
Open Consensus

Romain Boichat1,∗Svend Frølund2, Rachid Guerraoui1

1Swiss Federal Institute of Technology, Lausanne
2Hewlett-Packard Laboratories, Palo Alto

SUMMARY

This paper presents the abstraction of open consensus and argues for its use as an effective
component for building reliable agreement protocols in practical asynchronous systems
where processes and links can crash and recover. The specification of open consensus has
a decoupled, on-demand and re-entrant flavour that make its use very efficient, especially
in terms of forced logs, which are known to be major sources of overhead in distributed
systems. We illustrate the use of open consensus as a basic building block to develop
a modular, yet efficient, total order broadcast protocol. Finally, we describe our Java
implementation of our open consensus abstraction and we convey our efficiency claims
through some practical performance measures.

key words: Modularity, distribution, reliability, consensus, total order broadcast, open implementa-

tion

1. INTRODUCTION

1.1. Context

It is widely accepted that modularity is a good idea, especially when writing reliable distributed
protocols that are inherently complex. In practice however, very few reliable distributed
programs are really modular, and very few abstractions are actually effective. One of the
underlying reasons is that modularity is sometimes expensive: abstractions that are supposed
to make a program modular turn out to be major sources of overhead. To be really effective,
an abstraction must not only factor out some complexity, its overhead must also be negligible.
Namely, the overhead introduced by the use of that abstraction in a given solution, with respect
to an ad-hoc solution that bypasses that abstraction, should be negligible.

∗Correspondence to: Romain Boichat, Distributed Programming Group, Communication Systems Department
(DSC), Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland, E-mail:
Romain.Boichat@epfl.ch

OPEN CONSENSUS 1

The notion of a consensus service has recently been promoted as a central abstraction for
building reliable distributed systems, and in particular for building their underlying distributed
agreement protocols, e.g., total order broadcast, atomic commit, group membership and virtual
synchrony [17, 16, 20]. Roughly speaking, a consensus service exports an operation propose():
processes invoke that operation with an initial parameter (each process might propose a
different parameter), and all processes that do not crash gets as an output parameter the
same returned decision [14, 7]. The idea of using consensus as a basic component to build
agreement protocols is seductive because agreement problems are typically made of a “pure”
agreement part, plus some “interpretation” part that is problem specific. The “pure” agreement
part is similar in all the problems: it basically consists in agreeing on some value. Factoring out
that part inside a consensus box can drastically simplify the description and implementation
of the agreement protocols. In short, by considering consensus as a basic component in
building various agreement protocols, one could benefit from the well-known advantages of
modular programming in a difficult area, namely reliable distributed systems, where these
advantages are sorely needed. Nevertheless, and as we pointed out, whether consensus can be
an effective abstraction in building agreement protocols depends on the overhead introduced
by the consensus abstraction with respect to ad-hoc protocols that bypass that abstraction.†

1.2. Motivation

Several implementations of consensus-based agreement protocols were given in [16, 20], and it
was shown that the performance of those protocols are similar to the performance of ad-hoc
agreement protocols. However, to convey this interesting result, a crash-stop system model was
considered: processes are either up, or are down and never recover. In practice, processes may
indeed crash, but some (or all) of them may recover. This crash-recovery model is a realistic
system model for most of the applications we know of, but it introduces some fundamental
difficulties in layering abstractions.

• If a process pi crashes after entering some abstraction A, pi might need to re-enter that
abstraction upon recovery, which may not be possible unless entering the abstraction
actually means storing some value on stable storage, e.g., the parameters of the
abstraction invocation. To get a more concrete idea of this issue, consider the example
of a total order broadcast protocol based on an underlying consensus abstraction [7, 23].
A consensus-based total order broadcast protocol typically uses a sequence of consensus
instances, each instance being used to agree on a batch of messages [7]. If any process

†Obviously, the use of any abstraction always has an inherent overhead with respect to a solution that bypasses
that abstraction: the inherent overhead is simply the cost of a local object invocation. However, in a distributed
system, that overhead is usually considered negligible in comparison to forced logs and communication delays.
Furthermore, in a distributed system, one may typically devise a protocol that is optimal for a given execution
scenario (e.g., when no process crashes) and very inefficient in another scenario (e.g., if two processes crash).
In practice, efficiency is a main concern in nice runs, where no process crashes, or is even suspected to have
crashed. These are the runs that are the most frequent in practice and for which distributed protocols are
usually optimised.

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

2 R. BOICHAT ET AL.

pi crashes and recovers, pi might not remember whether or not it proposed a value for
consensus instance k, and which value it actually proposed. The specification of consensus
requires every correct process to propose a value and precludes the possibility for any
process to provide several different proposals for the same consensus instance (e.g., a
process pi cannot propose an initial value, crash, recover, and then propose a different
value). As a consequence, proposing a value is typically defined as writing the initial
value proposed on stable storage (e.g., [1]), and this must be performed by every correct
process. Upon recovery, the forced log helps the process figure out what it might have
proposed prior to the crash. The very same problem occurs with the decision, which is
also typically defined as writing the final value on stable storage. Indeed, open consensus
aims exactly at removing these forced logs by reshaping consensus.

• To ensure agreement, the processes must perform some forced logs so that they can
remember which value they might have decided prior to a crash. Besides this usage,
forced logs are also used to ensure integrity of the upper layer agreement protocol. If we
consider for instance the total order broadcast example, integrity implies not delivering
any message more than once. If consensus is used as a “closed” black-box to implement
agreement, the two usages (agreement and integrity) must be clearly separated, which
implies several forced logs. That is, the upper layer agreement protocol must perform
specific forced logs to ensure integrity, and these must be different from those performed
within the consensus box to ensure agreement. Open consensus indeed decouples the
two aspects and only ensures the agreement part, thus allowing to reduce the number of
redundant forced log with the upper layer.

In short, building an agreement protocol on top of a traditional consensus layer in a crash-
recovery model has an inherent cost in terms of forced logs. Forced logs are usually considered
very expensive because each one involves a synchronous write to the disk. One might be
tempted to give up the use of a consensus box and develop ad-hoc protocols that minimises
the number of forced logs. Another, more challenging, approach consists in figuring out a
different way to factor out the consensus part of agreement protocols, i.e., a different way to
shape consensus. This is exactly the approach promoted in this paper.

1.3. Contribution

This paper suggests a reshaping of consensus that makes it better suited for a practical use in
reliable distributed programming.

1. We introduce the specification of a new consensus-like abstraction, which we call open
consensus. Of course, proposing a new specification is fraught with the danger of defining
a new abstraction that is either stronger than the original one, or on the contrary trivial
(and hence useless). In both cases, we lose the benefits of reusing well-known results on
the solvability of consensus. Fortunately, we define precise conditions under which open
consensus and consensus are equivalent problems: under these conditions, any algorithm
that implements one of the abstractions can be transformed to implement the other.

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

OPEN CONSENSUS 3

These conditions depend on the way open consensus is used, which is actually not
surprising. Given that our open consensus abstraction exposes in its interface part of
its implementation [22], its semantics indeed depend on its usage. Precisely because of
this characteristic, in contrary to consensus, open consensus has some interesting flavours
that make its use practical.

• Re-entrant flavour: a process can invoke the propose() operation of open consensus
several times with different parameters, i.e., it can propose different values at
different times. In particular, a process may propose a given value, crash, recover,
and then propose a different value (e.g., if it has not logged the previous value):
the same consensus decision will however be returned in both cases.

• Decoupled flavour: the pre-commitment of a decision is decoupled from its
commitment: the actual coupling is under the control of the upper layer using the
open consensus box (which can thus merge forced logs and reduce the number
of required forced logs to solve consensus). Therefore, open consensus exports
two primitives: propose() and commit() instead of only propose() for consensus.a
process. This is precisely what makes it possible to merge forced logs of the upper
layer with those of the open consensus box.

• On-demand flavour: processes do not all need to propose values and receive
decisions. If a process is interested in receiving a consensus decision, it must
invoke open consensus with a given parameter: otherwise the processes just act
as witnesses.

2. We describe an open consensus algorithm where safety is ensured even if (all) processes
crash (or keep crashing and recovering)) and messages are lost, whereas liveness
(progress) is achieved if eventually, a majority of the processes remain up (for sufficiently
long) and failure detection is eventually reliable. Interestingly, and despite its re-entrant,
decoupled and on-demand flavours, our open consensus algorithm is rather simple. In
particular, our notion of eventual failure detector reliability is captured by the simple
failure detector specification of Ω, given for the crash-stop model in [6]. In comparison,
new, and rather sophisticated, failure detector definitions were introduced in [1] to cope
with process crash and recovery. Moreover, in nice runs (i.e., in failure-free and suspicion-
free runs, which are the most frequent in practice), a process can reach a decision with
open consensus after �n+1

2 � (concurrent) forced logs. Compared to consensus (�n+1
2 �+2

forced logs, 3 are sequential), we do not increase the number of messages or the number
of communication steps, but we drastically diminish the number of forced logs. Open
consensus requires less forced logs than consensus since the forced logs are used to
preserve only agreement and not to store propositions or decisions.

