation of the earthquake process is being developed
in RIKEN, including tectonic CAD/Database and mesh generation, static analysis and dynamic
analysis. Only the static analysis is introduced here, which aims to calculate the accumulation of
stress around active faults induced by a subduction of platesin along time span.

The earthquakes can be regarded as a contact between deformable rocks with a special friction
law aong the active faults (e.g. Brace, 1966), it includes three kinds of main nonlinearities: the
material, the geometrical and the contact along the faults. Contact problems are characterized by



contact constraints, which are imposed on contacting boundaries. In the current FEM analysis, both
the dynamic-explicit FEM and the static-implicit FEM are available corresponding to the different
problems. However, convergence is still a problem in implicit analysis, especially when three-
dimensional large deformation contact problems with dliding friction are encountered. This is
partly due to the iteration solution method and its corresponding serious requirement, such as no
drastic change of the contact state and the deformation state, more smooth contact surface
definition (e.g. Nagtegaal, 1991; Ling, 1997). Although many efforts have been made as above,
there still exist problems to be overcome (e.g. Parisch, 1997; Zhong, 1993). Thus dynamic-explicit
FEM seems to be used increasely, even for problems, which are characterized as static or quasi-
static ones, but it is also well known that it is quite time consuming and also difficult for dynamic-
explicit FEM to predict the stress distribution of a quasi-static problem with a high accuracy (e.g.
Bathe, 1996). Thus, an arbitrarily shaped isoparametric contact element strategy with the static-
explicit integration algorithm, named as the node-to-point contact element strategy, was proposed
by the authors to handle the static or quas-static friction contact between deformable bodies with
stick and finite frictional dip (Xing, 1998a, 1998b, 2000). Moreover, the friction behaviour in the
practical engineering and the active faults is quite complicated, it depends on the dlip velocity, the
state, the contact pressure, the material property and so on. This paper will focus on how to extend
our algorithm to simulate it. In addition, to meet the practical requirement of a stable and large-
scale calculation, the parallel sparse solver is adso investigated for the nonlinear friction contact
problem and applied to simulate the active faults. Finaly, a model for the plate movement in the
Northeast zone of Japan under gravitation is taken as an example to be analyzed with different
friction behaviors,

2. GENERAL CONSIDERATION AND NOTATION

Consider two bodies B and B? with surfaces Stand s?, respectively, to contact on an interface
S, givenby § = st C S?. The size of S can vary during the interaction between the two bodies.

The part of S* that belonged to S, is designated S, thatis § = S C S, and assume § =S,
where superscript a = 1,2 refersto body B? (as shown in Fig. 1). Let the union of the two bodies

be denoted by B: B= B'E B2, n be the unit normal vector of the contact surface, s be the unit
tangential vector along the relative diding direction on the contact surface, and t =n” <. Thus s
and t form atangentia plane to the contact surface.

The so-called dave-master concept is widely used for the implementation of contact analysis.
Assume that one of the bodies, B, is the save and the material points on its contact surface are
caled dave nodes, and the other body B? is the master and the material points on its contact
surface are called master nodes. Contact (master) segments that span master nodes cover the
contact surface of the master body. Therefore, the above problem can be regarded as a contact
between a slave node and a point on a master segment (Here, this point may locate at a node, an
edge or an interior surface of a master segment, but no special attention is necessary when the local
contact searching algorithm in section 5 is applied). And a slave node makes contact with only one
point on the master segments, but one master segment can make contact with one or more dave
nodes at the same time. This is the basic assumption of the node-to-point contact element strategy
(Xing, 1998a, 1998b, 2000).

