
Effective multicast
programming in large scale
distributed systems

Patrick Th. Eugster1,∗,†, Romain Boichat1, Rachid Guerraoui1, Joe Sventek2

1Swiss Federal Institute of Technology, Lausanne
2Agilent Laboratories Scotland, Edinburgh

SUMMARY

Many distributed applications have a strong requirement for efficient dissemination
of large amounts of information to widely spread consumers in large networks.
These include applications in e-commerce and telecommunication. Publish/subscribe
is considered one of the most important interaction styles to model communication at
large scale. Producers publish information for a topic and consumers subscribe to the
topics they wish to be informed of. The decoupling of producers and consumers in time,
space, and flow makes the publish/subscribe paradigm very attractive for large scale
distribution, especially in environments like the Internet.

This paper describes the architecture and implementation of DACE (Distributed Asyn-
chronous Computing Environment), a framework for publish/subscribe communication
based on an object-oriented programming abstraction in the form of Distributed Asyn-
chronous Collection (DAC). DACs capture the different variations of publish/subscribe,
without blurring their respective advantages. The architecture we present is tolerant to
network partitions and crash failures. The underlying model is based on the notion of
Topic Membership: a weak membership for the parties involved in a topic. We present
how Topic Membership enables the realization of a robust and efficient reliable multicast
for large scale. The protocol ensures that, inside a topic, even a subscriber that is
temporarily partitioned away eventually receives a published message.

key words: Concurrency, scalability, reliability, multicast, membership, partitions

∗Correspondence to: Patrick Th. Eugster, Distributed Programming Group, Communication Systems
Department (DSC), Federal Institute of Technology Lausanne (EPFL), Switzerland, CH-1015
Contract/grant sponsor: This work is partially supported by Agilent Laboratories and Lombard Odier & Co.
†E-mail: Patrick.Eugster@epfl.ch



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 1

1. INTRODUCTION

This paper presents the multicast capabilities of DACE (Distributed Asynchronous Computing
Environment): a middleware solution based on publish/subscribe interaction schemes. In
particular, this paper focuses on how DACE enables the efficient and reliable multicast of
information at large scale, despite process and network failures.

1.1. Motivation

Most research efforts in the context of distributed computing is either undertaken to find
protocols for various reliability requirements [39], or to develop more easy-to-use programming
abstractions for remote interaction [5]. The multitude of existing multicast protocols for various
system and failure models are very good examples of the first class. The second research
axis has brought out, within others, derivatives of the commonly employed remote procedure
call (RPC): middleware packages, like CORBA [35], DCOM [30] and Java RMI [44], seem
to show the path for the future of practical distributed computing. However, remote object
invocations are intuitive but tie applications to rigid client/server-like interactions. On the
other hand, protocols developed without programming models in mind lead to low-level
service implementations which are very cumbersome to use. We present in this paper an
approach where the programming abstractions are tailored to reflect the underlying protocols,
and conversely these protocols have been designed with a clear vision of the programming
abstraction that will encapsulate them.

1.2. Communication model and programming abstraction

The most popular programming abstraction for distributed computing nowadays is the
remote procedure call. The success of object-oriented middleware solutions originates from
the relatively short learning phase which enables them to be put to work quickly. However,
derivatives of the remote procedure call communication model present two major drawbacks.
First, they do not address the increasing demand for one-to-many invocation semantics.
Multicast and broadcast mechanisms have been a topic of intense research and development
for many years. A recent study [28] shows that 30 percent of internet traffic is multicast and
forsees a growth up to 50 percent in the next few years. Second, solutions based on the remote
method invocation model try to hide distribution, which is both dangerous and misleading,
since distributed interactions are inherently unreliable and often introduce a significant latency
that is hardly comparable to that of a local interaction, especially in the presence of network
or component failures [21].

The publish/subscribe interaction style has proven its ability to overcome these shortcomings
[37]. In contrast to the remote procedure call paradigm, it does not force synchronization
between information producers and consumers; the participants are anonymous with respect
to each other, i.e., they do not have to be known whether by number nor by identity or location.
The participants are therefore decoupled in time, space as well as in flow, and this threefold
decoupling represents a key to scalability (time decoupling: the interacting parties do not need

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



2 P.TH. EUGSTER ET AL.

to be up at the same time; space decoupling: the interacting parties do not need to know
each other; flow decoupling: information sending/receiving does not block the main thread of
control).

There are different established variants of the publish/subscribe interaction model, each
one presenting its respective advantages as well as shortcomings. The classical topic-based or
subject-based style involves a static classification of the messages by introducing group-like
notions [39], and is incorporated by most industrial strength solutions, e.g., [9, 45]. A more
recent alternative is content-based (property-based [42]) publish/subscribe [10, 43, 2]. The latter
removes entirely the “arbitrary” division of the message space, and lets consumers delineate
their individual interests by expressing properties of messages they wish to receive. However
it introduces an important overhead due to matching of the messages with the subscribers
criteria. In [15], we furthermore introduce a new variant, called type-based, which uses a
classification of message objects based on their type. These alternatives are very promising
and still being explored.†

Instead of emphasizing their differences, we bring all these variants to a common
denominator. To capture the variants of publish/subscribe, we propose a high-level abstraction
called Distributed Asynchronous Collection (DAC). A DAC differs from a conventional
collection by its distributed nature and the way objects interact with it: besides representing a
collection of objects (set, bag, queue, etc.), a DAC can be viewed as a publish/subscribe engine
of its own. In fact, when querying a DAC for objects fulfilling certain conditions, the client
expresses its interest in such objects. In other words, the invocation of an operation on a DAC
expresses the notion of future notifications and can be viewed as a subscription. The DAC
abstraction enables the unification of different publish/subscribe styles in a single framework.
The Distributed Asynchronous Computing Environment (DACE) can be seen as an extension
of a conventional collection framework, like JGL [34]. It is composed of a hierarchy of DAC
interfaces and classes, spanning multiple publish/subscribe variants and qualities of service. In
this paper we describe the protocols underlying the implementation of a DACE sample class,
which guarantees reliable delivery of events to all subscribers in spite of failures.

1.3. System and failure model

The protocols we use in DACE have been designed specifically to meet the properties of our
DAC programming abstraction, which means that they are targeted at large scale applications.
In that context, partitionings (in the context of this paper, we define partitioning as the
creation of at least two partitions, while a partition is a subset of the participating processes)
of the communication network is an extremely important aspect. It might result in service
degradation but it should not affect the liveness of an application. There are several partition
models in distributed group communication, like the primary-partition model (e.g., [6]), where
only processes in the partition that contains a majority of processes are allowed to make
progress. With the minority-partition or partitionable model (e.g., [26]), processes in multiple

†For brevity, these styles are not presented in detail in this paper.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 3

partitions progress even if they receive only a subset of the messages, increasing the availability
of the system.