3. We illustrate the usefulness of our open consensus abstraction through an example of a
reliable agreement protocol built upon this abstraction: a total order broadcast protocol.
The resulting protocol is simple, modular, and efficient. It has the same communication
pattern as a consensus-based total order broadcast protocol designed for a crash-stop
model [7]. As in [7], a sequence of consensus (open consensus in our case) instances
are used, each instance agrees on a batch of messages. However, we point out the fact

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

4 R. BOICHAT ET AL.

that our protocol introduces significantly less forced logs than an adaptation of the [7]
consensus-based protocol to the crash-recovery model, i.e., a protocol than relies on a
“traditional” consensus module in a crash-recovery model [25]. In fact, our algorithm is
as efficient as the most efficient algorithm we know of to solve the same problem: that
is, the algorithm of [23], which is non-modular and known to be rather complicated.‡

Underlying our open consensus abstraction, we argue for a modular approach to
distributed programming. The distributed system is viewed as the problem domain from
which fundamental abstractions should be extracted. Open consensus is indeed a candidate
abstraction to build distributed agreement protocols. We describe in the paper the
implementation of our agreement protocol framework in Java and we convey our efficiency
claims using some performance measures. Although, for space limitation, we illustrate the use
of open consensus through one agreement protocol, it is easy how to build other kinds of open
consensus based, yet efficient, agreement protocols along the lines of [16].

1.4. Roadmap

The paper is organised as follows. We first describe our system model in Section 2. Section 3
introduces the specification of the open consensus abstraction and compares it with the
traditional notion of consensus. We give in Section 4 an efficient algorithm that implements
that specification and we discuss its analytical performance. We describe in Section 5 a total
order broadcast algorithm built on top of open consensus, and we also discuss its analytical
performance. Section 6 describes our Java implementation of open consensus and gives some
practical performance measures. Section 7 summarises the paper and discusses some related
work. Appendix 1 discusses the equivalence between open consensus and consensus.

2. SYSTEM MODEL

2.1. Processes

We consider a distributed system as a set of processes Π = {p1, p2, ..., pn}. Each process
represents a logical node in the system. At any given time, a process is either up or down.
When it is up, a process progresses at its own speed behaving according to its specification
(i.e., it correctly executes its program). Note that we do not make here any assumption on
the relative speed of processes. While being up, a process can fail by crashing; it then stops
executing its program and becomes down. A process that is down can later recover; it then
becomes up again and restarts by executing a recovery procedure. The occurrence of a crash

‡[23] uses a consensus abstraction to explain the main idea of the total order broadcast algorithm, but the
actual algorithm is efficient precisely because it bypasses that abstraction. In a sense, our paper suggests the
best of both worlds: an efficient total order broadcast based on a consensus-like abstraction.

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

OPEN CONSENSUS 5

(resp. recovery) event makes a process transit from up to down (resp. from down to up). A
process pi is unstable if it crashes and recovers infinitely many times. We define an always-up
process as a process that never crashes. We say that a process pi is correct if there is a time
after which the process is permanently up.§ A process is faulty if it is not correct, i.e., either
eventually always-down or unstable.
A process is equipped with two local memories: a volatile memory and a stable storage. The

primitives store and retrieve allow a process that is up to access its stable storage. When it
crashes, a process loses the content of its volatile memory; the content of its stable storage is
however not affected by a crash and can be retrieved by the process upon recovery.
Finally, we assume the presence of a discrete global clock whose range ticks τ is the set

of natural numbers. This clock is used to simplify presentation and not to introduce time
synchrony, since processes cannot access the global clock. We will indeed introduce some partial
synchrony assumptions (otherwise, consensus and total order broadcast are impossible [14]),
but as we will discuss, these assumptions will be encapsulated inside the specification of a
failure detector and used only to ensure progress (liveness).

2.2. Link properties

Processes exchange information and synchronise by sending and receiving messages through
channels. We assume the existence of a bidirectional channel between every pair of processes.
We assume that every message m includes the following fields: the identity of its sender,
denoted sender(m), and a local identification number, denoted id(m). These fields make every
message unique. Channels can lose or drop messages and there is no upper bound on message
transmission delays. We assume the same channel definition (given in [1]), which ensures the
following properties between every pair of processes pi and pj :

No creation: If pj receives a message m from pi at time t, then pi sent m to pj before time
t.

Finite duplication: If pi sends a message m to pj only a finite number of times, then pj

receives m only a finite number of times.
Fair loss: If pi sends a message m to pj an infinite number of times and pj is correct, then

pj receives m from pi an infinite number of times.

These properties characterise the links between processes and are independent of the process
failure pattern occurring in the execution. The last two properties are sometimes called,
respectively, finite duplication and weak loss, e.g., in [24]. They reflect the usefulness of the
communication channel. Without these properties, any interesting distributed problem would
be trivially impossible to solve. By introducing the notion of correct process into the fair loss
property, we define the conditions under which a message is delivered to its recipient process.

§In practice, a process is required to stay up long enough for the computation to terminate. In asynchronous
systems however, characterising the notion of “long enough” is impossible.

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

6 R. BOICHAT ET AL.

Indeed, the delivery of a message requires the recipient process to be running at the time
the channel attempts to deliver it, and therefore depends on the failure pattern occurring in
the execution. The fair loss property indicates that a message can be lost, either because the
channel may not attempt to deliver the message or because the recipient process may be down
when the channel attempts to deliver the message to it. In both cases, the channel is said to
commit an omission failure.

2.3. Retransmission module

To simplify the presentation of our distributed algorithms in the next sections (open consensus
and total order broadcast), we consider a retransmission channel, associated with two
primitives: s-send and s-receive. These preserve the no creation and finite duplication properties
of the underlying channels, and ensures the following validity property:

Validity: Let pi be any process that s-sends a message m to a process pj, and then pi does
not crash. If pj is correct, then pj eventually s-receives m.

We give in Figure 1 the algorithm of the retransmission module that relies on our more basic
send and receive primitives. All messages that need to be retransmitted are put in the variable
xmitmsg with their destination in the set dst (line 5). Messages in xmitmsg are erased once all
recipients have acknowledged m, otherwise they are always retransmitted (lines 18-21).

Proposition 1. Validity: Let pi be any process that s-sends a message m to a process pj, and
then pi does not crash. If pj is correct, then pj eventually s-receives m.

Proof. Suppose that pi s-sends a message m to a process pj and then pi does not crash.
Assume by contradiction that pj is correct, yet pj does not s-receive m. There are two cases
to consider: (a) pj does not crash, or (b) pj crashes, eventually recovers and remains always-
up. For case (a), by the fair loss properties of the channels, pj receives and then s-receives
m: a contradiction. For case (b), since process pi keeps on sending m to pj , there is a time
after which pi remains up and sends m to pj . As for case (a), by the fair loss property of the
channels, pj eventually receives m, then s-receives m: a contradiction. ✷

3. OPEN CONSENSUS: SPECIFICATION
We give here the semantics of our open consensus abstraction. We first recall the traditional
specification of consensus in order to contrast it with open consensus. Second, we give the
general idea of open consensus, and then a more precise specification of it.

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

OPEN CONSENSUS 7

1: for each process pi:
2: procedure initialisation:
3: xmitmsg [], dst [] ← ⊥; start task{retransmit}
4: procedure s-send(m) {to s-send m to pj}
5: if m �∈ xmitmsg then xmitmsg ← xmitmsg ∪ m
6: if pj �∈ dst [m] then dst [m] ← dst [m] ∪ pj

7: for all pj ∈ dst [m] do
8: if pj �= pi then
9: send m to pj

10: else
11: simulate receive m from pi

12: upon receive(m) from pj do
13: if m = ACK then
14: dst [m] ← dst [m] \pj

15: if dst [m] = ⊥ then xmitmsg ← xmitmsg \m
16: else
17: s-receive(m); send ACK(m) to pj

18: task retransmit {retransmit all messages}
19: while true do
20: for all m ∈ xmitmsg do
21: s-send(m)

Figure 1. Retransmission module

3.1. Traditional consensus: reminder

In the consensus problem [14], the processes are supposed to propose an initial value and
eventually decide on the same final value, among one of the proposed values. Processes propose
a value by invoking an operation propose() with their initial value as a parameter, and decide
the value returned from that invocation. Of course, processes that crash are exempted from
deciding. The problem was initially introduced in the crash-stop model [14] and a definition
was given in [1] for the crash-recovery model. For consensus, as introduced before, a process
is said to propose (resp. decide) a value when it writes that value into a specific stable storage
location. The processes must satisfy the following properties.

Validity: If a process decides v, then v is the value proposed by some process.
Agreement: If no process proposes more than one value, then no two processes decide

differently.
Termination: If every correct process proposes a value, then every correct process

eventually decides some value.

Notice that the agreement and termination properties are not written here exactly as in
traditional consensus specifications [14]. Indeed, it is usually implicitly assumed that no process

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

8 R. BOICHAT ET AL.

proposes more than one value. Similarly, it is usually implicitly assumed that every correct
process proposes a value. We have explicited those assumptions here to clearly point out the
difference between the agreement and termination properties of traditional consensus and open
consensus.

3.2. Open consensus: overview

Like traditional consensus, open consensus enables the processes of a distributed system to
decide on a common value proposed by one of the processes. However, unlike with traditional
consensus, a process using open consensus can:

• Propose different values. A process can invoke the propose() operation of open consensus
several times, with different parameters (re-entrance flavour). In particular, a process
might propose a given value, crash, recover, and then propose a different value (e.g., if
it has not logged the previous value).

• Control the actual commitment of a decision (decoupled flavour). That is, open consensus
decouples the pre-commitment from the commitment of a decision and exposes that
decoupling to the user of the consensus box. This is precisely what makes it possible to
merge forced logs of the upper layer with those of the open consensus box.

• Not propose any value. In fact, the processes that do not propose any value participate
in the open consensus implementation as “witnesses”, but do not need to receive any
decision. To receive a decision, they need to propose some value (on-demand flavour).