Based on the above assumption, the normal vector and the tangentia vector are defined on the

contact surface S of each body as follows
n=n°=-n' and s=¢&=-s" [€))

Let f° bethe traction vector acting on the contact surface S¢, then norma component f,* and
the tangential component . are given by



f2=1%n? f2=f2n" and f& =f%- f2n?, )

When contact occurs, the following conditions should be satisfied on the contact interface S. for
the unilateral contact:
1). The momentum has to be balanced,

fl+ f2=0. ©)
Andlet f = fl=- f2 inthis paper.
2). No tensile traction can occur on the contact interface,
fé&n® £0. (4)

3). The contact points move with the same displacement and velocity in the direction normal to the
contact surface during contact, that is

ubnl=u?n? and ubnl=u?n2 (5)
Thisisusudly cdled as the impenetrability condition.
3. CONSTITUTIVE EQUATION FOR FRICTION CONTACT

3.1 Normal Contact Stress

We choose the penalty method to treat the normal constraints when contact occurs. When g, <0,
the contact occurs. For adave node s,

f, =fn=E,g, (* Oonlyfor g,<0) (6)

here E, is the penalty parameter to penalize the penetration (gap) in the normal direction, and
O, =N :(Xs- X;), here xg and x. are the position coordinates of a slave node s and its
corresponding contact point ¢ (as shown in Fg. 2), respectively.

3.2 Friction Stress

Friction is by nature a path-dependent dissipative phenomenon that requires the integration of the
constitutive relation. In this study, a standard Coulomb friction model, with an additional limit on
the alowable shear stress, is applied in an analogous way to the flow plasticity rule. This situation
is analogical to the change of state from elastic to plastic in the theory of plasticity. The analogy to
plasticity can be founded in Michalowski & Mroz's work (Michalowski, 1978). The basic
formulations are summarized below (Note: A variable with ~ on top stands for a relative
component between sdave and master bodies, and |, m=1,2; i,j, k=1,3 in this paper if without the
specia notation.).
Based on experimental observations, an increment decomposition is assumed

Dy, = Dif, + Dl ©)



where DU, and D{” represent the sticking (reversible) and the sliding (irreversible) part of D,
repectively. In addition, the dip is governed by the yield condition

F=Jfnfn- F, (8

where F , the critical frictional stress, has three choices F=nf, , F=F;; and
F = min(nf,,, Rimit); fry (M=1,2) is the frictional stress component along the tangential direction
m; Rimit 1S an alowable value of shear dress; i is the friction coefficient, it may depend on the

normal contact pressure f,,, the equivalent slip velocity C@'] and the state variable | , i.e.
m=m(f, U3 )-
If F<O, contact isin the sticking State and treated as alinear eadticity, i.e.
fin = Eeln= B & Diiy,, ©)

where E; isacongant in the tangentia direction.
When F=0, the friction changes its character from sticking to diding. If slip occurs, according to
the andogy to plagticity as mentioned above, DU,? can be described from the “flow rule’ as

DUp = DUP%TTF , (10)
m

where D Pisthe ‘equivalent relaive dip increment’, and DaP > 0.
Combining with Eq. (8), the above equation can be rewritten as

DUP, = DuPf, /F. (11)
From Egs. (7) and (9),
fn = Et(Up- arﬁ)w): frﬁ - Etmr%’ (12)

wheref s = Ey (U, - U%|O), and Gr'f]|0 isthevaueof GF at the beginning of this step.
From the last two equations,

f =h.F ad h,=f/tefe . (13)

The linearized form of the Eq. (13) can be rewritten as

IfE ~ im im g im .
df, = J d.,- hjh,)du., +h df, +—df, |+h, f. | —dus +—dj |,
' \/(fle)z"'(fze)z( Im | m) Um Im( n ﬂfn nj I n[ﬂagé ueq ﬂj /! }
(FF = nf.)
_ FE, _ L
dfy = > > (dim- hjhy )iy, (fF = FRimt) . (14)
Jae2+(59)

In summary, from Egs. (6), ©) and (14), the contact stress acting on a slave node can be
described as (denote f5 = f,)



f =Gyl +; (15)

where G is the frictional contact matrix; fJ i is from the contribution of the terms related with |

when it is not afunction of ; If dj only isthe function of the unknown variable d d, 1] i =0,l.e
al its contribution can beincluded in G at current state.