In the context of this paper, we focus on a new failure model made-to-measure for
the strongly decoupled nature of publish/subscribe. It tolerates crash failures as well as
partitionings, and does not rely on a strongly consistent view shared by members, but
achieves its goal through an exchange of views that is strongly self-stabilizing in a sense
similar to the notion of self-stabilizing systems defined by Dijkstra [12]. The approach is
comparable to anti-entropy protocols [19, 40]. It is less restrictive than the majority-partition
and minority-partition models that rely on consensus, and requires less application support
than the partition-aware [4] model.

The Topic Membership protocol we present in this paper coordinates the local views of
participants of a topic in two phases. During the stabilization phase, participants exchange their
views. Eventually, they converge to the same view. Then, the participants are in a stabilized
phase. With the stabilization property and with partition information sharing, we are able to
realize a reliable broadcast in partitions on top of Topic Membership.

The reliable broadcast protocol for topic-based publish/subscribe called Topic Broadcast
that we present as an example, ensures that every subscriber eventually receives a message even
if the publisher or the subscriber, itself, has crashed or has been partitioned away temporarily.‡

In the stabilized phase, the protocol uses partition information to efficiently route messages.
During the stabilization phase, the protocol enables the sending of messages, although these
might not be delivered in an optimal manner.

1.4. Roadmap

The remainder of this paper is organized as follows. Section 2 gives an overview of our
publish/subscribe system focusing on topic-based publish/subscribe. Section 3 presents the
DACE framework and the underlying DAC programming abstraction. The system and failure
model we adopt are outlined in Section 4, which allows us to formally specify the lightweight
topic membership used in DACE in Section 5. As an example Section 6 illustrates our reliable
broadcast based on TopicMembership. In Section 7 we outline the implementation of our
framework and discuss some performance issues, and Section 8 contrasts our efforts with
related work. Finally Section 9 summarizes our work and concludes the paper.

2. OVERVIEW OF DACE

This section gives a general overview of our DACE framework for large scale communication.
DACE can be seen as a message-oriented middleware solution. It is inherently object-oriented,
and is used as a lightweight library. The different layers are shown in Figure 1 and introduced

‡Of course this is only provided if the publisher crashes after it finished publishing the message and the
subscriber eventually recovers.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



4 P.TH. EUGSTER ET AL.

Application

DAC

Topic Membership

Failure Detector

Topic Multicast/Broadcast

add() contains()

TR-broadcast()

TM-cast()

send()

receive()

TR-deliver()

TM-deliver()TM-ack() TM-updateView()

UDP

FD-updateChannelState()

remove() contains() ...

Figure 1. Layers

in a top-down order. They are presented in more detail in the following sections. As mentioned
above, we focus on topic-based publish/subscribe in the context of this paper.

2.1. The application layer

Applications using the DACE publish/subscribe framework basically interact with a DAC
(Distributed Asynchronous Collection). The add() method for instance enables the addition of
new objects to the collection, which comes to publishing new message objects. The interaction
scheme shown in Figure 1 illustrates the push model where subscribers are called back
(primitive notify()) upon incoming messages. However, DAC s offer a variety of possibilities
of interacting with them, as we will see in Section 3.

2.2. The DAC layer

This layer is composed of the classes that implement the API of the DAC programming
abstraction for publish/subscribe interaction. They are rather lightweight classes, which
delegate general functionality to the underlying layer. Their tasks are similar to centralized
container classes, i.e., they mainly take care of the local management of message objects.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 5

Section 3 explains in more detail how a DAC represents a topic in the context of topic-based
publish/subscribe.

The DAC applies a predefined threading model, by assigning notifications to threads. The
class we use as an illustration in this paper is the DAStrongSet class, which guarantees exactly-
once delivery semantics to a publisher. Published messages are passed to the underlying
broadcast layer through the TR-broadcast() primitive, and messages are received through
the TR-deliver() primitive.

2.3. The topic multicast/broadcast layer

This layer enables the multicast and broadcast of messages with different semantics to
the subscribers of a topic. While the Topic Broadcast enables the broadcast of messages
to all subscribers of a topic, the Topic Multicast is used in the context of content-
based publish/subscribe [15]. As depicted earlier, a subscriber can delineate its individual
requirements based on the properties of the messages. In such a scenario, a message must not
be broadcast to all subscribers, but only to a subset, which proves the need for a multicast
primitive. Section 6 gives an inside view of this layer focusing on broadcast issues.

Both broadcast and multicast come with reliable, stubborn [20] or simple (best-effort)
semantics. This layer also takes care of broadcasting subscription information if a subscriber
wants to join in or modify its subscription parameters. To send and receive messages, the
subscriber uses the primitives TM-cast() and TM-deliver() respectively. The upper layer
receives acknowledgements for successful message sends through TM-ack().

2.4. The topic membership layer

The Topic Membership layer maintains a local view of the present and reachable subscribers for
every given topic. The Topic Membership protocol is basically represented through the states
of communication channels with other participants. This layer receives channel state updates
either locally from the channel failure detector (FD) or externally from other processes, exactly
like information about subscriptions and unsubscriptions. This layer indicates membership
changes to the Topic Multicast/Broadcast layer with the primitive TM-updateView(), and
sends and receives messages through the primitives send() and receive() of the UDP layer.

2.5. The failure detector layer

The Channel Failure Detector layer is used to administer a network topology and define the
views of reachable subscribers. It is shared by several DAC instances hosted by the same
process. Channel state changes as perceived by the failure detector are advertised to the Topic
Membership layer through the FD-updateChannelState() primitive.

2.6. The UDP layer

Our entire publish/subscribe architecture is implemented on top of UDP. As conveyed
by its name, UDP is a non reliable protocol, which offers the looseness required for

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



6 P.TH. EUGSTER ET AL.

the decoupled nature of publish/subscribe. Our Java implementation of DACE uses the
standard Java classes for UDP sockets and datagrams (java.net.DatagramPacket and
java.net.DatagramSocket), which are pretty close to the metal. These classes are wrapped
into more powerful abstractions for communication channels (see Section 4).

3. DACE PROGRAMMING MODEL: A GENERAL SURVEY

This section gives a brief summary of our DACE (Distributed Asynchronous Computing
Environment) framework for publish/subscribe interaction. We start by presenting the
Distributed Asynchronous Collection (DAC) as programming abstraction, which enables the
capture of the different styles of publish/subscribe (topic-based, content-based, type-based)
without blurring their respective advantages. We then outline the interfaces related to topic-
based publish/subscribe, and we show an overview of the corresponding classes.

3.1. Distributed Asynchronous Collections

Like the group abstraction which has been widely used as a basic model for replication [6],
a topic enables the regrouping of several entities, which can thus be addressed atomically.
For a publisher (in the case of group-based systems one could refer to an invoker) the set
of subscribers appears as a single opaque entity, where subscribers remain anonymous to the
application. Thanks to its decoupled nature, the publish/subscribe interaction model is the
ideal way to express such one-to-many semantics at large scale.