3.3. Open consensus: properties

To describe open consensus, we found convenient to represent it as a shared object that exports
two operations: propose() and commit(). Operation propose() takes as a parameter a value in
a set V (the set of consensus values) and returns a value in that very same set V . Operation
commit() takes as a parameter a value in V and returns the value ok. We say that a process
pi pre-commits a value v if pi gets v as an outcome of the invocation of propose(). We say
that a process pi decides a value v if pi returns from the invocation of commit(v). Finally, we
say that a process is a proposee if the process proposes some value. Open consensus has the
following properties:

Validity: If a process pre-commits v, then v is the value proposed by some process.
Agreement: No two processes decide two different values.
Termination: If a process invokes propose() (resp. commit()) and then does not crash, it

eventually returns from that invocation.¶

¶This property conveys a wait-free [18] characteristic of open consensus.

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

OPEN CONSENSUS 9

Not surprisingly, since our specification is somehow “open”, the correctness of its
implementations relies on the good behaviour of its user. Roughly speaking, we say that a
process is well-behaved if pi only invokes the operations in the order propose(v); commit(v′),
where v′ is the value returned from the propose() invocation. More precisely, we say that a
process pi is well-behaved if (1) whenever pi returns from the invocation of propose(v) with
v′ as an outcome parameter, pi either crashes or invokes commit(v′), and (2) pi only invokes
commit(v′) if v′ is the last value returned from pi’s invocation of propose(v) since pi’s last
crash and recovery.
We depict in Figure 2 four typical runs of open consensus. Figure 2(a) depicts a regular case

where process p1 proposes v1, pre-commits v1 and decides v1. When process p2 proposes v2,
p2 pre-commits v1, and then decides v1. Figure 2(b) presents a case where a process crashes
and recovers. Process p1 proposes and pre-commits v1, p1 then crashes. When p1 recovers,
p1 cannot invoke commit() since it is well-behaved; p1 then proposes v1’, pre-commits and
decides v1’. In Figure 2(c), a process decides a value different from the one that it proposed.
Process p1 (resp. p3) proposes and pre-commits v1 (resp. v3); but p1 crashes and p3 is slow
and commits only later. When p2 proposes v2, p2 pre-commits v3 and then decides v3 even
though this value was not decided by p3. Note that p3 could not have pre-committed v3 if
p1 did not crash. Figure 2(d) depicts a scenario where a process decides a proposition of a
crashed process. Process p1 proposes v1 and crashes. Process p2 proposes v2 but pre-commits
v1. This is possible since some processes might have stored v1 before p1 crashed. Process p2

then decides v1, a value proposed by a crashed process.
We assume in the rest of the paper that processes are well-behaved. Under this assumption,

we show in the appendix that open consensus is equivalent to consensus in terms of solvability.
That is, possibility and impossibility results that were proved in the literature about consensus
indeed apply to open consensus. However, and as we show in the next section, open consensus
has a more efficient implementation than consensus.

4. OPEN CONSENSUS: ALGORITHM

We describe here an open consensus algorithm and prove its correctness; we then discuss its
analytical performance. More practical performance numbers are given in Section 6.

4.1. Description

4.1.1. Intuitive idea

The algorithm is based on a leader-follower scheme. Roughly speaking, leader processes try to
concurrently reach a decision by storing it within a majority of the processes. The algorithm
terminates when a single process is leader. When a process pi invokes the propose() function
with a value v, pi sends it to the current leader. If pi is actually the leader, pi tries to gather the
agreement on the value from half of the processes (other than itself). In the commit() function,

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

10 R. BOICHAT ET AL.

p1

p2

p3

 propose(v1)

 v1

 commit(v1)

 ok

 propose(v2)

 v1

 commit(v1)

 ok

(a) Failure-free scenario

p1

p2

p3

 propose(v1)

 v1

 commit(v1’)

 ok

 propose(v1’)

 v1’

(b) p1 commits after recovering

p1

p2

p3

 propose(v1)

 v1

 propose(v2)

 v3

 commit(v3)

 ok

 propose(v3)

 v3

 commit(v3)

 ok

(c) p1 crashes and p3 decides p2’s proposition

p1

p2

p3

 propose(v1)

 v1

 propose(v2)

 v1

 commit(v1)

 ok

(d) p2 decides p1’s proposition

Figure 2. Open consensus execution schemes

pi decides v by logging it: a majority of the processes have then logged the decision. If pi is
not leader, the leader gathers the agreement directly from a majority of processes (instead of
half if pi is leader). Not surprisingly, the algorithm is optimised for runs where the proposee
is leader.
More generally, the processes proceed in consecutive asynchronous rounds.‖ Each process

has a local variable r defining the round it is currently involved in. Each round is made of
two phases during which the processes exchange messages. Figure 3(a) depicts the messages
and communication steps of open consensus if p1 is leader and proposee, while Figure 3(b)
presents the same steps but p2 is leader. More precisely, when a process pi proposes a value, pi

s-sends this value (into a newmsg message) to the leader if pi is not leader. The leader then
gathers estimates from a majority of processes to s-receive the latest estimate (newround
and estimate messages). Second, if the leader is a proposee (resp. is not a proposee), then
it waits for half (resp. majority) of the processes to agree on the estimate (newestimate
and acknewestimate messages). When a process s-receives either a newround (resp.
newestimate) message, it answers with an estimate (resp. acknewestimate) message
with ack set to true or false. Ack is set to true if the following acceptance rule is satisfied: The
receiving process did not s-receive any newround or newestimate message with a higher

‖Although there are rounds, the protocol is not based on the rotating coordinator paradigm of [7, 1].

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

OPEN CONSENSUS 11

p1

p2

p4

p5

p3

NewRound

Estimate

NewEstimate

AckNewEstimate

w

w

w

w

propose(v1)

w Forced log into stable storage

w

w

w

w

w w

commit(v1) okv1

(a) p1 is leader and proposee

p1

p2

p4

p5

p3

NewRound Estimate

NewEstimate

AckNewEstimate

w

w

w

w

propose(v1)

w

w

w

w

w

commit(v1) ok

NewMsg
w

CommitOk

v1

(b) p2 is leader

Figure 3. Open consensus: communication steps

round than the sending process. In any other case, ack is set to false. When pi decides a value,
pi sends that value to all processes that have proposed (commitok message).

4.1.2. Assumptions

Our algorithm relies on the assumptions that (1) all processes are well-behaved, (2) a majority
of the processes are correct and (3) we have a failure detector with a specification similar to
that of Ω in [6] (but adapted to a crash-recovery model): There is a time after which some
correct process is trusted by every process. Failure detector Ω outputs a trustlist, i.e., a list of
processes that are deemed to be currently up. We say that a process pi is leader if pi is the
element of Ω.trustlist with the lowest process identity.∗∗

4.1.3. Detailed description

Our algorithm is given in Figure 4. Each process pi maintains a variable decided that contains
the value that was decided. When pi proposes, it sets the variable proposed to true, otherwise
proposed is set to false. The variable lastnewround (resp. lastnewest) keeps track of the latest
round at which pi accepted a newround (resp. newestimate) message. The actual round
number is kept in the variable r, while the actual estimate is kept in the variable est.
There are four main parts in the protocol: (a) primitive propose s-sends the proposition to

the leader if the process pi is not leader, otherwise pi launches task coordinator ; (b) primitive

∗∗One can implement Ω in a crash-recovery model with partial synchrony assumptions along the lines of [1].

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

12 R. BOICHAT ET AL.

commit decides the last pre-committed value (since the last recovery); (c) task coordinator
gathers half of the processes to agree on a value (if pi is not a proposee, the task gathers
a majority of processes instead of half); and (d) primitives receive and s-receive handle all
received messages, and stop task coordinator once pi receives a decided value.

• In the primitive propose, invoked by a process pi, pi either s-sends the proposition in a
newmsg message to the leader (if pi is not the leader) or starts gathering estimates by
invoking the coordinator task with true since pi is a proposee (lines 10-13). Process pi

enters then a loop and waits for the value to be pre-committed. While waiting for the
pre-commitment, upon a leader change, pi s-sends the proposition (newmsg) to the new
leader (lines 15-19). Once the value has been pre-committed, pi returns from propose().

• In the primitive commit, when pi decides the pre-committed value, pi simply sets
decided to the decided value (line 23) and sends a commitok message to all processes
that proposed (lines 24-26). It is possible that pi has already decided when pi invokes
commit(); this case arises when pi is not a proposee and is part of the majority set. In
all cases, pi returns ok.

• In task coordinator, the variable local is set to true if pi is leader and proposee. When
a process leader pl s-receives a newmsg message, pl starts (if it is not already doing
it) to gather estimates by s-sending a newround message to all (line 30). When a
process pj s-receives such messages from pl, pj returns in an estimate message its
actual estimate with ack set to true if pj satisfies the acceptance rule. Otherwise, pj s-
sends an estimate message with ack set to false. If pl s-receives a majority of estimate
message with all ack set to true, then pl selects the latest estimate (line 33) and s-sends
it into a newestimate message to all except pl. When pj s-receives such message, pj

s-sends an acknewestimate message with ack set to true if pj satisfies the acceptance
rule. Otherwise pj s-sends an acknewestimate message with ack set to false. Finally,
if pl s-receives from half of the processes an acknewestimate message with all ack set
to true, pl returns the pre-committed estimate and buffers all the messages it receives
or s-receives (lines 37-38). If pl is not a proposee (local is set to false), pl executes the
same first steps but s-sends newestimate to all (instead of all except pl), waits for a
majority of acknewestimate messages, sends a commitok message to all processes
that proposed and returns the pre-committed estimate which is in fact already decided
(lines 40-45). Note that for this case, the leader does not buffer any message but empty
its retransmission module.

