
CONCURRENCY|PRACTICE AND EXPERIENCE

Concurrency: Pract. Exper. 2000; 00:1{7 Prepared using cpeauth.cls [Version: 2001/03/05 v2.01]

An Integrated Software

Development Environment

for Grid-Computing

M. M�uller�, E. Gabriel and M. Resch

HLRS - High Performance Computing Center Stuttgart, Allmandring 30, 70550 Stuttgart,
Germany

SUMMARY

Grid-Computing has become a popular concept in the last years. While in the beginning
the driving force was metacomputing, the focus has now shifted towards resource
management issues and concepts like ubiquitous computing. For the High Performance
Computing Center Stuttgart (HLRS) the key challenges of Grid-Computing were coming
from its users and customers demands. With high speed networks in place, programmers
expect to be able to exploit the overall performance of several instruments and high
speed systems for their applications. In order to meet these demands, HLRS has set out
a research e�ort to provide these users with the necessary tools to develop and run their
codes on clusters of supercomputers.

key words: MPI; Grid; Software Development

Overview

During the last 5 years the High Performance Computing Center Stuttgart (HLRS) has set

up a framework of collaborations and research projects in the �eld of Grid-Computing. All

these e�orts are circled around the central goal of enabling high performance simulations

on distributed supercomputers. With international high speed networks in place, HLRS very

early on tried to make use of such distributed resources and make them available to its users

in industry and research. In 1996, HLRS together with the Pittsburgh Supercomputing Center

(PSC) was the �rst to connect two supercomputers in the US and Europe making use of

transatlantic network connections and the US access point of STAR-TAP. In 1997, the �rst

real simulations were done on this same con�guration. Building on co-operations in Asia, the

US and Europe, HLRS in 1999 was honored for its e�orts with the NSF Award for distributed

high performance computing during Supercomputing 1999.

�Correspondence to: mueller@hlrs.de

Copyright c
 2000 John Wiley & Sons, Ltd. Revised



2 M. M�ULLER, E. GABRIEL, M. RESCH

With the focus changing from resource management to programming, the main issues for a

developer of simulation codes are the following:

Programming Model The obvious choice for Grid-computing is the message passing

paradigm. Shared memory concepts may be implemented and may ease the programming.

However, given the still low performance of wide area networks compared to internal networks

of supercomputers, it seems sensible to let the programmer explicitly de�ne and manage the

exchange of data.

Since MPI [20] has become the standard in message passing programming, almost all users

at HLRS have given up on PVM or proprietary models. What is therefore required for Grid-

Computing is a grid-aware implementation of MPI.

Debugging With so many processors being used and executables being distributed across

several systems, debugging becomes a major issue for a code developer. It is assumed that

codes are tested on several parallel systems. In this way most bugs should be found in a

homogeneous and more easy to handle environment. However, experience shows that the

more complex environment of Grid-computing frequently reveals bugs that only occur when

communication constraints are tougher and heterogeneity imposes its penalties. Debugging of

codes on Grid-computers is therefore an issue, even if it can not go to the full extent of a

standard parallel debugger.

Performance Analysis Technical simulation on Grid-computers is appealing to users because

of its potential to solve bigger problems by accumulating performance. The potential reasons

for performance problems are the heterogeneity of the Grid-computer and the bad performance

characteristics of the connecting networks. In order to be able to improve the performance of

a code these problems have to be made visible. The user should be able to examine the details

of the performance of a code to �nd out where the problems are.

The goal of HLRS is to �nd tools that help to solve these problems, to implement parts that

are missing and to integrate them with visualization environments to allow interactive work

for engineers and scientists. Several projects have been setup to solve the problems mentioned,

especially the European projects METODIS [8], DAMIEN [1] and the german UNICORE [23]

project are developing key-components for realizing the Grid-components needed for an HPC-

Center.

In the following we will explain the concept of the overall architecture giving an overview

of the role of each building block in the following chapter. Relevant implementation issues

for components and for their integration are described afterwards. Finally a summary and

discussion of future requirements and steps are given.

Architecture

The framework of the environment was developed in the Esprit project METODIS, and is

currently further developed in the IST-project DAMIEN. Thererfore, we would like to present

�rst the structure of DAMIEN, and show afterwards how in other projects di�erent components

are currently developed to complete the Grid-environment.