4. FINITE ELEMENT FORMULATION
4.1 Vaiationd Principle
The updated Lagrangian rate formulation is employed to describe the nonlinear problem. The rate

type equilibrium equation and the boundary at the current configuration are equivalently expressed
by aprinciple of virtud velocity of the form (Xing, 1998a, 1998b)

M{(s7] - 25 Dy Dy +s Ly dly JAV = [ FdvidS+ g fdv'dS+ [ f2dvads,  (16)

where V and S denote respectively the domain occupied by the total body B and its boundary at
time t; Sg is apart of the boundary of S on which the rate of traction F. is prescribed; dv isthe

virtual velocity field which satisfies the boundary dv=0 on the velocity boundary; L is the
velocity gradient tensor, L=9v/{x; D and W are the symmetric and antisymmetric parts of L,

respectively.
The small strain linear elasticity and large strain rate-independent work-hardening plasticity are

assumed, from which the elasto- plastic tangent condtitutive tensor Cﬁﬁ, is derived
= Gjia D = GijlgLua- (17)
Subdtitution of Eq.(17) into Eq.(16) readsto the find form of the virtua velocity principle
J & LydLydv =[g Rdvids+ [, duids, (18)
where & 4 = Gy + (S jidix - Sucdj - Sidjc- s i)/ 2.
4.2 Contact Stresson A Slave Node

Assume that contact segment surfaces are described by x= x(x,,), asave node s has made contact

with a master segment on point ¢ (as shown in Fig. 2), and the contact stress acting on it in Eq.(18)
can be described in the local contact coordinate system as follows

A

=fg+f8. (19)
Here & , the base vector on the contact segment, is pecified by
A\ . _Ts§; A s
& =& (x,h)=8&(xy) ad Q _ﬂX_X = Bjm& Xm, (20)

inwhich B, =& 8.
From Egs. (19) and (20),



f = fi e + fi E”m éj )'(m. (21)

Assuming that the tangential surface is spanned by the tangents to the parameter lines (as shown
inFg.2),

& =X 22)
™Xm
and the associated unit normdl s
&=n=8&"5&/|g &), (23)

A

here X, is the surface parameters; & is the base vector of the local natural coordinate system on

the master segment.
Considering the normal projection of the slave node onto the tangential plane, the coordinates of
the contact point X, should stisfy

&’ (Xs~ %) =0. (24)

Linearize the above equation with the unknowns, and note that X = X.(U; Xp,), we have
.émx(xs' Xc) +ém>(xs' Xc )=0, (29)

Whel’eXS =Ug, X¢= l.'Ic"'Aem;(m' ém = ém,I).(I +uc,m-
Solving the above system yid ds the relationship between km and U as

).(m ={(GI lJc,m' 6mI l.Jc,l )&"'(GI ém' (_:rﬂ Aq)ﬁ}/'& (I * m, nosumon mand l) ’ (26)

where 6mI =Cmi - On n>ém,l1 Crl = &n’§, A= 611622' 612621' X = Xs™ Xe» U= Us- Uc, while Ug
and U, are the velocity vectors at the dave node and the corresponding material position c of the

master segment, respectively.
Thus, Eqg. (21) can berewritten as

f= ﬁ e+Hjméj{(C_:” Ue m- Cr uc,|)><5<'+(<j| &,- Cyy e)x{]} (It mandnosumonl), (27)
where
Him = fEjm/A (28)
4.3 Evauation of Contact Element Matrices

Now, we are concerned evaluation of matrices related with the node-to-point contact elementsin
the local Cartesian coordinate system as depicted in Fig.1. For an arbitrary case, the local Cartesian
coordinate system on the contact interface (as shown in Fig. 1) is not the same as the above local
naturd coordinate system, it is defined as falows (see Fig. 2):



eg=n=@&,e =g ande,=¢; e;.