3.1.1. DACs as object containers

Just like any collection, a DAC is an abstraction of a container object that represents a group of
objects. It can be seen as a means to store, retrieve and manipulate objects that form a natural
group. Unlike conventional collections or distributed collections described in [34] however, a
DAC is not centralized on a single host, in order to guarantee its availability despite certain
failures. In contrast, the distributed collections presented in [34] are centralized collections
that can be remotely accessed through Java RMI.

3.1.2. The asynchronous flavor of DACs

Our notion of Distributed Asynchronous Collection represents more than just a distributed
collection. In fact, a synchronous invocation of a distributed object can involve considerable
latency, hardly comparable with that of a local interaction. Therefore we enforce an
asynchronous interaction with our DAC s. By calling an operation of a DAC, one expresses an
interest in future notifications. According to the terminology adopted in the observer design
pattern [17], the DAC is the subject and its client is the observer. When querying a DAC for
objects of a certain kind, the party interacting with the DAC expresses its interest in such
objects. Therefore, when such an object is eventually “pushed” into the DAC, the interested
party is asynchronously notified.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 7

EPFL

m1 m2 m2

m1

Subscribe

Deliver

Publish
P S2S1

Publisher

Subscriber

P

Si
DSC

m1

Figure 2. Topic-Based Publish/Subscribe with DACs

3.1.3. Topic-based publish/subscribe with DACs

Expressing ones interest in receiving information of a certain kind can be viewed as subscribing
to information of that kind. By viewing event notifications as objects, a DAC can be seen as an
entity representing related event notifications. Clearly, if a collection is a set of somehow related
objects, a DAC can be seen as a set of related “events”. When considering the classical topic-
based approach to publish/subscribe, a DAC can be pictured as an extension of a conventional
collection but also as a representation for a topic.

Such a topic is denoted by a name, like “EPFL”. Topics can have specializations, or subtopics,
and connecting to a topic requires the name in a URL-type format. Typically, “/EPFL/DSC”
is a reference to the topic called “DSC” which is a subtopic of “EPFL”. Subscribing to a topic
can trigger subscriptions for the subtopics as well, as illustrated in Figure 2. Subscriber S1

subscribes to topic “EPFL” and claims its interest in all subtopics. Hence S1 does not only
receive message m2 but also message m1 published for topic “/EPFL/DSC”. In contrast, S2

only subscribes to “/EPFL/DSC” and thus does not receive message m2, which belongs to the
supertopic.

Unlike other existing publish/subscribe systems (e.g., [22]), our approach frees the
application programmer from the burden of marshalling and unmarshalling data into and
from dedicated messages. In our context, a message can be basically any kind of object. In
Java, this is expressed by allowing any object of class java.lang.Object to be passed as a
message.§

§In order to be conveyable, a Java object should furthermore implement the java.io.Serializable interface
[23], which contains no methods.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



8 P.TH. EUGSTER ET AL.

public interface DAC
extends java.util.Collection

{
public Object get();
public boolean contains(Object m);
public boolean add(Object m);
...
public boolean contains(Notifiable n);
...
public boolean containsAll(Notifiable n);
...
public boolean remove(Notifiable n);
...
public void clear(Notifiable n);
...

}

Figure 3. Interface DAC (Excerpt)

3.2. DAC interfaces

Figure 3 summarizes the main methods of the base DAC interface. More sophisticated interfaces
like the DASet all derive from this interface, but are omitted for the sake of brevity. We roughly
distinguish synchronous and asynchronous methods.

3.2.1. Synchronous methods

Since a DAC is in the first place a collection, the DAC interface inherits from the standard Java
java.util.Collection interface. The inherited methods are adapted, and we denote them
as synchronous. [15] gives more examples than shown here.

• get(). Similarly to a centralized collection, calling this method enables the retrieval of
objects. This implements the pull model. Which element will be returned depends on
the nature of the collection, as explained in [15].

• contains(Object m). A DAC is first of all a representation of a collection of elements.
This method enables the query of a collection for the presence of an object. Note that
in the context of topic-based publish/subscribe, an object that is contained in a DAC
belongs to (was published for) the topic represented by that DAC.

• add(Object m). This method enables the addition of an object to the collection. The
corresponding meaning for a DAC is straightforward: it allows to publish a message for
the topic represented by that collection.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 9

public interface Notifiable

{
public void notify(Object m, String topicName);

}

Figure 4. Interface Notifiable

3.2.2. Asynchronous methods

We have added several asynchronous methods to express the decoupled nature of
publish/subscribe interaction specific to DAC s. In these methods, asynchrony is expressed by
an additional argument, denoting a callback object which implements the Notifiable interface
given in Figure 4.

• contains(Notifiable n). The effect, for instance, of invoking this method is not
to check if the collection already contains an object revealing certain characteristics,
but is to manifest an interest in any such object, that is eventually pushed into the
collection. The interested party advertises its interest by providing a reference to an
object implementing the Notifiable interface, through which it will be notified of events.
There are different signatures for this method, among which certain enable for instance
the specification of a filter for content-based subscribing.

• containsAll(Notifiable n). This method offers the same signature(s) as the previous
method. The difference is that a subscription is generated for all subtopics of the topic
represented by this DAC. This conveys the situation of Figure 2.

• remove(Notifiable n). By calling this method, a subscriber does not trigger the
removal of an object already contained in the collection, but expresses its interest in
being notified whenever an object matching its criteria is inserted in the collection, after
which the object will be removed immediately. This expresses that a message is delivered
to one single subscriber only . This is frequently called one-for-all or one-of-n [45] in
contrast to one-for-each implemented by the two previous methods. Again there are
several signatures for this method.

• clear(Notifiable n). While the conventional argument-less clear() method enables
the erasure of all elements from the collection, this asynchronous variant expresses the
action of unsubscribing.

3.3. DAC classes

Our DACE framework consists of a variety of DAC s spanning different semantics and
guarantees, since different applications have different requirements. These semantics can be

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



10 P.TH. EUGSTER ET AL.

seen as different Qualities of Service (QoS). While some properties reflect in the interfaces,
others concern the implementing classes (see Figure 5). Among those parameters is the
delivery semantics of message objects “pushed” into the DAC. A related aspect is the possible
occurrence of duplicates. Other parameters are more related to collections, like the order of
storage, insertion or extraction of objects. We relate latter one to pull style interaction, and
therefore omit the details in this paper.

3.3.1. Delivery semantics

When a producer publishes a message, it does not directly interact with subscribers. The
details of the underlying multicast protocols are concealed, and might lead to different classes
implementing the same interface. The DASet (Distributed Asynchronous Set) interface for
instance is implemented by multiple classes. The first one does not offer more than plain
unreliable delivery (DAWeakSet), whereas others guarantee reliability (e.g., DAStrongSet).

3.3.2. Duplicates

Just like it is possible to have duplicate elements in centralized collections, it is possible in
DAC s that the same message is delivered more than once. The simple DAWeakBag class for
instance does not prevent a notification from being delivered more than once, whereas the
DAWeakSet class gives stronger guarantees by eliminating duplicate elements. This property is
orthogonal to other characteristics of our DAC s.