The overall objective of DAMIEN is to create a toolbox, which enables the development and

adaptation of industrial applications to computational grids, to ease and to enable the access

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls



AN INTEGRATED SOFTWARE DEVELOPMENT ENVIRONMENT 3

Figure 1. Architecture of DAMIEN

and the usage of distributed resources. Central part of the architecture are therefore standards

used by industry, mainly the Message-Passing Standard MPI [20]. Additionally, the developers

of MPI-applications are used to tools, which ease the development and analysis of MPI

applications on High-Performance Computing Systems. When moving from Supercomputers

to Computational Grids, the end-user faces the problem, that these tools are currently not

available.

The overall architecture of DAMIEN as presented in �gure 1 is based on the requirements

of end-user applications. To make the application run in a distributed environment, several

tools and libraries are required:

� Communication library: to enable the usage of several computing resources for a single

simulation, the MPI-library has to support the coupling of distributed resources in an

eÆcient manner.

� QoS Module: the performance of distributed application is dominated by the network

used to link the computing resources. Therefore a Quality-of-Service Manager is required

to dynamically handle the bandwidth requirements of the application.

� Performance Analysis: applications in grid-environments often face performance

problems, like on any other system. To enable and improve an in-depth analysis of

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls



4 M. M�ULLER, E. GABRIEL, M. RESCH

the application, performance analysis tools have to be aware of the aspects of clustered

supercomputers.

� Performance Prediction: a di�erent aspect of performance analysis is the prediction, how

changes in the source-code will a�ect the performance of the application within a given

environment. Based on the known performance on a homogeneous parallel platform it is

also possible to predict the performance of an application on the Grid.

� Code-Coupling-Interface: one of the most promising approaches for applications in grid-

environments are coupled application. Based on already existing codes, which are well

established, the user couples several codes to solve multi-disciplinary phenomena. Giving

each single part of the code the possibility to run on the platform, on which it is best

adapted to, is a natural extension.

The toolbox consisting of these components already creates an environment, which gives

application-developers access to the tools, which he is familiar with. Nevertheless, one

component is still missing, which is a debugger for heterogenous, distributed environments.

Despite the popularity of MPI and Grid programming there is still a lack of tools that support

debugging on the Grid [22] or detect the complex problems of a parallel programs in semi-

automatich way [25].

Implementation

Integration

The integration of the tools presented in the previous section to a single, user-friendly toolbox

is one of the key issues in DAMIEN and other projects. Since all tools except the QoS-Module

used in the project are based on the Message-Passing Standard MPI, the interfaces between

the tools are based mainly on this speci�cation. These are:

� PACX-MPI [7] is an implementation of MPI optimized for Grid-environments. It provides

to the application a seamless access to distributed environments.

� Vampir and Vampirtrace [16] are widely accepted tools for performance analysis of MPI

applications. The interface between MPI and the library generating the trace�les, which

are used later for the analysis of the application is based on the Pro�ling Interface of MPI.

This is a powerful mechanism de�ned in MPI-1 to give the user the possibility to replace

MPI-calls by calls with a di�erent functionality, and providing a second, name-shifted

version of all MPI-routines.

� Dimemas [10] is a performance analysis and prediction tool, which gives the user an

impression, how changes in the source code or parameter variations will a�ect the

performance of the application in the Grid-environment.

� MpCCI [12] is a Code-Coupling Interface used for the coupling of applications on a

numerical level. The library implements data-exchange on a higher abstraction level by

providing all required functionality (e.g. interpolation between di�erent meshes). The

basic communication is again based on MPI.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls



AN INTEGRATED SOFTWARE DEVELOPMENT ENVIRONMENT 5

� MARMOT is a MPI debug and veri�cation tool. It tries to increase the portability of

programms by testing the standard conformance of MPI usage. In this way it detects

possible problems before the program is ported to the Grid. It also debugs the running

application by detecting deadlocks and race conditions.

In the following, two of the tools, which are developed at the HLRS, will be described in more

detail. These are the Communication Library PACX-MPI and the MPI-Debugger MARMOT.

Communication Library: PACX-MPI

During the last couple of years, several projects have been working on the problem of

making one MPI application run on a cluster of (heterogeneous) supercomputers [3, 6, 8,

14, 18, 19]. This problem arises, because the implementations of the MPI libraries of di�erent

supercomputer vendors are not interoperable. IMPI [15] is a protocol which aims to enable

interoperability between di�erent MPI implementations, but currently it faces two problems:

First, there is currently no vendor-MPI library implementing this protocol, which the authors

of this paper are aware of. Second, the current version of IMPI does not cover the whole MPI-1

standard, but just a subset. Thus, MPI applications using routines, which are not speci�ed in

IMPI, would require additional work to make them run with IMPI-compliant libraries.