(29)

Assume a dave node s has contacted with point ¢ on a surface element (master segment) E(, and

the surface eement E¢ conssts of g nodes, then (p=1, g in this paper)

Us = NpUp, Xc=NpXp,

(30)

here u, and X , are the nodal velocity and position, respectively; N, is the shape function vaue of
the point ¢ on the surface element E(. Thus the relative velocity and the relative position can be

writtenas(a = 1,(g+1) and b =1,(g +1) in this section)

U = Ug - Ug =Ugip Ry, X = Xg = Xei =Xgib Ry

inwhich
Usp Uy Uy Uy1
U =|Usp Upp Up Uy 2 —[Us Uy Uz ug]’
Usz Uz Uy Uy3
Xs1 X11 X1 Xg1
Xg =| X2 Xpp Xy Xy2 _[Xs X1 X3 Xg]
Xs3 %13 X33 %93
T
R=[1 -N; -N, - N
Thus

Uem = Np,mup:usca Rim (p=109).

Combining with Egs. (15) and (31)-(33), EQ. (27) can be rewritten as

(31)

(32)

(33)

f :{thRa Qﬁ(Hjm § ((c_:IIRa,m' CriR 1) 80X+ Re (G &n- Coy é)@))}“mka +fine (39

(h=1 3,1t mandnosumonl).

Thus the term related with contact in Eq. (18) can be described as
fi (g - dug ) = dugy, ([Kfik]ba Uggea *+ R, ij ,

where

(35)

['Zfik]ba =R Q’{thRa &+ (Him&((GiR m- CriRey) 8%+ Ry (G 8- Coy é)’ex))} . (36)

(h=1 3,1t mandnosumon|)



4.4 Time Integration Algorithm

The time integration method is one of key issues to formulate a nonlinear finite element method. It
is well known that the fully implicit method is often subjected to bad convergence problems,
mostly due to changes of contact and friction states. In order to avoid this, we employ an explicit
time integration procedure as follows. It is assumed that under a sufficiently small time increment
all rates in Eq. (18) can be considered constant within the increment from t to t+ Dt as long as no
drastic change of states (for example, elastic to plastic at an integration point, contact to discontact
or discontact to contact on the contact interface, stick to dip or dip to stick in friction on the
contact interface) takes place. The R-minimum method (Y amada, 1968) is extended and used here
to limit the step Size in order to avoid such dragtic changes in state within an incrementa step.
Thus al the rate quantities used to derive Eq. (18) are ssmply replaced by incremental quantities
as
Du=vDt, Ds =s Dt and DL=LDt. (37)

Findly, in combination with Egs. (35)-(37), Eq.(18) can be rewritten as

(K+K;)Du=DF+DF; . (38

Here K is the standard stiffness matrix corresponding to body B; Du is the noda displacement
increment; D F is the external force increment subjected to body B on Sg; K; and DF; arethe

stiffness matrices and the force increments of all the node-to-point contact elements. From Egs.
(18), (35) and (36), for one node-to-point contact eement E, they can be described as

[KfEik]ba =- JscE[Kf ik]ba ds, (39)

[DFfEi]b = [£R, f10S. (40)

Note K; is unsymmetrical due to the nonlinear friction and the geometry curvature, thus the total
diffnessmatrix (K+ Ky ) isaso unsymmetricd.

5. CONTACT SEARCHING

In cases that two or more bodies come in contact with each other, the search algorithms are
normally split into a global and a local search. For the global search, several methods have been
proposed, such as the regular cell algorithm (e.g. Santos, 1993), the Hierarchy-Territory (HITA)
algorithm (Zhong, 1993), the position code agorithm (Oldenburg, 1994), the bucket sorting
algorithm (Benson, 1990 and Belyschko, 1987), the spherical sorting algorithm (Papadopoulos,
1993), etc. The last three methods are mainly subjected to the finite-element-type mesh description
of the contact surface, and the HITA and the position code algorithms are recommended in terms
of the computational efficiency. In this study, the position code agorithm is employed for the
global contact search between deformable bodies. For the local search, several algorithms have
also been proposed, such as the pinball algorithm (Belyschko, 1991), the node-to-segment
algorithm (Benson, 1990) etc. Here, according to basic characters of the node-to-point contact
element, we take the normal vector ng (in Fig. 3) of the slave node s for contact searching to avoid
the ‘deadzone’ problem, while use the normal vector of the contact point ¢ on the master segment

