
Replies to referee’s comments on the paper “Using Knowledge-
Based Systems for Research on Parallelizing Compilers” (Referee

#1)

First of all, we wish to express our gratitude to the anonymous referee for his/her helpful suggestions and

valuable comments. We have read the referee’s comments very carefully, and modified our paper according

the referee’s comments. A summary of revisions is in the following.

1. Reply to comment: Improve the english. It is quite good but still a bit quaint at places.

We have improved some grammatical structures to clearly express our technical contents accroding

to referee’s comments.

2. Reply to comment: Focus the paper on the essential contribution “Knowledge-based

System” and change title/oranization/abstract etc. accordingly. The other material can

be kept as it has pedagogical value but viewed as “context”.

We have reorganized Sections 2.1, 2.2 and 3. We moved Section 3.1 (old version) and 3.2 (old version)

to Section 2.2 and 2.3, and moved Section 2.2 (old vserion) to Section 3.1. to focus the contribu-

tion on “knowledge-based approach.” We also have revised the title/abstract/introductin/conclusion

accroding to referee’s comments.

3. Reply to comment: Have a crisp section really evaluating value and potential of their

approach as compared to other efforts in academia/commercial world.

We have added and enhanced the description about Section 4.4 (Section 4.4 is new version) by adding

an description that compares our approach to other researches. In this paper, we concentrate on the

fundamental phase, parallel loop scheduling, in parallelizing compilers running on multiprocessor

systems. A new model exploiting loop parallelization using knowledge-based techniques is proposed.

The knowledge-based approach integrates existing loop schedules to make good use of their abilities in

extracting more parallelism. Experimental results show that the high speedup obtained by using IPLS

on multiprocessors is obvious. Furthermore, for system maintenance and extensibility, our approach

is obviously superior to others. In addition, a run-time technique based on the inspector-executor

scheme is proposed to find available parallelism on loops. Our inspector can determine the wavefronts

by building a DEF-USE table for each loop of a program. The process of the inspector for finding the

wavefronts can be parallelized fully without any synchronization. Our executor can execute the loop

iterations concurrently. Additionally, our compiler is highly modularized so that porting to other

platforms is very easy, and it can partition parallel loops into multithreaded codes based on several

loop-partitioning algorithms. The experimental results clearly show that the compiler achieves good

speedup on Windows NT OS.

1