• In the primitives receive and s-receive, when pi receives (resp. s-receives) a message from
pj, pi first verifies if it has already decided a value. In this case, pi sends decided to pj .
When pi s-receives a newmsg and pi is leader, pi starts task coordinator (if it is not
already running) with false since pi is not a proposee. When pi s-receives a newround
(resp. newestimate) message, pi s-sends an estimate (resp. acknewestimate)
message with ack set to true or false following the acceptance rule. When pi receives
the decision value of consensus, pi first stops task coordinator if it is active, sets decided
and pre-committed to the decided value and empty its retransmission module.

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

OPEN CONSENSUS 13

1: for each process pi:
2: procedure initialisation:
3: pre-committed ← ⊥; decided ← ⊥; proposed ← false
4: (rpi , lastnewroundpi , estpi , lastnewestpi)← (pi,0,⊥,0)
5: upon propose(vpi) do
6: proposed ← true
7: wait until task coordinator is not active {avoid starting the task more than once}
8: if decided = ⊥ then {otherwise has decided meanwhile}
9: if estpi = ⊥ then estpi ← vpi

10: if pi ∈ Ω.trustlist then
11: pre-committed ← start task coordinator(true)
12: else
13: s-send (newmsg,vpi) to first(Ω.trustlist)
14: while pre-committed = ⊥ do
15: upon change in Ω do
16: if pi ∈ Ω.trustlist then
17: pre-committed ← start task coordinator(true)
18: else
19: s-send (newmsg,vpi) to first(Ω.trustlist)
20: return(pre-committed)
21: upon commit(vpi) do
22: if decided = ⊥ then {if pi �∈ Ω.trustlist, then a majority has stored v}
23: lastnewestpi ← rpi ; estpi ← vpi ; decided ← vpi ;store{lastnewestepi ,estpi , decided}
24: for all pk such that s-received(acknewestimate,rpi ,proposed,ack) do
25: if proposed is true then send(commitok,estpi) to pk

26: empty retransmission buffer; treat all buffered messages
27: return(ok)
28: task coordinator(local)
29: while pi ∈ Ω.trustlist do
30: s-send(newround,rpi) to all

31: wait until [s-received(estimate,rpi , estpj , lastnewestpj ,ack) from �n+1
2
� processes]

32: if received only estimate with ack = true then
33: temppi ← estpj | lastnewestpj | pi s-received (estimate,rpi , estpj , lastnewestpj ,ack)
34: if local then
35: s-send(newestimate,rpi , temppi) to all \pi

36: wait until [s-received(acknewestimate,rpi ,proposed,ack) from �n
2
� processes]

37: if received only acknewestimate with ack = true then
38: buffer all messages that pi s-receive; return(temppi)
39: else
40: s-send(newestimate,rpi , temppi) to all

41: wait until [s-received(acknewestimate,rpi ,proposed,ack) from �n+1
2
� processes]

42: if received only acknewestimate with ack = true then
43: for all pk such that s-received(acknewestimate,rpi ,proposed,ack) do
44: if proposed is true then send(commitok,estpi) to pk

45: empty retransmission buffer; pre-committed ← estpi ; decided ← estpi

46: rpi ← rpi + n
47: upon s-receive m or receive m from pj do
48: if decided �= ⊥ then
49: send (commitok,decided) to pj

50: else if m = (newmsg,vpj) then
51: if pi ∈ Ω.trustlist and task coordinator is not active then
52: if estpi = ⊥ then estpi ← vpj ; start task coordinator(false)

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

14 R. BOICHAT ET AL.

53: else if m = (newround,rpj) then {Continued from s-receive}
54: if lastnewroundpi > rpj or lastnewestpi > rpj then
55: s-send (estimate,rpi , estpi ,false) to pj

56: else
57: lastnewroundpi ← rpj ; store{lastnewroundpi }
58: s-send(estimate,rpi , estpi , lastnewestpi ,true) to pj

59: else if m = (newestimate,rpi , temppj) then
60: if lastnewroundpi > rpj or lastnewestpi > rpj then
61: s-send(acknewestimate,rpi ,proposed,false) to pj

62: else
63: lastnewestpi ← rpj ; estpi ← temppj ; store{lastnewestpi ,estpi}
64: s-send(acknewestimate,rpi ,proposed,true) to pj

65: else if m = (commitok,estpj) then
66: if task coordinator is active then stop task coordinator
67: decided ← estpj ; pre-committed ← estpj ; empty retransmission buffer
68: upon recovery do
69: initialisation; retrieve{lastnewroundpi , estpi , lastnewestpi ,decided}

Figure 4. Open consensus

4.1.4. Remarks

Note also that in round 0, the leader p1 can simply set its estimate to its own proposed value
and skip the phase used to select the estimate (newround-estimate). It is also easy to see
that the coordinator does not have to store its round number into stable storage in this case.
We omitted these obvious optimisations from the code. Figure 5 depicts the communication
steps for such scenario: in Figure 5(a), the proposee is leader, and in Figure 5(b), the proposee
is p2 and the leader is p1. Therefore, in a nice run where p1 is leader, the algorithm requires
only �n+1

2 � forced logs and one round-trip communication step for p1 to decide (the same
number of forced logs but three communication steps if the proposee is not leader).††

4.2. Correctness

Lemma 2. Validity: If a process pre-commits v, then v is the value proposed by some process.
Proof (sketch). The decided value is chosen at line 33 (estpj) and estpj is modified in lines 8
and 23 (the other modifications are meaningless since they are induced by the first two). Line
23 does not impact the pre-committed value since it is executed in the commit() function.
Therefore, line 8 is the only modification that affects the pre-committed value. Line 8 sets
estpi to the value proposed; indeed, by the algorithm of Figure 4 and by the properties of the
links, it is impossible for a process to pre-commit a value that was not proposed (out of thin
air). ✷

††Note that if all processes propose, our algorithm is also quiescent [2].

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

OPEN CONSENSUS 15

p1

p2

p4

p5

p3

NewEstimate

AckNewEstimate

w

w

w

w

propose(v1)

w

commit(v1) okv1

(a) p1 is leader and proposee

p1

p2

p4

p5

p3

NewEstimate

AckNewEstimate

w

w

w

w

propose(v2)

w

v2 commit(v2) ok

NewMsg

(b) p1 is leader and p2 proposee

Figure 5. Open consensus communication step for round 0

Lemma 3. If a process pi is leader, pre-commits v and then pi does not crash, then a majority
of processes have stored v in stable storage.
Proof (sketch). By the algorithm of Figure 4, when pi pre-commits wi for round r, �n

2 � other
process than pi have stored wi and lastnewround = r. Since every process is well-behaved,
then pi invokes commit(wi) and stores wi, therefore there is a majority of processes that have
stored wi. However, there can be more than one process that invokes propose() and commit().
By line 38, once pi returns from propose(), pi will not modify any variable since pi buffers
all the messages that it receives or s-receives. Therefore, if pi does not crash (i.e., decides)
and another process pj invokes propose(vj), then pj pre-commits wi since there cannot be two
different majorities in the system (line 32-33). By line 32 and the fact that pi does not answer
to any message, pj must receive an estimate message with wi. By lines 59-64, this message
must be tagged with the higher lastnewest otherwise pi could not have decided wi. ✷

Lemma 4. If a process decides v, then a majority of processes have stored v in stable storage.
Proof (sketch). Remember that we assume that every process is well-behaved, therefore a
process invokes propose() and then commit() with the last value pre-committed by itself since
its last recovery. There are two cases to consider: (i) the proposee is not leader, or (ii) the
proposee is a leader. For case (i), by the algorithm of Figure 4, when a process pi returns from
propose(vi), the value returned wi is already stored at a majority of processes, i.e., wi can be
in fact already decided for pi if pi is part of the majority set that acknowledged wi. Therefore,
when pi has already decided and invokes commit(wi), pi does nothing (line 27). Lemma 3 and
the notion of well-behaved solve case (ii). ✷

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

16 R. BOICHAT ET AL.

Lemma 5. Agreement: No two processes decide two different values.
Proof (sketch). Suppose that a process pi (resp. pj) decides v (resp. v′). Assume by
contradiction that v �= v′ and without loss of generality that pi decides before pj. By lemma 4
and by the algorithm of Figure 4, when pi decides in round r, then a majority of processes have
stored v and a value of lastnewest ≥ r. All lastnewest could not be equal to r because some
process could have invoked propose() with a higher round and the lastnewest value would
be changed (but not the est). By lemma 4, there is also a majority of processes that have
stored v′. There must be then a process that has stored both v and v′. This is impossible since
once pi has decided v, when pj proposes, pj must have received an estimate message with v.
This message is tagged with the highest lastnewest, otherwise pi would have decided a value
different from v. ✷

Lemma 6. If a process invokes propose() (resp. commit()) and then does not crash, it
eventually returns from that invocation.
Proof (sketch). The proof is trivial for commit(). For propose(), by (i) the fact that there
is a majority of correct processes in the system, and (ii) by the property of Ω, there is time
after which there is only one eventual perpetual leader pl in the system. If a correct process
proposes, then pl eventually s-receives a newmsg message and can then pre-commit. ✷

Proposition 7. The algorithm of Figure 4 satisfies the validity, agreement and termination
properties of open consensus.
Proof (sketch). Follows directly from lemmata 2, 5 and 6. ✷

4.3. Analytical evaluation

In [1], the authors described a consensus protocol for a crash-recovery model, and indeed
assumed that every invocation and every decision of consensus coincides with a forced log.
Hence, besides the required forced log to preserve agreement, additional forced logs are needed
for the interaction with the consensus box: these introduce a pure overhead to the consensus
abstraction.‡‡

As depicted in Figures 6(b) and 5 (resp. Figures 6(a) and 3), in a nice run, the number of
communication steps needed to reach a decision is the same for both algorithms. However, a
process can reach a decision after one local forced log in our algorithm (one forced log for the
agreement), whereas three local sequential forced logs are required in [1] (one forced log for the
proposition, one for the agreement and one for the decision). Globally, for a process to decide
in [1], �n+1

2 �+2 forced logs must have been performed. In our case, a process can decide after
�n+1

2 � forced logs. Moreover, our open consensus algorithm introduces fewer messages than [1]
since not every process is required to propose, and only those that propose receive a decision
message. In the case where all processes propose a value, then the number of messages is the
same in both algorithms.