3.3.3. Storage vs. delivery order

Collections are often characterized by the way they store their elements. Sets or bags do not rely
on a deterministic order for their elements. Conversely, sequences can store their elements in an
order given explicitly or implicitly based on properties of the elements. In DAC s however, the
notion of space is somehow replaced by the notion of time. If some centralized collections reveal
a deterministic storage order, a distributed asynchronous sequence may offer a deterministic
ordering in terms of order of delivery to the subscribers. In the Java collection framework for
instance, a sorted set is a sequence which is characterized by an ordering of the elements based
on their properties. This can be seen as an implicit order. With our DAC s, an implicit order is
a global delivery order on which the DAC itself decides. The DASortedSet class for instance
presents a total order delivery. Inversely, a FIFO delivery order can be seen as an explicit
order: it is given by the order in which events are notified to the DAC by a publisher.

3.3.4. Insertion order

In different centralized collections, the insertion order may have an impact on the storage order.
A position can be given as an additional argument to an insertion into a list for instance. In an
asynchronous collection however, the order of insertion corresponds to the order of publishing.
It seems obvious that inserting an element at a specific position cannot translate to delivering
a message at a certain moment in time relative to other messages: when inserting a message

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 11

Reliable?

Duplicates?

Criteria?

DAWeakSetDAWeakBag

Duplicates?

Ordering?

DAStrongSetDAStrongBag

Duplicates? Duplicates?

DASortedSetDASortedBagDAListDAArray

Best-effort At-most-once

At-least-once Exactly-once

At-least-once
FIFO

Exactly-once
FIFO

At-least-once
Total Order

Exactly-once
Total Order

Yes Yes

Yes

YesYes

No

No

No

No No

NoYes

ImplicitExplicit

DACollection

Figure 5. DACE Framework Classes

m at the beginning of a list, m would have to be sent before messages that have possibly
already been delivered to subscribers. Therefore there is never any explicit argument for the
order when “inserting” a new element into a DAC.

4. DACE SYSTEM MODEL

In order to describe the protocols used for the implementation of DAC classes and to prove
their correctness, we first introduce the underlying system and failure model. We adopt a
notation and a terminology similar the one introduced in [11]. We consider asynchronous
message-passing distributed systems in which there is no bound on message delay, relative
speed of processes, or the time necessary to execute a step.

The system is always considered with respect to a topic, since every topic is managed
separately. The system consists of a finite set of processes or topic participants. A participant
can act as publisher, subscriber, or as both for a given topic. It is then said to be a participant
for that topic. A process can incorporate participants for several topics (it can participate
in several topics). Our communication layer based on UDP implements (virtual) channels

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



12 P.TH. EUGSTER ET AL.

connecting pairs of participants, and furthermore offers the primitives send() and receive()
(see Figure 1) for sending and receiving messages over them.¶ We use a discrete global clock
whose range ticks T is the set of natural numbers. This notation is used to simplify presentation
and not to introduce time synchrony since participants cannot access the global clock.

4.1. Participants

A topic involves a finite ordered set of n topic participants τ = {p1, p2,..., pn}. A participant
p has a unique identifier denoted p-id(p), and identifiers are ordered. We do not consider
byzantine failures, i.e., participants do not behave maliciously. Participants can fail by crashing
and may recover later. Formally: a failure pattern F (t) of a topic is a function from T to 2τ ,
where F (t) denotes the set of participants for that topic that do not run at time t. We say that
participant p is up at time t (in F) if p �∈ F (t), and p is down at time t (in F) if p ∈ F (t). We
state that p crashes at time t if p is up at time t-1 and p is down at time t. We can induce that
p recovers at time t ≥ 1 if p is down at time t-1 and p is up at time t. We define Correct(t) as
the set of participants that are up at time t.

4.2. History

At each clock tick, each participant p performs an event chosen from a set S. Set S includes
at least the null event (denoted as ε) and the sendp and receivep events, corresponding to the
primitives send() and receive() depicted above. The global history of a run of a distributed
algorithm is a function σ from τ × T to S. If a participant p executes an event e ∈ S at time
t, then σ(p, t) = e. If p executes no specific event at t, then σ(p, t) = ε.

4.3. Channels

A participant p sends a message m to a participant q with the event sendp(m,q), and receives
a message m from q through the event receivep(m,q).

A communication channel between participant p and q is bidirectional but not FIFO (i.e.,
messages can be lost, duplicated, or unordered). If communication is possible from p to q at
time t, then p →t q. A channel between p and q is said to be open at time t if the connection
between p and q is open on p and on q at time t, and communication is possible in both
directions. We denote this property p ↔t q. Intuitively, p ↔t q ⇔ p →t q ∧ q →t p. In any
other case, a channel is closed at time t (p �↔t q). We assume that communication channels
satisfy the following properties (which are formally proven in Appendix 2):

• Eventual Symmetry. If communication is possible from p to q, unless p or q crashes or
they are partitioned, communication is eventually possible from q to p. Formally,

¶To make the model more comprehensible, two participants p and q each participating in topics x and y
communicate through two distinct channels with each other; one for each topic. The implementation saves
resources by using a single channel.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 13

m m Deliver

Publish
P3P2

Participant iPi

Topic x

P1
Subscribe

Figure 6. Partitions in a Topic

∃t0, ∀t ≥ t0 : p →t q ⇒ ∃t1, ∀t′ ≥ t1 : q →t′ p

• Fairness. If p ↔t q, only one sendp(m,q) from p is required for q to eventually receive
m. This property can be guaranteed since our channels transparently resend messages
as long as these have not been acknowledged by the recipient. Formally,

∀t : p →t q ∧ σ(p, t) = sendp(m,q) ⇒ ∃t0 ≥ t : σ(q, t0) = receiveq(m,p).

4.3.1. Channels and partitionings

Closed network links create communication failures which may partition the network. We
assume that network partitions are only temporary and will be repaired eventually. We
introduce the notion of topic partitioning as the effect of a network partitioning of the
(sub)system composed of the participants of a topic. Figure 6 shows a simple scenario of
a partitioned topic. Participants p1 and p2 can very well communicate, while p3 is isolated
from them. The sets {p1, p2} and {p3} represent partitions, since they have no means of
communicating with each other.

Communication links fail and recover more often than participants, and transitivity is not
assured. As an example, we might have for a given t p1 →t p2 and p2 →t p3, but p1 �→t p3.

4.3.2. Definitions

We define Openp(t) as the set of all open channels of p at time t, and Closedp(t) which denotes
all closed channels of p at time t. Consequently, Openp(t) ∩ Closedp(t) = ∅. Furthermore, we
define:

Can Communicate With. Holds true at time t for p and q if there is a sequence of participants
p = p0,...,pl+1 = q such that ∀i ∈ [0, l], pi ↔t pi+1.‖ We denote this relation by p ❀t q. This

‖In fact, →t is sufficient to guarantee this property.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



14 P.TH. EUGSTER ET AL.

relation indicates whether participant q can be reached by participant p at time t or not. If p
cannot reach q, we will denote it as p �❀t q.