to define the precise contact position of a slave node on the segment, which can be obtained from
the normal vectors at the contact segment nodes Note the normal vector at a node usad in our code



is determined as a weighted average of the normal vectors of the surfaces surrounding this node,
where the weighting factors are proportional to the area of the corresponding surface segment
(Xing, 1999). If the 8 node hexahedron solid element is used to discretize the body, for a local
search, let (in Fig. 3)

Vi =ik is (i =14)

: (41)
k=1+1if i =1,3, otherwisek =1

If al the V, (in Fig.3) keep the same or the reverse direction as ng, point ¢ will locate on this

segment. Then the distance between the slave node s and point c is calculated and compared with a
prescribed accuracy sector. If within the prescribed zone, the dave node s is in contact with this
master segment on point ¢, and the exact location of point ¢ and the penetration of the slave node s
will be obtained and saved for further computation.

The following measures are also taken for contact search:

1). Contact candidates. The candidates of contact segments and slave nodes are marked during
the pre-processing, then only these marked elements are considered during the contact searching
and the calculation to save the computation cost.

2). Automatic extensions of master surfaces. To meet the requirement of the contact territory, the
master surfaces can be extended automatically along the surface perimeter after one or some
increment steps.

6. PARALLEL SOLVER

The ‘ Earth Smulator’ (Earth ssmulator, 1999), a high performance massively parallel processing
computer being developed in Japan, will have the following architecture: MIMD-type distributed
memory paralel system consisting of computing nodes with shared memory vector type multi-
processors. And it will have the following performance:

The peak performance: 40 TFLOPS

Tota number of processor nodes: 640
Number of PE sfor each node: 8

Peak performance of each PE: 8 GFLOPS
Peak performance of each node: 64 GFLOPS
Thetotd main memory: 10 TB

Shared memory/node: 16 GB

In the analysis of the practical engineering and the active faults in the crust, a large-scale complex
geometry has to be taken into account, thus parallel computing is necessary on the * Earth Simulator’ .
Severa related researches are being carried out. Based on the domain decomposition method, the
paralelization of the nonlinear finite element system has been conducted in RIKEN for severa
years (e.g. Nikishikov, 1996). With choosing candidate contact surfaces as subdomain boundaries, a
preliminary parallel version for a contact problem using the direct solvers was developed on IBM
SP2 multiple processor computer for some special cases (Xing, 1998). Because the node-to-point
contact element strategy with an explicit integration agorithm was proposed and applied as above,
there exists no convergence problem, bu it is not so efficient for a very large-scale computing. Thus,
for a huge scale computing, a parallel version using iterative solvers is being developed (Miyamura,
2001). Meanwhile, GeoFEM group (GeoFEM, 2001) employed the so-caled augmented
Lagrangian multiplier (ALM) method to treat the contact problems and iterative solvers with
localized preconditioning method for a large-scale computing, in which three kinds of iterations are
necessary to obtain a suitable penaty parameter using ALM method and get to acceptable
convergence points for both the Newton-Raphson solution and the iterative solvers. This may cause



a convergence problem due to the existing iterations (e.g. Zavarise, 1998; Weiss, 1999), especially
for the nonlinear friction contact problem. Thus the parallel sparse solver isinvestigated here,