‡‡The same conclusion can be drawn for the consensus algorithm of [19].

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

OPEN CONSENSUS 17

p1

p2

p4

p5

p3

propose

NewRound

Estimate

NewEstimate

Ack

Decide

extra-consensus stable storage intra-consenus stable storage

w

w

w

w

w

w

w

w

w

w

W

W

W

W

W

W

W

W

W

W

(a) p2 is leader

p1

p2

p4

p5

p3

propose

NewEstimate

Ack

Decide

w

w

w

w

w

W

W

W

W

W

W

W

W

W

W

(b) p1 is leader (nice run)

Figure 6. Consensus

p1

p2

p4

p5

p3

NewRound

Estimate

NewEstimate

Ack

Decide

Decide

w

w

w

w

w

W

W

W

W

W

w

w

w

w

W

W

W

W

RR

R

Wcrash

NewRound

Estimate

NewEstimate

w

w

w

NewRound

R

R

Rww

wrecoverw

w

w

w

Figure 7. Consensus with a crashed coordinator

We now compare open consensus with consensus in case of a recovery scenario. Even if open
consensus is optimised for nice runs, it behaves quite well in the case of a process crash. As
shown in Figure 7, 8 and 9, open consensus is more efficient than consensus, both in terms of
the number of communication steps and forced logs. As depicted in Figure 7, with consensus, if
the coordinator crashes, another process takes up, becomes coordinator and solves consensus.
When the process that has crashed recovers, it re-proposes by reading its location into stable
storage and decides. We need to compare with two scenari for our algorithm: (i) if a proposee
crashes as depicted in Figure 8, and (ii) if a leader process crashes as shown in Figure 9. For
case (i), p1, which is proposee and leader, crashes. Since no other process has proposed, no
process tries to solve consensus. When p1 recovers, p1 retries to solve consensus, pre-commits
and then decides the value. Note that p1 proposed another value that it proposed in its first

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

18 R. BOICHAT ET AL.

NewRound

Estimate

NewEstimate

w

w

w

w

propose(v1)

w

w

w

w

w w

v1’ commit(v1’) ok

crash
p1

p2

p4

p5

p3

recover

NewRound

Estimate

w

w

w

w

w

w

w

w

w NewEstimate

AckNewEstimate

propose(v1’)

Figure 8. Open consensus with a crashed proposee

NewRound

Estimate

NewEstimate

w

w

w

w

propose(v1)

w

w

w

w

w w

v1

commit(v1)
ok

crash
p1

p2

p4

p5

p3

recover

propose(v3)

NewMsg NewMsg

NewRound

w

w

w

w

Estimate

NewEstimate

AckNewEstimate

w

w

w

w

CommitOK

decide(v1)

propose(v1)

NewMsg CommitOK

commit(v1) ok

Figure 9. Open consensus with a crashed leader

trial. For case (ii), the coordinator crashes. Therefore, p3 which is proposee suspects p1 and
then sends its proposition to the new leader. The new leader returns its pre-committed value
to p3, which then decides. When p1 recovers, p1 reinvokes propose(), pre-commits and then
decides.

5. PUTTING OPEN CONSENSUS TO WORK: TOTAL ORDER BROAD-
CAST

This section illustrates the effective use of open consensus to build modular yet efficient
agreement algorithms. We describe a total order broadcast algorithm using open consensus
and then prove its correctness. We compare then the performance of our algorithm with an
algorithm based on a traditional consensus abstraction.

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

OPEN CONSENSUS 19

5.1. Specification

Total order broadcast is a communication abstraction that allows processes to broadcast and
deliver messages in such a way that they agree on both the set of messages they deliver and
the order in which these messages are delivered. We specify the underlying abstraction, in
a crash-recovery model, with two primitives TO-Broadcast and TO-Deliver. These primitives
satisfy the following properties (As in [21], we assume here that each message codes the process
which initiated that message, denoted by sender(m).):

Validity: For any message m, every process TO-Delivers m at most once and only if m was
previously TO-Broadcast by sender(m).

Agreement: If any process TO-Delivers a message m, then all correct processes eventually
TO-Deliver m.

Termination: If a process TO-Broadcasts a message m and then does not crash, it
eventually TO-Delivers m.

Total Order: Let pi and pj be any two processes that TO-Deliver some message m. If pi

TO-Delivers some message m′ before m, then pj also TO-Delivers m′ before m.

It was shown in [7] that total order broadcast and consensus are equivalent problems in the
crash-stop model. In particular, an algorithm was given to transform consensus into total
order broadcast. [25] shows that this algorithm can be adapted to the crash-recovery model.
Nevertheless, the use of traditional consensus as a building block introduces superfluous forced
logs (as we shall discuss below). We present here an open consensus based, yet efficient, total
order broadcast for the crash-recovery model. Thanks to the on-demand, decoupled and re-
entrant flavours of open consensus, our transformation does not add any forced log to open
consensus (beside what is needed inside open consensus).

5.2. Algorithm

Our algorithm is given in Figure 10. The algorithm uses a series of consecutive open
consensus (or simply consensus) instances: each consensus instance being used to agree on
a batch of messages. Each process differentiates consecutive instances by maintaining a local
counter (k): each value of the counter corresponds to a specific consensus instance. We describe
first the main data structure of the algorithm. A local set Received keeps all messages that
needs to be decided, and another set TO Delivered keeps track of all TO-Delivered messages.
Intuitively, the algorithm works as follows. When there are still messages to be TO-Delivered,
i.e., Received -TO Delivered is not empty, process pi launches a consensus instance and waits
for the pre-commitment of the value. Note that we assume here that new messages keep on
being broadcast, and that accesses and modifications of the variables are atomic.
An important aspect of our algorithm is the handling of the decoupling between the pre-

commitment and the commitment of an open consensus decision. Once a value has been
pre-committed, if a process pi is a proposee and a leader, pi knows that half of the processes
(other than itself) have agreed on this value. Therefore, pi can perform some execution steps
before deciding the value. Indeed, pi orders the messages following a deterministic order and

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

20 R. BOICHAT ET AL.

1: Every process pi executes the following:
2: procedure initialisation:
3: Received [] ← ⊥; AwaitingToBeDelivered [] ← ⊥; k ← 0; TO Delivered [] ← ⊥
4: upon TO-Broadcast(m) do
5: Received ← Received ∪ m
6: TO-Deliver(k) occurs as follows:
7: while Received - TO Delivered �= ⊥ do
8: k ← k + 1; propose(k, Received-TO Delivered)
9: wait until[receive(pre-commit(k, msgSetk))]

10: msgSetk ← msgSetk in some deterministic order; commit(k, msgSetk) {TO-Deliver}
11: TO Delivered ← TO Delivered ∪ msgSetk; send(k, msgSetk) to all \pi

12: upon receive or s-receive(batch,msgSet) from pj do
13: if batch < k then
14: for all k ≥ l > batch do
15: send(l, msgSet l) to pj

16: else if batch = k + 1 then
17: k ← k + 1; commit(k, msgSetk) {TO-Deliver}
18: TO Delivered ← TO Delivered ∪ msgSetk; empty retransmission buffer for batch k
19: while AwaitingToBeDelivered [k + 1] �= ⊥ do
20: k ← k + 1; commit(k, AwaitingToBeDelivered [k]) {TO-Deliver}
21: TO Delivered ← TO Delivered ∪ msgSetk; empty retransmission buffer for batch k
22: else
23: AwaitingToBeDelivered [batch] ← msgSet ; s-send(k,msgSetk) to pj

24: upon recovery do
25: initialisation
26: for all decided msgSetk do
27: retrieve(msgSetk,k); TO Delivered ← TO Delivered ∪ msgSetk

28: Received ← TO Delivered

Figure 10. Total order broadcast with open consensus

then decides this new set of messages. The same deterministic ordering function is used among
all processes. Note that in the meantime (between returning from propose() and invoking
commit()), the process does not answer to any messages.
When pi invokes commit(), in fact, pi sets the decided variable to the new ordered set.