Causal Message Chain. A causal message chain from p to q between t0 and t1 , noted
�p,q(t0, t1), is a causal sequence of messages m0,...,ml and a sequence of participants p =
p0,...,pl+1 = q such that: ∀i ∈ [1, l] ∃ti0 < ti1 : σ(pi, ti0) = receivepi(mi−1, pi−1), σ(pi, ti1) =
sendpi(mi, pi+1) and ∃tp, tq ∈ [t0, t1]: σ(p, tp) = sendp(m0, p1) and σ(q, tq) = receiveq(ml, pl).

4.4. Topic stability and partition

As described previously, communication channels can crash and recover. Topic Stability
describes a stable state of the communication channels, while Topic Partition represents the
partitioning of the system composed of the participants for a topic.

4.4.1. Topic stability and minimal topic stability

The state of the communication channels of a topic is stable from time t on, if the states of all
communication channels between all participants of the topic do not change. In other words,
all communication channels that are open at t0 stay open and all communication channels that
are closed at t0 stay closed. Formally,

∀t ≥ t0, ∀p ∈ τ , Openp(t) = Openp(t0) ∧ Closedp(t) = Closedp(t0).

However, it is very unrealistic that a system remains stable forever. We derive from topic
stability, a less restrictive property called minimal topic stability that assures stability for a
certain period sufficient for a causal message chain to be established between every pair of
participants in the system.∗∗ Formally,

∃t0, t1, ∀t ∈ [t0, t1], ∀p ∈ τ , Openp(t) = Openp(t0) ∧ Closedp(t) = Closedp(t0) ∧
∀(p, q) ∃ �p,q(t0, t1).

4.4.2. Topic partition

For a stable state of the communication channels, the relation ❀ defines an equivalence relation
on the set of correct participants. The equivalence classes are called partitions. The partition
of a participant p (the partition in which p is) at time t is denoted partition(p,t).†† We can
now define a partition pattern function P from τ × T to 2τ , where P(p,t) indicates at time t
the set of participants that are not in the same partition as p. Formally, P (p, t) = {q | p �❀t q}.
If Figure 6 represents the situation for topic x at time t0, then P (P3, t0) = {P1, P2}.

∗∗To simplify, we could also require a message to be exchanged between every pair of participants. However,
the total number of messages sent would be greater or equal than with the causal message chain approach.
††If p ∈ F(t) then partition(p,t) = ∅.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 15

5. TOPIC MEMBERSHIP
We have designed the protocols underlying our implementation of DACE to manage
partitioning as well as crashes. The marriage of large scale, high throughput and fault tolerance
has led us to consider weak consistency protocols. This section presents Topic Membership,
which can be viewed as a lightweight membership protocol for the participants of a topic.
First, we introduce our notions of topic view and stable topic view. We then describe our
Channel Failure Detector and its properties. Finally, we formally define our notion of Topic
Membership.

5.1. Views

Topic Membership is a weakly consistent membership notion which is different from the
traditional notion of group membership [39]. Approaches like virtual synchrony [7] offer strongly
consistent views, but do not scale well. Our notion of view is less restrictive, i.e., there is no
explicit agreement on views. We distinguish between two kinds of views: the topic view and
the stable topic view. In fact, the system can be viewed as a sequence of alternations of stable
and unstable (stabilization) phases. Latter ones begin with the occurrence of failures, and may
result in differences in local views. Eventually, the views of the participants inside a partition
converge to a stable topic view.

5.1.1. Topic view

The topic view corresponds to the local participant view for a topic and reflects the
participant’s perception of reachable and present participants. These views resemble the views
defined by [4] by being concurrent. A topic view is bound to a single topic, and a process which
participates in different topics maintains separate views for each topic. Note that subtopics are
handled like independent topics, which implies that a topic view is required for each (sub)topic.

5.1.2. Stable topic view

Once the system is in a stable phase and views of the participants inside the partition have
converged, the participants are said to have reached a stable topic view. To achieve a stable
topic view, the system must undergo minimal topic stability.

A stable topic view stv represents a set of participants. stview(p, t) represents the last stable
topic view that was reached by p before time t. If stvj succeeds stvi at p, then stvi ≺p stvj .
Formally,

∃t0 ≤ t1 ≤ t2, ∀t ∈ [t0, t2] : Openp(t) = Openp(t0) ∧ Closedp(t) = Closedp(t0) ∧
∀(p, q) ∃ �p,q(t0, t1) ⇔ ∃ stv, ∀t′ ∈ [t1, t2] : stview(p, t′) = stv.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



16 P.TH. EUGSTER ET AL.

5.2. Topic channel failure detector

Each participant p has access to a local failure detector module which outputs hints about the
closed channels of p with other participants. The topic channel failure detector history CH is
a function from τ × T to 2τ that outputs the closed channels of the participant. Formally,

q ∈ CH(p, t) ⇔ p �→t q; q �∈ CH(p, t) ⇔ p →t q.

We assume that the topic channel failure detector is perfect with respect to our (virtual)
channels. A channel loss due to a failure in the network is always detected eventually. If the
failure affected the existing connection, but the network still offers a correct physical path
between the participants, the channel will be re-established. The same action takes place in
the case of false suspicion. During such glitches, the system is considered being in an unstable
phase.

5.3. Topic membership specification

As explained previously, a topic view represents a participant’s view of all participants of a
topic at any moment. We have shown that when the system is stable long enough to satisfy
minimal stability, the views of all participants of a topic inside a partition (or the entire system)
are identical. The view becomes stable, and is hence called stable topic view. In contrast to
[4], which specifies a membership based on properties of local views, we specify our Topic
Membership by properties of stable topic views, and do not consider inconsistent views, since
these correspond to unstable phases.

(TM1) Stable Topic View Agreement. If participant p reaches stable topic view stv1 and its
immediate successor stv2, both containing q, then p reaches stv2 after q reached stv1. Formally,

∀p, q, stv1, stv2 : stv1 ≺p stv2 ∧ p, q ∈ stv1 ∩ stv2 ∧ ∀t ∈ [t0, t1], sview(p,t) = svt1 ∧
∀t′ ∈ [t2, t3], sview(q,t’) = svt1 ⇒ t2 < t1.

(TM2) Stable Topic View Accuracy. If p ❀ q holds forever, then eventually when the system
reaches stable topic view stv, p and q eventually have the same view. Formally,

∃t0, ∀t ≥ t0 : p ❀t q ⇒ ∃t1, ∀t′ ≥ t1 : sview(p,t’) = sview(q,t’).

(TM3) Stable Topic View Completeness. If all processes q in some partition Ω hold p �❀ q
forever, then eventually when the system reaches stable topic view, p will not have any processes
q ∈ Ω in its stable topic view. Formally,

∃t0, ∀q ∈ Ω, ∀p �∈ Ω, ∀t ≥ t0 : p �❀t q ⇒ ∃t1, ∀t′ ≥ t1 : sview(p, t′) ∩ Ω = ∅.