PACX-MPI is an implementation of the message-passing standard MPI which aims

to support the coupling of high performance computing systems distributed in a grid.

The characteristics of such clustered systems show two di�erent levels of quality in the

communication. For communication between MPI processes on the same host, typical

communication latencies are in the range of microseconds and bandwidth in the range

of several hundred Megabytes/second, whereas one has to deal with high communication

latencies (in the range of tens of milliseconds) and small bandwidth (ranging from a few

Kilobytes/second to a few Megabytes/second) for communication between MPI processes on

di�erent hosts. Communication between processes on the same host will be refered to as

internal communication, while communication between processes on di�erent hosts will be

called external communication throughout the rest of this paper.

Taking the characteristics of clustered system into account, PACX-MPI relies on three main

concepts:

1. Two level hierarchy: in clustered systems, a message-passing library has to deal with two

di�erent levels of quality of communication. Therefore the library uses two independent

layers, one to handle internal operations, and one to handle external ones.

2. Usage of the optimized vendor-MPI library: Internal operations are handled using the

vendor-MPI environment on each system. This allows to fully exploit the capacity of the

underlying communication hardware in a portable manner.

3. Usage of communication daemons: on each system of the metacomputer two daemons

take care of communication between systems. This allows to bundle communication

and to avoid to have thousands of open connections between processes. In addition,

it allows to handle security issues centralized. The daemon nodes are implemented as

additional, local MPI processes. Therefore, no additional TCP-communication between

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls



6 M. M�ULLER, E. GABRIEL, M. RESCH

the application nodes and the daemons is necessary, which would needlessly increase the

communication latency.

The current functionality of PACX-MPI includes the full MPI-1 standard as well as several

parts of the MPI-2 document. Additionally, several features make PACX-MPI well suited for

heterogeneous, clustered systems, including:

� Optimized collective operations for hierarchically clustered systems [8], which minimize

the necessary amount of communication between the di�erent hosts

� Optimized handling of derived datatypes [9]

� Optional data compression for the communication between di�erent machines to reduce

the size of the transferred data and to increase the e�ective bandwidth.

� Optional secure communication based on the SSL protocol, in case the user wants to

have a secure communication setup and to encrypt messages.

All these features have allowed PACX-MPI to be used successfully in a number of

metacomputing projects linking resources in Japan, the US, and Europe [4, 17, 21].

MPI Debugging and Veri�cation Tool: MARMOT

Due to the complexity of parallel programming there is a clear need for debugging of MPI

programs. Running a parallel program with a Grid-enabled MPI library signi�cantly increases

the possible problems. According to our experiences made in di�erent testbeds, there are

several reasons for this: �rst, the MPI standard allows many implementation de�ned behavior,

e.g. whether or not a communication is blocking. Because most Grid-enabled MPI libraries

make use of the native MPI library for local message delivery, the application has to run

smoothly on several, di�erent implementations at the same time. Second, the heterogeneous

network with its high latencies and low bandwidth for external messages will not only change

the performance but also alter the overall way of execution. E.g. the amount of unexpected

messages and necessary bu�ering might increase signi�cantly. Last but not least the number

of processors are typically larger than on any single computer where the application has been

developed or tested.

Debugging MPI programs has been addressed in two di�erent ways: Classical Debuggers

have been extended to address MPI programs. This is done by attaching the debugger to

all processes of the MPI program. This concept can also be extended for distributed MPI

programs running on the Grid [13, 22]. approach is to provide a debug version of the MPI

library (e.g. mpich). This version is not only used to catch internal errors in the MPI library,

but it also detects some incorrect usage of MPI by the user, e.g. a type mismatch of sending

and receiving messages [11]. Neither of these approaches address portability or reproducibility,

two of the major problems when using MPI on the Grid. The idea of MARMOT is to verify the

standard conformance of an MPI program and help to debug the program in case of problems.

The design goals are:

� Portability: by verifying that the program adheres to the standard it enables the program

to run on any platform on the Grid in a smooth and seamless way.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls



AN INTEGRATED SOFTWARE DEVELOPMENT ENVIRONMENT 7

� Scalability: the use of automatic techniques that do not need user intervention allows to

debug programs running on hundreds or thousands of processors.

� Reproducibility: the tool contains mechanism to detect possible race conditions. It will

also automatically detect deadlocks and notify the user where and why it has occurred.

MARMOT uses the MPI pro�ling interface to intercept the messages and analyze them.