Recently, the parallel sparse solver is widdly used in the complex engineering analysis due to its
stability and easy implementationinto an existing serial code. For one node of the Earth Simulator,
it has 16 GB memory, 8 processors and 64 GFLOPS peak performance as mentioned above and can
work independently as a shared memory supercomputer (such as SGI Onyx2). It may have the
ability to solve some typical practical engineering problems, the active faults in the localized region
and some virtua friction experiments et a. If this parallel sparse solver used together with the node-
to-point contact element strategy described as above, there will be no any iterations in the code, thus
no convergence problem exists here at all. As for the efficiency of the paralel sparse solver for
nonlinear frictional contact analysis, no result was reported, thus it will be investigated here using
the paralel unsymmetrica sparse solver PSLDU on the SGI Onyx2 computer, which has 6
processors In which multiple processors may be used to solve the linear equations, but only one of
them is used also for other work, such as contact search and stiffness matrix assembling. And the
average time cost of this processor per step is used here to investigate the efficiency of the solver if
without any specid notation.

Firstly, the parallel speedup for models with different degrees of freedom (DOF) are measured
and compared (as shown in Fig.4), in which the contact node numbers are 140, 795, 285 and 399
respectively corresponding to the models from the smaller to the larger as shown in Fig. 4. And the
speedup is caculated as

Real clock ti 1
Speedup = eal cqc tlme(_ pprocessor) .
Real clock time (multiple processors)

(42)

Fig.4 shows that all paralel speedups are increased with the increase of processor numbers, but it
depends on the model size very much. For the above models, the larger the model size is, the better
the speedup is. This is due to the relatively more time cost required to solve the linear equations for
the larger moddl.

Secondly, the influence of contact node numbers on the computing cost is also investigated here.
The assembling process of 37 tubes to a tubesheet using hydraulic expansion is taken as an
example (as shown in Fig. 5). A tube and tubesheet assembling is one of the most important
processes for a heat exchanger. All the tubes are fixed to the tubesheet with welding at the bottom,
thisis modeled with ‘tied” (or stick) algorithm in our code (as shownin Fig. 5). Due to symmetry,
only one-twelfth of the structure has been considered, being discretized into 30024 nodes (90072
DOF) and 21247 elements. The tubesheet is only supported along the central line direction of the
tubes at the outside nodes of the bottom edge (see Fig.5). The case that al the tubes are
hydraulically bulged at the same time and to be gradually contacted with the tubesheet is cal cul ated.
Fig. 6 shows the relationship between the average computing time per step and the numbers of
contact nodes when 4 processors are used to calculate the assembling process. From this, the
parallel sparse solver is powerful for such a scale calculation, but it is very sensitive to contact node
numbers, and the time cost rises with the increase of contact node numbers. This may need further
related research in the future.

From the above, the parallel sparse solver is a good choice for at least a medium scae
calculation, because its stability, efficiency and easier implementation (nearly no additional
modification is needed to implement it into an existing sequential code). Thus, the Earth Simulator
may be used to calculate at least 640 medium-scale problems using the parallel sparse solver at the
sametime,

7. APPLICATION TO ACTIVE FAULTS

Japan locates on the boundaries of Eurasia, North America and Philippine Sea Planes. Pacific Plate
subducts beneath Eurasia Plate from southeast at a speed of 9 cm per year, and Philippine Sea Plate



subducts from south at a speed of 5 cm or less per year. Many large earthquakes occurred
repeatedly on the plate boundaries. For modeling such earthquakes, severa researches were
published using the analytic and the finite element method (e. g. Stuart, 1988; Kato, 1997; Hirohara,
1999). They al assumed that the plate is a dip with a constant angle and applied in a two
dimensona model. However, from the measured data, the practica plate is a little more
complicated, as shown in Fig.7 for the Pacific plate around Japan (Kanai, 2000). Here, a part of
Northeast fault model with the real-shaped subducting Pacific plate around Japan (Kanai, 2000) (as
shown in 8) is taken as an application example. Fig. 9 shows the 3-dimensional meshes (with a
scale of 1:100,000, unit: mm) of the local region and the boundary conditions. The displacement
constraints used are also shown in Fig. 9 except that the plate is fixed along the y direction at the
positions C and D (see Fig. 8). Here, all the materias are taken the same parameters as. density