(TM4) Stable Topic View Integrity. Every participant p that reaches a stable topic view is
included in that stable topic view. Formally,

∀p, t : p ∈ sview(p, t).

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 17

6. TOPIC RELIABLE BROADCAST

This section sketches the properties of our Topic Reliable Broadcast protocol, which is used
to efficiently and reliably multicast messages despite partitionings. Topic Reliable Broadcast,
hereafter called TR Broadcast, is based on Topic Membership, and enables the broadcasting
of messages to all subscribers of a topic. The realization of the DAStrongBag class, shown in
Figure 5, is based on this protocol. The simplified algorithm is given in Appendix 1.

6.1. Specification of TR broadcast

We recall the properties of reliable broadcast (in the sense of [11]). It guarantees that (a)
all correct processes deliver the same set of messages, (b) all messages broadcast by correct
processes are delivered and (c) no spurious messages are ever delivered. These properties can be
transposed to partitioning and topics. Formally, our notion of TR Broadcast (Topic Reliable
Broadcast) is based on the two primitives TR-broadcast and TR-deliver, which satisfy the
following properties:

(a) Validity. If a correct publisher p TR-broadcasts a message m, then unless p crashes, a
correct subscriber eventually TR-delivers m.

(b) Agreement. If a correct subscriber s TR-delivers a message m, then all correct subscribers
eventually TR-deliver m.

(c) Uniform Integrity. For any message m and any subscriber s that TR-delivers m, s TR-
delivers m at most once and only if m was previously TR-broadcast by publisher(m).

6.2. General concepts

The overall goal of TR Broadcast is to ensure that a message broadcast by a publisher reaches
all subscribers of the topic. For that purpose, we require the knowledge of identifiers of the
received messages of each participant. We introduce here the general concepts of our algorithm.

6.2.1. Messages

Each application message m has a unique identifier, denoted m-id(m). Messages are composed
of two fields. The data field carries application messages. The control field carries updates of
the states of the communications channels (see Section 7 for more details) as well as identifiers
of received messages for every participant. These acknowledgements are used especially for
garbage collection. By piggybacking them with other messages we reduce the overall network
traffic.

6.2.2. First participant

When a participant p receives a message m, it tries to determine for every neighbour participant
q with which it has a channel if it is the participant with the lowest identifier that has received
m and has a channel with q. If these conditions are fulfilled, p will forward m to q. This reduces
the amount of redundant message transfers, without violating the Agreement property. For a

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



18 P.TH. EUGSTER ET AL.

participant q and a message m, there is only one first participant p in the whole system which
will send m to q.‡‡

6.2.3. Check & forward

In the case of remerging partitions, participants who were in different partitions must exchange
the messages they have delivered in the meantime. Therefore, upon changes in the state of
communication channels, participant p checks for every participant q which messages p has
received and q has not acknowledged to p. Process p then forwards every such m to q if p is
first participant of q with respect to m. This way, we ensure that all messages are received
eventually despite unstable phases.

6.2.4. Subscriptions and unsubscriptions

When a process wants to subscribe to a topic, it must know at least one participant p,
which will reliably broadcast a subscription request vicariously for the new participant q.
Participant q will receive all messages that p receives after q’s subscription request. When
unsubscribing, a participant reliably broadcasts an unsubscription request, which guarantees
that every participant will receive it. Note, that neither the subscription nor the unsubscription
of a participant requires any agreement protocol.

7. IMPLEMENTATION

This section depicts some implementation issues of DACE and illustrates the performance of
TR Broadcast. This gives an idea of the overall efficiency of our protocols.

7.1. Topic network knowledge

We call topic network knowledge the information that a participant p has about the states
of all channels between participants of the topic. To learn about the states of all channels
connecting participants of the topic, participants must exchange their information.

7.1.1. Topic channel state

The information p has about all the channels between participants of the topic are stored in
a n × n matrix called channelStatep. The value of channelStatep[q, r] represents the state
of the channel between q and r (q → r) as assumed by p. The matrix channelStatep is
divided in n channelState vectors, each corresponding to a line of the channelStatep matrix.
channelStatep(q) is the q-th channelState vector of participant p. It represents p’s view of the

‡‡In fact, there is exactly one in stable phases. In unstable phases, there might be more than one.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 19

P4P3

P2P1

(a) Link Status

p1

p1 p2 p3 p4

p2

p3

p4

(b) channelState

Figure 7. channelState derived from the Link Status

channels q has all with other participants. A logical timestamp tsp(q) is associated with each
channelStatep(q). Figure 7 shows a typical channelState matrix in a stable system where all
participants share the same channelState; × means that the link is closed or does not exist
and © that the link is open.

7.1.2. Propagation of knowledge

When participant p sends a message m to q, p checks if channelStatep has changed since the
last message sent to q. This happens whether p actually published the message itself or only
forwards it. Message m piggybacks the updated channelStatep (with the associated updated
timestamps). When q receives m from p, q compares all received timestamps and replaces all
channelState vectors that are older. In the absence of application messages, each participant
p periodically sends its own channelStatep matrix to a randomly picked neighbour (gossip).
The receiver q updates its own channelStateq matrix, and sends its more up-to-date values to
p. This keeps the channelStates from diverging when no messages are published for a certain
time. When participant p receives a message from a new participant, p increases the size of
channelStatep.

7.2. Performance

We give here performance measurements of our prototype which were made on two LANs
interconnected by Fast Ethernet (100MB/s) on normal working days. The first LAN consisted
of 60 SPARCstation 20 (model 502: 2 SuperSPARC CPU, 64Mb RAM, 1Gb Harddisk)
machines, and the second one of 60 UltraSUN 10 (256Mb RAM, 9 Gb Harddisk) machines.
All stations were running Solaris 2.6, and DACE was running on Solaris JVM (JDK 1.2.1.,
native threads, JIT). The message objects were of a size of 1Kb in serialized form. Figure 8(a)

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



20 P.TH. EUGSTER ET AL.

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 10 20 30 40 50 60 70 80 90 100

th
ro

u
gh

p
u

t [
m

sg
/s

]

# of participants

Unreliable
Reliable

(a) Unreliable vs Reliable Topic Broadcast

45

50

55

60

65

70

75

80

85

90

95

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n

t o
f 

m
es

sa
ge

s 
se

n
t d

el
iv

er
ed

# of participants

(b) Unreliable Topic Broadcast Loss Rate

Figure 8. Performance of Unreliable and Reliable Topic Broadcast

summarizes the results of the throughput measurements and compares TR Broadcast with
an unreliable broadcast in a topic. Figure 8(b) shows the percentage of sent messages that
are delivered by the unreliable broadcast algorithm. The complete results can be found in
Appendix 3.

As conveyed by the measurement results, the performance of TR Broadcast remains stable
over an increasing number of participants. After 100 participants, the performance varies
very little. On the other hand, the performance of the unreliable broadcast is less stable. It is
limited by the overall performance of the network, which can be seen by the quickly decreasing
throughput. When the number of participants exceeds 100, the two curves converge, since the
TR Broadcast protocol reaches the limits of the network earlier.