Like PACX-MPI it adds an additional MPI process for all tasks that cannot be handled

within the context of a single MPI process, like dead-lock detection. Information between the

MPI processes and this additional debug process are transferred using MPI. Another possible

approach is to use a thread instead of an MPI process and use shared memory communication

instead of MPI [25]. The advantage of the approach taken here is that the MPI library does

not need to be thread safe. Without the limitation to shared memory systems the tool can

also be used on a wider range of platforms. Running on top of PACX-MPI it can be used to

debug an application running distributed on the Grid.

Integration with Grid-Services

The framework as described here focuses on the development of applications for distributed

computing in Grid-environments. In order to ease the handling of such applications, the

framework presented here has to be integrated into software environments. It is then the

role of these environments to take care of resource management and security.

The following issues have to be addressed

� Security: Users have to be able to submit jobs to systems on which they are allowed to

work. The framework has to be compatible with a wide range of security policies.

� Resource Management: For distributed runs, suitable co-allocation or advanced

reservation mechanisms have to be implemented.

� Program startup: Users have to be able to start their jobs without having to log into all

computers they would like to use. The framework has to support inter-operability with

a wide range of existing mechanisms in a seamless way for the user.

� Data Management: It has to be ensured that data are where they are required.

In order to provide these feature, HLRS has started to work with developers of software

environments. During a joint co-operation with Argonne National Laboratories, PACX-MPI

has been recently extended to support the GLOBUS [5] startup-mechanisms. Thus, the user is

using the security features integrated in the GLOBUS-environment in a transparent manner.

PACX-MPI is currently also integrated in the German Grid-environment UNICORE [2, 23].

Again, the purpose is to make use of process startup features for distributed applications.

In the future PACX-MPI will be integrated with the Task Mapping Editor developed by the

Japan Atomic Energy Research Institute (JAERI) [24].

In the �eld of data management for an application HLRS has started to work on the problem

of MPI-IO in distributed environments. Since File-I/O is a key-issue regarding the portability

and overall-performance of distributed applications, it is of major importance for an HPC-

Center providing a Grid-environment to o�er its users a solution for data management. Thus,

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls



8 M. M�ULLER, E. GABRIEL, M. RESCH

the implementation of the MPI-I/O interface is currently proceeding in a co-operation with

the University of Tennessee.

Project Status and Future Plans

The achievements of this framework made it possible to run a large number of research and

industrial applications on the Grid. They cover a wide range of di�erent areas like particle

simulations, computational 
uid dynamics, electronic structure simulation and 
uid-structure

interactions. To faciliate the every-day use the ongoing integration into Globus, TME and

UNCIORE is one important point. In close co-operation with our end-users we will not only

improve the tools presented here, but will also develop new solutions for their problems.

ACKNOWLEDGEMENTS

This work was supported by:

� Gigabit Testbed South Project / DFN TK602-NT107
� METODIS, EU-Project Esprit 29909
� DAMIEN, EU-Project IST-2000-25406
� UNICORE Plus 01-IR-001
� DAAD Project Nr. 9922935

The authors would like to thank HLRS, PSC, SNL, TACC, MCC, NIC, MPG, DFN, German
Telekom, STAR-TAP, Abilene, vBNS for support in doing experiments.

REFERENCES

1. WWW, July 2001. http://www.hlrs.de/organization/pds/projects/damien/.
2. D. Erwin, (Ed.) UNICORE - Gemeinsamer Abschlu�sbericht des BMBF-Verbundprojekts UNICORE

Forum e.V. 2000, http://www.unicore.org
3. G. E. Fagg, K. S. London, and J. J. Dongarra. MPI Connect: Managing Heterogeneous MPI Applications

Interoperation and Process Control. In V. Alexandrov and J. Dongarra, Editors, Recent Advances in
Parallel Virtual Machine and Message Passing Interface, Volume 1497 of Lecture Notes in Computer
Science, pages 93{96. Springer, 1998. 5th European PVM/MPI Users' Group Meeting.

4. Metacomputing im Gigabit-Testbed S�ud und Berlin
http://webdoc.sub.gwdg.de/ebook/ah/dfn/GTBSB-Metacomputing.pdf
ZIB, Berlin; Max-Planck-Institute: MFK-Stuttgart, MPA-Garching, MPIP-Mainz; Rechenzentren der Uni
Stuttgart (RUS) und der MPG (RZG)

5. I. Foster, C. Kesselman Globus: A Metacomputing Infrastructure Toolkit International Journal of
Supercomputer Applications, 11, pages 115-128, 1997.