r= 2.609/ cm3, Young modulus E=44.8 GPa, and Poisson ratio g =0.12. As for the loading
conditions, the combined action of the self-gravity and the hydraulic pressure of water is
investigated. And the widely accepted rate- and state-dependent friction law proposed by Dieterich
(1978,1979) and Ruina (1983) is applied here to describe the complex phenomena along the
interface between the active faults. That is

m=t/f,=my+j +aln(V/Vig), di /dt:-[(V/L)(j +b|n(V/Vref))], (43)
and for a steady state,
™ =t 5/f, = mp +(a- b)In(V/Vig ), (44)
where
a=V(Tt/1V) /f,=(1t/MnV) /f, and a- b=(dt SS/ounv)/fn, (45)

here, a and b are empirically determined parameters; a represents the instantaneous rate sensitivity,
while a-b characterizes the long-term rate sensitivity. Depending on whether a-b is positive or
negative, the frictional response is either velocity strengthening or velocity weakening, respectively.
L is the critical dlip distance; V,« and V are an arbitrary reference velocity and a sliding velocity,
respectively; | is the state variable; f,, is the effective normal contact stress, ny is the steady

friction coefficient at reference velocity V¢ . The above specia friction form is substituted into Eq.

(11) in three dimension by replacing V with the relative velocity Ugé (= \/Gmﬁm) and implemented
into our code. The calculated resultswith different friction coefficients are compared and shown in
Fig. 10, which demonstrates that the friction coefficient along the active fault interface has obvious
influence on their relative movement. The bigger the friction coefficient is, the less the relative
movement along the interface is. Also this is affected by the distribution of different friction
coefficients due to the relative dip velocity along the interface. As for the detail analysis of the
plate movement, it will be published in the journa on the geophysics.

8. CONCLUSIONS

A dsatic-explicit FEM code has been developed to simulate the static or the quas-static 3-
dimension friction contact between multi-elasto-plastic bodies and extended to ssimulate the active
faults in the crust with a more genera nonlinear friction law. An arbitrarily shaped contact element
strategy, named as node-to-point contact element strategy, is proposed and applied according to the
static-explicit characters, which overcomes the main convergence problems existing in the implicit
treatment of contact. Meanwhile, for the multi-deformationbody contact problems, an efficient



contact-searching algorithm suitable for the node-to-point contact element strategy has been
proposed and implemented in our code. Moreover, combining with the above contact strategy, the
parallel sparse solver is very stable (no convergence problem) and powerful for the nonlinear
friction contact problems, but its efficiency also depends much on the contact node numbers, this
may need further research. Finally, a model for the plate movement in the northeast zone of Japan
under gravitation is taken as an example to be calculated with different friction behaviors. The
preliminary results demonstrate the stability, efficiency and usefulness of this algorithm for the
nonlinear friction multibody contact problems on a shared memory supercomputer (such as SGI
Onyx2) or anode of Earth Smulaor.
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Fgures

Fig.1 Bodiesin contact with each other

Fig.2 Frame for cdculation of the contact stress

Fig. 3 Loca contact search agorithm

Fig. 4 Speedup for different cases

Fig. 5 The geometry and mesh of tube and tubesheet structure anayzed

Fig. 6 Average CPU time vs. numbers of contact nodes

Fig. 7 The upper surface of the Pacific plate around Japan

Fig. 8 A part of the tectonic solid model of the Northeast zone of Japan

Fig. 9 The mesh used for the Northeast fault model with the Pacific plate in (a) the y- z cross section
(dong OA in Fig. 8) and (b) the three dimensions

Fig. 10 Displacement distribution a different friction conditions (8). M =05; (b).nm =0.3;

(c). m=0.3(U, £ 1500 0r U, 3 2780), otherwise m=0.5- 0.025 In( Ije%/0.0l)