8. RELATED WORK

In the past few years, the need for effective large scale multicast interaction schemes and
protocols have been widely recognized and much effort has therefore been invested in this
domain. A multitude of approaches have emerged from academic as well as industrial
researches. We present here the main characteristics of these approaches and we compare
them with our Distributed Asynchronous Computing Environment.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 21

8.1. Publish/subscribe messaging systems

In order to integrate the publish/subscribe communication style into existing middleware
standards, specifications have been conceived by both the Object Management Group [36]
and Sun [22, 1, 8]. The OMG’s CORBA service for publish/subscribe-oriented communication,
called the CORBA Event Service, is based on the notion of event channels. These channels
are denoted by names, and basically incorporate topics. In all implementations we know
about, channels are centralized components and therefore manifest a strong sensitivity to any
component failure, which makes them unsuitable for critical applications. The Java Messaging
Service [22] is a specification from Sun. Its goal is to offer a unified Java API around common
publish/subscribe engines. Certain existing services implement the JMS, but to our knowledge
no publish/subscribe system has been implemented with the mere goal to support the JMS
API directly. Its generic nature, required in order to match a maximum number of existing
systems, appears to be rather cumbersome. Other specifications from Sun are more aimed at
particular environments, like the Java Distributed Event Specification [1] in the context of Jini
and the InfoBus 1.2 Specification [8] describing an information bus for dynamic data exchange
between JavaBeans.

Established industrial strength solutions, like TIB/Rendezvous [45] or Smartsockets [9]
tolerate crash failures by applying entity redundancy, and Smartsockets even take network
failures into account. Nevertheless, even though such solutions might offer fault tolerance,
they provide a rather complicated programming model.

Systems like Siena [10], Elvin [43] or Gryphon [2] provide a flexible programming model
with content-based capabilities. These solutions however focus on the effective dissemination
of information, without sufficiently addressing fault tolerance.

JGL [34] was designed to provide a more advanced series of collections, since the Java
environment by default only offers limited support for data collections and algorithms. JGL
extends the basic Java collections with more refined types. The notion of distributed collection
in JGL though describes a centralized collection object, accessible through Java RMI. This is
especially prone to failures, while DAC s are especially designed for fault tolerance.

Clearly, none of these solutions provides a generic approach to publish/subscribe interaction.
DACE introduces an easy to use high-level programming abstraction which enables the
grouping of different styles without blurring their advantages. At the same time, our framework
blends these different publish/subscribe variants with a multitude of QoS among which certain
offer strong reliability guarantees without penalizing efficiency. This allows for instance to easily
realize a JMS-compliant service on top of DAC s. Inversely, DAC s could, to some extent, also
be build on top of a JMS implementation. In particular, the selector concept in JMS could be
used to express the content-based features of DAC s [16], and the generally weak specification
of JMS would enable the translation of QoS and subtopics in DAC s (the JMS Destination
is represented by an empty interface).

8.2. Network partition models

Several partition models have emerged, advocated by different types of applications. The
requirement for strong consistency, for instance in database or file system applications [18], has

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



22 P.TH. EUGSTER ET AL.

driven an approach where services have to be suspended completely in all but one partition
that contains a majority of processes. This is known as following the primary-partition model,
adopted for instance by Isis [6], Amoeba [27], [33], or [41]. The overhead introduced by strong
consistency is not well adapted to large scale, and such systems might block as long as the
majority condition is not satisfied. Furthermore, members of minority partitions are forced to
quit applications.

Applications relying on mobile units or wireless links as well as application at large scale are
forced to consider more than one partition; they often follow the minority-partition model
(or partitionable model). Partitions occur when units are deliberately (or unintentionally)
unplugged from the network. Applications such as the Coda [26] or the Ficus file systems
[38], and Rover [25] rely on that model, and furthermore apply to large scale. In contrast to
the previous model, this class of applications must be able to make progress without blocking
even under numerous partitions.

[4] introduces partition-aware applications. The system provides the necessary hooks such
that the application itself decides which of its services will be available in each partition and
at what QoS levels. Total order delivery is possible in concurrent partitions, and the states of
the objects in different partitions are merged when the partitions remerge [32]. This however
forces the applications to offer such merging facilities, which constitutes a non-trivial issue.

Recently, many attempts have been made to formalize a specification of a partitionable
group membership in asynchronous systems. [4] presents a formal specification for partitionable
group membership and its algorithms. Another known attempt is [13]. Systems such as Horus
[46], Transis [14], or Totem [31] manage minority-partitions. They handle concurrent views
in different partitions. The membership incorporated by those approaches however introduces
important overheads in order to guarantee a consistency which is too strong for our case.

The model underlying our environment differs from the above proposals in many aspects.
First, our model is based on an unreliable datagram transport. Second, the Topic Membership
model is less restrictive in the sense that no consensus is required and it does not enforce view
changes. Third, most of these system models (primary-partition and minority-partitions) are
applied to local area networks and do not scale well to wide area networks. The partition-aware
model is aimed at large scale, but requires considerable support from the application for the
state merging of participants who were partitioned. It is aimed at more specific applications,
like replication, while DACE is a generic messaging system, in which we do not consider
“states” of participants.

9. SUMMARY AND CONCLUSIONS

Current research in the context of distributed computing encompasses two major and often
separated trends: distributed algorithms and distributed programming models. The first trend is
strongly guided by the development of sophisticated protocols for a multitude of semantics or
QoS based on a variety of different systems and failure models. As an example, the need
for multicast primitives tailored to large scale environments, like the Internet, has been
recognized and has led to a variety of protocols with diverse semantics. Such protocols are
often developed without considering the look-and-feel in which they will be enclosed, i.e., the

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 23

actual programming model. Applications that want to benefit from such facilities are hence
bound to rather primitive and unwieldy services which are close to the metal.

On the other hand, the practice of distributed computing models is largely driven by
the desire of handling distribution as an implementation issue, i.e., all aspects related to
distribution are hidden behind traditional centralized constructs. This has led to a variety
of so-called “object-oriented middleware” solutions, which promote objects as “autonomous
entities communicating via message passing”. One fundamental idea behind this is the illusion
to be able to reuse, in a distributed context, a centralized program that was designed and
implemented without distribution in mind.

As argued in [47, 29, 21], distribution transparency is a myth that is both misleading and
dangerous. Distributed interactions are inherently unreliable and often introduce significant
latency that is hardly comparable to that of local interactions. The possibility of partial failures
can fundamentally change the semantics of an invocation. High availability and masking of
partial failures involves distributed protocols that are expensive and hard to implement in
the presence of network partitions. Conventional protocols might conform well to local area
networks, but scale poorly. Another important mismatch lies in the missing support for one-
to-many invocations in middleware based on client/server-like interactions.