6. I. Foster and N. T. Karonis. A Grid-Enabled MPI: Message Passing in Heterogeneous Distributed
Computing Systems. In Proceedings of SC 98. IEEE, Nov. 1999. http://www.supercomp.org/sc98.

7. E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed Computing in a Heterogenous Computing
Environment. In Recent Advances in Parallel Virtual Machine and Message Passing Interface, Lecture
Notes in Computer Science. Springer, 1998.

8. E. Gabriel, M. Resch, and R. R�uhle. Implementing MPI with Optimized Algorithms for Metacomputing.
In Y. S. D. Anthony Skjellum, Purushotham V. Bangalore, Editor, Proceedings of the third MPI
Developer's and User's Conference, 1999.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls



AN INTEGRATED SOFTWARE DEVELOPMENT ENVIRONMENT 9

9. E. Gabriel, M. Resch, and R. R�uhle. Implementing and Benchmarking Derived Datatypes in
Metacomputing. in B. Hertzberger, A. Hoekstra, R. Williams (Eds.) High-Performance Computing and
Networking, pages 493-502, Springer, 2001.

10. S. Girona, J. Labarta, and R. M. Badia. Validation of Dimemas communication model for MPI collective
communications. In 7th EuroPVM/MPI 2000, Balatonf�ured, Lake Balaton, Hungary, September 2000.

11. W. D. Gropp. Runtime checking of datatype signatures in MPI. In Jack Dongarra, Peter Kacsuk, and
Norbert Podhorszki, editors, Recent Advances In Parallel Virtual Machine And Message Passing Interface,
pages 160{167. Springer, 2000.

12. M. G. Hackenberg, R. Redler P. Post, and B. Steckel. MpCCi, multidisciplinary applications and multigrid.
In Proceedings ECCOMAS 2000, CIMNE, Barcelona, September 2000.

13. R. Hood. Debugging computational grid programs with the portable parallel/distributed
debugger (p2d2). In The NASA HPCC Annual Report for 1999. NASA, 1999.
http://hpcc.arc.nasa.gov:80/reports/report99/99index.htm.

14. T. Imamura, Y. Tsujita, H. Koide, and H. Takemiya. An Architecture of Stampi: MPI Library on a
Cluster of Parallel Computers. In J. Dongarra, P. Kacsuk, and N. Podhorszki, Editors, Recent Advances
in Parallel Virutal Machine and Message Passing Interface, Number 1908 in Springer Lecture Notes In
Computer Science, Pages 200{207, Sept. 2000. 7th European PVM/MPI Users' Group Meeting.

15. IMPI Steering Committee. IMPI { Interoperable Message-Passing Interface. World Wide Web.
http://impi.nist.gov/.

16. Pallas GmbH. Vampir 2.5 User's Guide, 1999.
17. S.M. Pickles, J.M. Brooke, F.C Costen, E. Gabriel, M. M�uller, M. Resch, and S.M. Ord. Metacomputing

across Intercontinental Networks. Future Generation Computer Systems, 17(8):911{918, June 2001.
18. N. Karonis and B. Toonen. MPICH-G2. World Wide Web. http://www.niu.edu/mpi.
19. T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang. MagPIe: MPI's Collective

Communication Operations for Clustered Wide Area Systems. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Ppopp'99), Pages 131{140. ACM, May 1999.

20. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard (version 1.1). Technical
report, 1995. http://www.mpi-forum.org

21. M. Resch, D. Rantzau and R. Stoy, Metacomputing Experience in a Transatlantic Wide Area Application
Testbed, Future Generation Computer Systems, (15)5-6 (1999), pp. 807-816.

22. S. Reynolds. System software makes it easy. Insights Magazine, 2000. NASA,
http://hpcc.arc.nasa.gov:80/insights/vol12/.

23. M. Romberg. UNICORE: Beyond web-based job-submission. In Proceedings of the 42nd Cray User Group
Conference, 2000. available at http://www.fz-juelich.de/unicoreplus/index.html.

24. H. Takemiya, T.Imamura and H. Koide TME A Visual Programming And Execution Environment For A
Meta-Application Jaeri Internal Report, 2000.

25. J.S. Vetter and B.R. de Supinski. Dynamic Software Testing of MPI Applications with Umpire. In
SC2000: High Performance Networking and Computing Conf. ACM/IEEE, 2000.

Copyright c
 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 00:1{7

Prepared using cpeauth.cls