Once pi has decided the set, pi updates TO Delivered and then sends the decision to every
process. When a process pj receives the decision, there are three cases to consider: (i) pj is
lagging, e.g., kpj < kpi , (ii) pj is ahead, e.g., kpj > kpi , and (iii), pj is in synch with pi, e.g.,
kpj = kpi . For case (i), pj puts the received decision in a buffer where it keeps all future
decisions (AwaitingToBeDelivered) and s-sends its current state in order to receive all missing
decisions between kpj and kpi . For case (ii), pj simply sends all missing decisions to pi, e.g.,
all decisions between kpj and kpi . Finally, for the last case, pj TO-Delivers the decided set,
removes the messages from the retransmission module (if there are any) for batch k and tries
to TO-Deliver the following batches (kpj + 1,...). When pi crashes and recovers, pi retrieves
all the decided values and appends them to reconstruct the set TO Delivered, in order not

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

OPEN CONSENSUS 21

to violate the integrity property of total order broadcast. Once a process recovers, pi sets
Received to TO Delivered otherwise line 7 would never be false, thus keeping on proposing
useless batches. Note that our algorithm is quiescent [2] if there are no unstable processes in
the system. Indeed, when a batch k has been TO-Delivered by every correct process, no more
messages for this batch are sent. It is quiescent since once a batch has been TO-Delivered by
pi, pi stops its retransmission module for this batch

5.3. Correctness

Lemma 8. Validity: For any message m, every process TO-Delivers m at most once and only
if m was previously TO-Broadcast by sender(m).
Proof (sketch). Consider the first part. A process can only TO-Deliver at most once a
message m since TO delivered and k are kept up to date. When a process recovers, it rebuilds
the TO Delivered set, therefore a process cannot TO-Deliver m more than once. Consider
now the second part. For a message m to be TO-Delivered, m has first to be proposed. To be
proposed, m has to belong to the Received set, and to be in this set, m has to be TO-Broadcast
(no message come out of thin air). ✷

Lemma 9. Agreement: If any process TO-Delivers a message m, then all correct processes
eventually TO-Deliver m.
Proof (sketch). Remember that we suppose that new messages keep being broadcast, such
that Received is never empty. Therefore, a correct process pi has always messages to propose.
Indeed, pi keeps on sending decisions to every other process. There is a time after which all
correct processes stop crashing and remain up. By the fair loss properties of the links, these
correct processes eventually receive a decision. If they are lagging compared to pi, by lines 15
and 23, every correct process receives all missing decision and TO-Delivers m. ✷

Lemma 10. Termination: If a process TO-Broadcasts a message m and then does not crash,
it eventually TO-Delivers m.
Proof (sketch). If a process pi TO-Broadcasts m and then does not crash, Received contains
m. Since Received - TO delivered is not empty, pi proposes m in line 8. By the termination
property of open consensus, pi returns and pre-commits msgSet. There are two cases to
consider: (a) m ∈ msgSet, and (b) m �∈ msgSet. Case (a) is trivial since pi then decides
msgSet and TO-Delivers m. For case (b), m stays in Received-TO delivered but pi keeps on
proposing m. Since pi does not crash, pi never loses the content of Received and eventually
pre-commits a msgSet which contains m, thus TO-Delivering m. ✷

Lemma 11. Total Order: Let pi and pj be any two processes that TO-Deliver some message
m. If pi TO-Delivers some message m′ before m, then pj also TO-Delivers m′ before m.
Proof (sketch). Trivial from lemma 10. Since every process TO-Delivers the same batch of
messages. By the algorithm of Figure 10, the total order property of total order broadcast is
satisfied. ✷

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

22 R. BOICHAT ET AL.

decide

p1

p2

p4

p5

p3

propose

Consensus service (ACT00)

dp

dp

dp

dp

dp

C

C

C

C

C

C

D

P Proposition

Decision

Local forced log

Forced log at maj processes

TO-Broadcast(m)

P

P

P

P

P
A

TO-Deliver(m)

D

I

A Agreement

Integrity

TO-Deliver(m)

TO-Deliver(m)

TO-Deliver(m)

TO-Deliver(m)

(a) Total order broadcast with consensus [25]

TO-Broadcast(m)

pre-commits

p1

p2

p4

p5

p3

propose

 Open Consensus service

TO-Deliver(m)

O

p-cp O

I

TO-Deliver(m)

TO-Deliver(m)

I

TO-Deliver(m)

I

TO-Deliver(m)

I

I

A Agreement

Integrity

Local forced log

Forced log at a n/2 processes

A

A+I

(b) Total order broadcast with open consensus

Figure 11. Comparison in a nice run

Proposition 12. The algorithm of Figure 10 satisfies the validity, agreement, termination and
total order properties of total order broadcast.
Proof (sketch). Follows directly from lemmata 8, 9, 10, and 11. ✷

5.4. Analytical Evaluation

We compare our algorithm with the solution given by [25]: to our knowledge, that is the
only consensus-based total order broadcast that was devised in a crash-recovery model. As
we pointed out in the introduction, the algorithm of [23] indeed implements a total order
broadcast primitive in a crash-recovery model, but bypasses the consensus abstraction.
The algorithm of [25] is efficient in terms of messages and communication steps, but to cope

with recovery, a process can only TO-Deliver a message after 3�n+1
2 � forced logs. Moreover

the algorithm does not store the TO-Delivered messages but leaves that up to the upper layer.
As pointed out by the authors of [25], the inefficiency of the scheme is inherent to the use
of consensus as a black-box. In our algorithm, the process that is leader and proposee can
TO-Deliver a message after �n+1

2 � forced logs. If the proposee is not leader, a message is then
TO-Delivered after �n+1

2 �+1 forced logs. Figure 11 compares, in a nice run, our total order
broadcast algorithm with the algorithm of [25], i.e., the figure actually compares the impact
of using open consensus with that of using traditional consensus in a crash-recovery model
([25]). Note that our algorithm is also simpler since it does not require every process to invoke
consensus, and is quiescent. The algorithm of [25] uses an inherently non-quiescent gossip
function (to achieve reliable broadcast semantics).

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

OPEN CONSENSUS 23

Open Consensus

Communication

Multicast/Broadcast

S-Receive

MB-Send

Receive

MB-Deliver

FD

FD-
Update

Message

FD-
Send

Actions

Stable Storage

S-Send

Send

Agreement Protocols

commit

decide

TO-BroadcastTO-Deliver

Application

propose

pre-commit

e.g.,
Total Order Broadcast

Figure 12. Architecture

6. FRAMEWORK ARCHITECTURE

We sketch in Figure 12 the overall architecture of our abstraction library. The architecture
is divided in five layers Communication, Multicast/Broadcast, Open Consensus, Total Order
Broadcast and Application. These are described below. A specific module implements a failure
detection scheme and a stable storage module abstracts a hard disk. These components were
implemented with SUN’s JDK Java 1.2.1 and have been tested on Solaris 2.7. The different
layers communicate through method invocation and listeners for upcalls. All messages are
buffered in each layer to avoid network bottleneck. For example, if a message cannot be sent
because buffers are full, the Communication layer notifies the Multicast/Broadcast layer which
itself notifies its upper layer, and so on.

6.1. Communication

This layer handles point-to-point as well as multi-point communication. The Communication
layer is based on the model described in Section 2. It uses sockets and affects to each process

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

24 R. BOICHAT ET AL.

a unique id. Process ids are taken from an ordered set and both TCP/IP and UDP/IP can be
used for communications. For TCP/IP, to decide which process listens to the connection and
which one connects, we use a simple scheme where a process with a lower id (acts as a client)
connects to a process with a greater id (acts as server). We hence avoid double connections
and ensures that each process knows what to do in case of reconnection, in particular in case
of recovery. The Communication layer has no other functionality besides handling send and
receive events. We give below an excerpt of the corresponding class for TCP/IP.

public class Communication extends UnicastRemoteObject {
protected interface Listener{

public void receiveMsg(Message m);
...

}
protected class SocketSender extends Sender {...}
protected class SocketReceiver extends Receiver {...}
....
public static void closeServer() throws IOException {...}
public void closeClientChannel() throws IOException {...}
../

}

6.2. Multicast/Broadcast

This layer handles multicasts and broadcasts messages with different semantics to a process
group. The various semantics are: (a) those of the retransmission module defined in Section 2
(s-send and s-receive), and (b) simple sends and receives also defined in Section 2 (send and
receive). The simple send makes only one trial to send the message. We have implemented
the retransmission module as a thread in the Multicast/Broadcast layer. This layer sends and
receives messages using the primitives send and receive of the Communication layer. We give
below some excerpt of this class.

public class MulticastBroadcast implements Communication.Listener {
protected interface Listener{public void notifyOverwriteException(String error);}
protected class MulticastBroadcastSender extends Sender {...}
protected class NetworkReceiver extends Receiver {...}
...
public void notifyOverwriteException(String error) {...}
public void send(Message m, int[] dst) {...}
public void s-send(Message m, int[] dst) {...}
public Message receive(Message m, int dst) {...}
public void s-receive(Message m, int dst) {...}
...

}

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

OPEN CONSENSUS 25

6.3. Open consensus

This layer implements the open consensus algorithm. The main operations exported by
this class are the operation propose and commit. Several inner classes are used for the
implementation of this operation, i.e., for the actual open consensus algorithm. The layer
invokes the Multicast/Broadcast class to send messages and the StableStorage class
(stableStore function) to store critical fields in a file and retrieve them upon recovery. The
MulticastBroadcast.Listener interface extends the interface EventListener, while the
Sender and Receiver classes extends the class Thread.
Each of the inner classes within OpenConsensus corresponds to a specific thread involved

in the implementation of the operations propose and commit: (1) a thread Coordinator
that corresponds to the task coordinator described in the open consensus algorithm (lines
28-46 of Figure 4), (2) a thread Commit that handles all the commit invocations (lines 21-
27), and (3) a thread Propose that handles the propose invocations (lines 5-20). The last
three classes are not static because they are bound to a single instance of consensus. Finally,
class OpenConsensusSender (resp. OpenConsensusReceiver) treat the messages that need
to be sent (resp. received). The class OpenConsensusReceiver corresponds to the receive
and s-receive primitives, i.e., lines 47-67 of Figure 4. We give below an excerpt of the class
OpenConsensus.

public class OpenConsensus implements MulticastBroadcast.Listener {
protected static class OpenConsensusSender extends Sender {...}
protected static class OpenConsensusReceiver extends Receiver {...}
protected class Coordinator extends Thread {...}
protected class Commit extends Thread {...}
protected class Propose extends Thread {...}
....
protected synchronized void stableStore(int[] fields) {...}
....
public int propose(int value) {...}
public boolean commit(int value) {...}
...

}

6.4. Total order broadcast

The TotalOrderBroadcast layer atomically broadcasts and delivers messages. It invokes
the OpenConsensus class to solve consensus. As for our OpenConsensus implemen-
tation, layers communicate via method invocations and listeners for upcalls. Class
TotalOrderBroadcastSender (resp. TotalOrderBroadcastReceiver) handles the messages
that need to be sent (resp. received). The class TotalOrderBroadcastReceiver corresponds to
the lines 12-23 of Figure 10. The thread Propose invokes the OpenConsensus layer (lines 7-9),
while the to-deliver primitive implements the TO-Delivery of messages (lines 10-11). The
to-broadcast primitive is invoked when a programmer desires to TO-Broadcast a message
(lines 4-5). We give below an excerpt of the TotalOrderBroadcast class.

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

26 R. BOICHAT ET AL.

public class TotalOrderBroadcast implements OpenConsensus.Listener {
protected static class TotalOrderBroadcastSender extends Sender {...}
protected static class TotalOrderBroadcastReceiver extends Receiver {...}
protected class Propose extends Thread {...}
....
public void to-broadcast(Messageset msgSet) {...}
public void to-deliver(int k, Messageset msgSet) {...}
...

}

6.5. Stable storage

The stable storage module abstracts a hard disk. It is accessed every-time: (a) open consensus
needs to store some variable into stable storage, and (b) a process recovers and retrieves its
persistent state. We give below an excerpt of this class.

public class StableStorage {
protected String storageFileName;
...
public synchronized void stableStore(int[] fields) {...}
public synchronized void stableRetrieve(int[] a) {...}
...

}

6.6. Failure detector

A failure detector abstracts a distributed oracle that provides the processes with hints about
crashes [7]. The failure detector Ω is implemented along the lines of ✸Su from [1]. The
failure detector outputs a trustlist at every process. The trustlist is a set of processes that
are deemed to be currently up. We give below an excerpt from our FDetector module. The
class elementTL contains the processes that are trusted (trustlist) by the failure detector. The
interface FDListener updates the upper layers of changes in the trustlist, while the thread
FDSenderThread keeps on retransmit i am alive messages to every process. When a process
suspects a new process or stops suspecting a process, it updates the consensus layer with
FD-Update.

public class FDetector implements MulticastBroadcast.Listener, MulticastBroadcast.FDListener {
protected class elementTL {...}
protected interface FDListener {...}
protected class FDSenderThread extends Sender {...}
...

}

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

OPEN CONSENSUS 27

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

th
ro

u
gh

p
u

t [
co

n
se

n
su

s/
s]

of processes

Open consensus
Consensus

(a) Consensus

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30

th
ro

u
gh

p
u

t [
m

sg
 T

O
-D

el
iv

er
ed

/s
]

of processes

with open consensus
with consensus

(b) Total order broadcast

Figure 13. Throughput comparison

6.7. Experimental Measures

Figure 13 gives the throughput in nice runs of open consensus vs consensus on the one hand,
and open consensus based total order broadcast vs consensus based total order broadcast on
the other hand. Our performance measures were performed on a LAN interconnected by Fast
Ethernet (100MB/s) on a normal working day. The LAN consisted of 60 UltraSUN 10 (256Mb
RAM, 9 Gb Harddisk) machines. All stations were running Solaris 2.7, and our implementation
was running on Solaris JVM (JDK 1.2.1, native threads, JIT). The effective message size
transmitted was of 1Kb. Figure 13(a) compares open consensus and the consensus of [1]. To
have a fair comparison, we measure the case where all processes propose and decide. Not
surprisingly our comparison depicts the fact that the more forced logs an implementation has,
the worse the performance is. We have then implemented two total order broadcasts, one over
open consensus and one over consensus: performance results are summarized in Figure 13(b).
Again, since open consensus makes less forced logs, the performance of total order broadcast
based on open consensus is by far better than the one based on the traditional consensus.

7. CONCLUDING REMARKS

On the one hand, theoreticians have stated and proved fundamental results about the
solvability of the consensus problem under various system models and assumptions [14, 12,
7, 18]. On the other hand, developers of reliable distributed systems have been focusing on
designing and implementing efficient solutions to “practical” agreement problems like total
order broadcast and atomic commit [8, 15, 3, 11, 5, 26]. For a long time, the two research

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

28 R. BOICHAT ET AL.

trends have been undertaken separately. Relatively recently, several authors suggested the use
of consensus as a basic building block to devise modular solutions to “practical” agreement
problems [7, 16, 17, 20]. In particular, it was shown that the use of consensus to solve various
agreement problems does not introduce any significant overhead with respect to non-modular
agreement algorithms that bypass consensus to solve the very same problems [16]. To convey
that result, the authors of [16] considered however a system model where channels are reliable,
a majority of the processes remain always up, and processes that crash do never recover.
Nevertheless, consensus, according to its original specification, cannot be effective in a

practical crash-recovery system model where processes and channels may crash and recover.
This is because the use of consensus introduces inherent additional forced logs (which are
known to be major sources of overhead) in comparison with non-modular algorithms that
bypass consensus. This issue is conveyed for instance in [25], where the authors describe a
total order broadcast for the crash-recovery model, based on a traditional consensus box. The
protocol is modular, but rather inefficient in terms of forced logs. This inefficiency is not due
to the protocol per se, but to the use of an underlying traditional consensus box. In [23],
Lamport presents a total order broadcast in the crash recovery model based on a consensus
box, and discusses how to make that protocol efficient, by however breaking the encapsulation
of consensus.
The motivation of this work was to propose a reshaping of consensus that makes it effective

in such a practical crash-recovery system model. In other words, the aim was to figure out
whether we can define a consensus-like box that would preserve modularity and yet enables
efficiency. Doing so is however not trivial, precisely because to keep the theoretical benefits
of reusing consensus (and all related results), its reshaping should not diminish the inherent
algorithmic complexity encapsulated by consensus. We propose in this paper the abstraction
of open consensus, and we define the precise conditions under which the two problems are
equivalent. The use of open consensus is however more efficient. Roughly speaking, our new
specification provides consensus with pragmatic decoupled, re-entrant and on-demand flavours.
The significant optimisations we obtain in our modular agreement algorithms (in terms of
forced logs) are not achieved at the expense of stronger assumptions or additional messages and
communication steps, with respect to alternative algorithms that are based on the traditional
notion of consensus or simply ad-hoc algorithms [1, 19, 23, 25, 26]. Typically, our open
consensus abstraction could be used as an underlying building block to devise fault-tolerant
middleware service. For example, the central abstraction of the CORBA Object Group Service
of [13] is a consensus one. Replacing that abstraction with our new open consensus can help
build efficient fault-tolerant services in a practical crash-recovery model.
The flavours of open consensus make it a good candidate to build, not only a modular

and efficient total order broadcast algorithm, but also other kinds of agreement algorithms
in a modular, yet efficient manner. One can follow the approach of [16] to build a modular
yet efficient atomic commit, group membership and view synchronous algorithms. Moreover,
it is easy to see how one could easily and efficiently implement the primary-backup scheme
of [9] in a crash-recovery model using our open consensus abstraction. In [10], the authors
proposed a consensus-based form of primary-backup replication [4]. To make the replication
scheme efficient, the authors had however to violate consensus encapsulation by assuming a
specific consensus algorithm (the algorithm of [7]), and optimised their replication scheme

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

OPEN CONSENSUS 29

with that consensus algorithm in mind. More recently (in [9]), the authors replaced the
consensus box with a different building block, named lazy consensus. The specification (1)
assumes that the processes invoke consensus with a function passed as a parameter, and
(2) precludes the possibility for two processes to invoke consensus with two different values,
unless one of them is suspected to have crashed. The resulting specification is designed for
the specific replication technique considered by the authors. Our open consensus specification
is more general, yet simpler. It is more general in the following senses. First, in our case, a
process does not receive a decision unless it invokes consensus (i.e., our on-demand flavour
is more general). Second, we introduce additional notions of re-entrance and decoupling:
these notions would help optimise the replication scheme of [9] in terms of forced logs while
preserving modularity. Our specification is simpler because we only replace the properties of
consensus with slightly different properties of the same nature (termination, agreement and
validity), without introducing properties of different natures, e.g., precluding two processes
from proposing two values unless one of them is crashed or suspected to have crashed. (Such
a property actually restricts the applicability of the specification to the specific asynchronous
system model augmented with a failure detector. Even more importantly, it is not clear whether
the resulting abstraction is actually equivalent to the actual original consensus abstraction.)

REFERENCES

1. M.K. Aguilera and W. Chen and S. Toueg. Failure Detection and Consensus in the Crash-Recovery Model.

Distributed Computing, 13(2):99-125, May, 2000.

2. M.K. Aguilera and W. Chen and S. Toueg. On Quiescent Reliable Communication. SIAM Journal on

Computing, 29(6):2040-2073, April, 2000.

3. P.A Bernstein and V. Hadzilacos and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison Wesley, 1987.

4. N. Budhiraja and K. Marzullo and F.B. Schneider and S. Toueg. The Primary-Backup Approach. In

S. Mullender, editor, Distributed Systems, ACM Press Books, chapter 8, pages 199-216, Addison-Wesley,

second edition, 1993.

5. K. Birman and R. van Renesse. Software Reliability for Networks. Scientific American, 274(5), May,

1996.

6. T.D. Chandra and V. Hadzilacos and S. Toueg. The Weakest Failure Detector for Solving Consensus.

Journal of the ACM, 43(4):685-722, July, 1996.

7. T.D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed Systems. Journal of

the ACM, 43(2):225-267, 1996.

8. D. Dolev and S. Kramer and D. Malkhi. Early Delivery Totally Ordered Broadcast in Asynchronous

Environments. In Proceedings of the 23rd IEEE International Symposium on Fault-Tolerant Computing

(FTCS-93), Toulouse, France, pages 296-406, June, 1993.

9. X. Défago and A.Schiper. Semi-Passive Replication and Lazy Consensus. Technical Report DSC 2000-27,

Department of Communication Systems, Swiss Federal Institute of Technology, May, 2000.

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

30 R. BOICHAT ET AL.

10. X. Défago and A. Schiper and N. Sergent. Semi-Passive Replication. In Proceedings of the 17th IEEE

Symposium on Reliable Distributed Systems (SRDS-98), West Lafayette, USA, pages 43-50, October 1998.

11. P. Ezhilchelvan and R Macedo and S. Shrivastava. Newtop: A Fault-Tolerant Group Communication

Protocol. In Proceedings of the 15th IEEE International Conference on Distributed Computing Systems

(ICDCS-95), Cambridge, USA, pages 296-306, May, 1995.

12. C. Fetzer and F. Cristian. On the Possibility of Consensus in Asynchronous Systems. In Proceedings of

the 1995 Pacific Rim International Symposium on Fault-Tolerant Systems, Newport Beach, USA, pages

85-91, December, 1995.

13. P. Felber and R. Guerraoui. Programming with Object Groups in CORBA. IEEE Concurrency, 8(1),

January-March, 2000.

14. M.J. Fischer and N.A. Lynch and M.S. Paterson. Impossibility of Distributed Consensus with One Faulty

Process. Journal of the ACM, 32(2):374-382, April, 1985.

15. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1993.

16. R. Guerraoui and A. Schiper. The Generic Consensus Service IEEE Transactions on Software Engineering,

27(1): 29-41, 2001.

17. R. Guerraoui. Revisiting the relationship between Non Blocking Atomic Commitment and Consensus

problems. In Proceedings of the 9th International Workshop on Distributed Algorithms (WDAG-95), Le

Mont-St-Michel, France,number 791 in Lecture Notes in Computer Science, pages 87-100, Springer-Verlag,

September, 1995.

18. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems,

13(1):124-149, January, 1991.

19. M. Hurfin and A. Moustefaoui and M. Raynal. Consensus in asynchronous systems where processes

can crash and recover. In Proceedings of the 17th IEEE Symposium on Reliable Distributed Systems

(SRDS-98), West Lafayette, USA, pages 228-234, October 1998.

20. M. Hurfin and R. Macedo and M. Raynal and F. Tronel. A General Framework to Solve Agreement

Problems. In Proceedings of the 18th IEEE Symposium on Reliable Distributed Systems (SRDS-99),

Lausanne, Switzerland, pages 56-65, October 1999.

21. V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. In S. Mullender, editor,

Distributed Systems, ACM Press Books, chapter 5, pages 97-146, Addison-Wesley, second edition, 1993

22. G. Kiczales. Beyond the Black Box: Open Implementation. IEEE Software, January, 1996.

23. L. Lamport. The Part-Time Parliament. Technical Report 49, Systems Research Center, Digital

Equipement Corp, Palo Alto, September, 1989, A revised version of the paper also appeared in ACM

Transaction on Computer Systems vol.16 number 2.

24. N.A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

25. L. Rodrigues and M. Raynal. Atomic broadcast in asynchronous systems where processes can crash and

recover. In Proceedings of the 20th IEEE International Conference on Distributed Computing Systems

(ICDCS-00), Taipei, Taiwan, pages 288-295, April, 2000.

26. D. Skeen. NonBlocking Commit Protocols. In ACM SIGMOD International Conference on Management

of Data, pages 133-142, 1981.

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0

Prepared using cpeauth.cls

OPEN CONSENSUS 31

8. APPENDIX 1: Equivalence between consensus and open consensus

We show here that consensus and open consensus are equivalent in a crash-recovery model
(under the assumptions that all processes are well-behaved). First, we describe an algorithm
that transforms open consensus into consensus (Figure 14) and then we describe an algorithm
that transforms consensus into open consensus (Figure 15). Note that the aim here is not to
devise efficient algorithms but rather show that solvability results that are stated on consensus
are valid for open consensus and vice-versa.
To distinguish the primitives that define these problems, we denote by propose the

primitive for consensus, and by o-propose and commit those for open consensus. For both
transformations, we assume that all processes are well-behaved and that a majority of processes
are correct.

8.1. Transforming open-consensus to consensus (Figure 14).

This algorithm assumes the existence of an open consensus box. By the definition of consensus,
proposing a value coincides with the forced log of its proposition. Process pi then o-proposes
the proposition and waits for the pre-committed value. When pi pre-commits a value, pi then
decides the value by invoking commit(). Note that returning from the propose() primitive
coincides with the forced log of the decision. Remember also that all correct processes invoke
propose() since it is an assumption of consensus. When a process crashes and recovers, it checks
if it already decided (by testing if the decision is stored), and if so decides. Otherwise, if the
process already proposed (by testing if the proposition is stored), it invokes again o−propose().

Proposition 13. The algorithm of Figure 14 satisfies the validity, agreement and termination
properties of consensus.
Proof (sketch). The validity property of consensus is trivial since it is the same validity
property of open consensus. Consider now the agreement property. Since every time a process
o-proposes, it o-proposes only a value that was proposed earlier, or the value received if it
is the first proposition. By the agreement property of open consensus and by the algorithm
of Figure 14, the agreement property of consensus is satisfied. Consider now the termination
property of consensus. By the definition of the notion of correct process, there is a time after
which all correct processes stop crashing and remain always-up. Hence, by the algorithm of
Figure 14, there is a time after which every correct process eventually o-proposes some value.
By the termination property of open consensus, every correct process eventually returns from
o − propose(), then finally decides. ✷

8.2. Transforming consensus to open-consensus (Figure 15).

This algorithm assumes the existence of a consensus box. Basically, every process that o-
proposes, invokes propose() (this coincides with a forced log) and then sends the value to all
processes, to make sure that every process proposes some value. When a process pi receives

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

32 R. BOICHAT ET AL.

1: procedure propose(vpi) {The procedure call coincides with the forced log of (propose(vpi))}
2: if propose(vproposed) has occurred then
3: o-propose(vproposed)
4: else
5: o-propose(vpi)
6: upon receive(pre-commit) do
7: commit(pre-commit); return(pre-commit) {Upcall coincides with the forced log of the decision}
8: upon recovery do
9: initialisation; retrieve(decision,propose(vproposed))

10: if decision has occurred then
11: return(decision)
12: else if propose(vproposed) has occurred then
13: o-propose(vproposed)

Figure 14. Transforming open-consensus to consensus

an initial value, pi verifies that it did not already proposed and, if so, pi does not propose
the initial value it received but the one it proposed earlier (due to the agreement property
of consensus). Otherwise, pi proposes the received proposition (which coincides with a forced
log). Once a process decides, it returns from o− propose(). Upon commit, pi does nothing but
returning the decision since it has been already decided. When pi recovers, pi retrieves the
decision and the proposition if there are any.

Proposition 14. The algorithm of Figure 15 satisfies the validity, agreement and termination
properties of open consensus.
Proof (sketch). The validity property follows from the validity property of consensus. The
agreement property of consensus ensures that a process must not propose with different
values. However, since a process stores the proposition and checks to always give the same
initial proposition, the agreement property of consensus is never violated and thus satisfied.
Consider now the termination property. If a process pi invokes o−propose(), since pi s-sends the
proposition to every process. There is a time after which every correct process stops crashing
and remain always-up. By the property of the retransmission module and the algorithm of
Figure 15, every correct process proposes the same value and decides. Indeed, pi returns from
the invocation of o−propose(). Of course, if pi crashes, pi does not need to return. For primitive
commit(), it is trivial since it only returns the decision. ✷

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

OPEN CONSENSUS 33

1: procedure o-propose(vpi)
2: if propose(vproposed) has not occurred then
3: propose(vpi) {The procedure call coincides with the forced log of (propose(vpi))}
4: else
5: propose(vproposed)
6: s-send(propose(vpi) to all \pi

7: upon receive(decision) do {This upcall coincides with the forced log of the decision}
8: return(decision)
9: upon commit(decision) do

10: return(decision)
11: upon receive propose(vpj) from pj do
12: if propose(vproposed) has not occurred then
13: propose(vpj) {The procedure call coincides with the forced log of (propose(vpj))}
14: else
15: propose(vproposed)
16: upon recovery do
17: initialisation; retrieve(decision,propose(vproposed))

Figure 15. Transforming consensus to open-consensus

Copyright c© 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 0:0–0
Prepared using cpeauth.cls