We have been considering an approach that bridges the gap between the two trends:
(1) distributed protocols and (2) distributed programming models. In our approach the
programmer is aware of distribution but the ugly and complicated aspects of distribution
are encapsulated inside a specific abstraction with a well-defined interface. The Distributed
Asynchronous Collection [15] is such an abstraction. It is a simple extension of the well-
known collection abstraction. DAC s add an asynchronous and distributed flavor to traditional
collections [5], and enable the expression of various forms of publish/subscribe interaction. The
Distributed Asynchronous Computing Environment we present in this paper is a framework for
large scale event dissemination based on DAC s, and can be viewed as a middleware solution
for publish/subscribe interaction.

We define an adequate underlying system and failure model for the implementation of our
DAC s. This allows us to seamlessly weave programming models and underlying protocols,
instead of just gluing them together. This paper exemplifies this by presenting the realization of
a DAC class for topic-based publish/subscribe from bottom to top, i.e., from the system model
all the way up to the resulting programming abstraction and its interface. The DAStrongSet
class used as an illustration, guarantees reliable event delivery to all subscribers of a topic,
and demonstrates our underlying partitioning model made-to-measure for loosely coupled
interaction at large scale. Our model is less restrictive than majority-partition, minority-
partition or partition-aware, but nevertheless guarantees a useful reliability.

The Topic Membership protocol we present in this paper is a lightweight membership
protocol for topics. It was guided by our programming model, namely DAC s. It handles
network partitions in asynchronous distributed systems. It makes no assumption on the
network used to transport messages, except that it must guarantee the absence of byzantine
failures, i.e., processes do not behave maliciously. The Topic Reliable Broadcast protocol
provides a reliable broadcast for topic-based publish/subscribe, under the assumption that
partitions will eventually remerge. A subscriber will eventually receive the message even if
the publisher was partitioned away temporarily. The number of messages sent is minimized

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



24 P.TH. EUGSTER ET AL.

in stable phases by using the first participant function. We have also made broad use of an
augmented version of that function for our multicast protocol [3].

REFERENCES

1. K. Arnold and B. O’Sullivan and R.W. Scheifler and J. Waldo and J. Wollrath. The Jini Specification.
Addison Wesley, 1999.

2. G. Banavar and T. Chandra and B. Muhkerjes and J. Nagarajarao and R.E. Strom and D.C. Sturman.
An Efficient Multicast Protocol for Content-based Publish-Subscribe Systems. In Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems (ICDCS-99).

3. R. Boichat and L. Duchien. Reliable Broadcast and Multicast tolerant to partitions. In Proceedings of
the 11th IASTED International Conference on Parallel and Distributed Computing and System, Boston,
USA, 1999.

4. Ö. Babaoǧlu and R. Davoli and A. Montresor and R. Segala. System Support for Partition-Aware Network
Applications. Technical Report UBLCS 97-08, Department of Computer Science, University of Bologna,
1997.

5. J.-P. Briot and R. Guerraoui and K.-P. Löhr. Concurrency and Distribution in Object-Oriented
Programming. In ACM Computing Surveys, September 1998.

6. K.P. Birman. The Process Group Approach to Reliable Distributed Computing. In Communications of
the ACM, 36(12):36-53, December 1993.

7. K.P. Birman and T. Joseph. Exploiting Virtual Synchrony in Distributed Systems. In Proceedings of the
11th ACM Symposium on Operating Systems Principles, pages 123-138, 1987.

8. M. Colan. InfoBus 1.2 Specifications. Sun Microsystems Inc., February 1999.
9. Talarian Corporation. Everything You need to know about Middleware: Mission-Critical Interprocess

Communication (White Paper). http://www.talarian.com/, 1999.
10. A. Carzaniga and D.S. Rosenblum and A.L. Wolf. Design of a Scalable Event Notification Service: Interface

and Architecture. Technical Report, Department of Computer Science, University of Colorado, 1998,
http://www.cs.colorado.edu/ carzanig/papers/.

11. T.D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed Systems. Journal of
the ACM, 43(2):225-267, 1996.

12. E.W. Dijkstra. Self-stabilizing Systems in spite of Distributed Control. Communications of the ACM,
17:643-644, 1974.

13. D. Dolev and D. Malki and R. Strong. A framework for partitionable membership service. In Proceedings
of the 15th ACM Symposium on Principles of Distributed Computing (PODC-96), Philadelphia, PA, USA,
1996.

14. D. Dolev and D. Malki. The Transis Approach to high-availability cluster communication.
Communications of the ACM, 39(4), april 1996.

15. P.T. Eugster and R. Guerraoui and J. Sventek. Distributed Asynchronous Collections: Abstractions
for Publish/Subscribe Interaction. In Proceedings of the 14th European Conference on Object-Oriented
Programming (ECOOP-00), pages 252-276, june 2000.

16. P.T. Eugster and R. Guerraoui Content-Based Publish/Subscribe with Structural Reflection. To appear
in Proceedings of the 6th Usenix Conference on Object-Oriented Technologies and Systems (COOTS-01),
january 2001.

17. E. Gamma and R. Helm and R. Johnson and J. Vlissides. Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

18. H. Garcia-Molina and S.B. Davidson and S. Skeen. Consistency in partitioned networks. ACM Computing
surveys: 17(3):341-370, 1985.

19. R. Golding. . A weak-consistency architecture for distributed information services. Computing Systems,
5(4):179-205, 1992.

20. R. Guerraoui and R. Oliveira and A. Schiper. Stubborn Communication Channels. Technical Report,
Ecole Polytechnique Fédérale de Lausanne, 1997.

21. R. Guerraoui. What object-oriented distributed programming does not have to be, and what it may be.
In Informatik, 2, April 1999.

22. M. Happner and R. Burridge and R. Sharma. Java Message Service. Sun Microsystems Inc., October
1998.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 25

23. Sun Microsystems Inc. The Java Platform 1.2 API Specification. http://java.sun.com/products/jdk/1.2/,
1999.

24. Sun Microsystems Inc. The Java Collections Framework. http://java.sun.com/products/jdk/1.2/, 1999.
25. A.D. Joseph and A.F. deLespinasse and J.A. Tauber and D.K. Gifford and M.F. Kaashoek. Rover: A

toolkit for mobile information access. In Proceedings of 15th ACM Symposium on Operating Systems
Principles (SOSP-95), pages 156-171, 1995.

26. J.J. Kitsler and M. Satyanarayanan. Disconnected Operation in the Coda File System. ACM Transactions
on Computer Systems, 10(1):3-25, 1992.

27. M.F. Kaashoek and A. Tanenbaum. Communication in the Amoeba distributed Operating system. In
Proceedings of 11th IEEE International Conference on Distributed Computing Systems (ICDCS-91), pages
222-230, 1991.

28. C. Labovitz and A. Ahuja and F. Jahanian. Experimental Study of Internet Stability and Wide-Area
Backbone Failures. Technical Report CSE-TR 382-98, Department of Eletrical Engineering and Computer
Science, University of Michigan, 1998.

29. D. Lea Design for open systems in Java. In Second International Conference on Coordination Models
and Languages, 1997. http://gee.cs.oswego.edu/dl/coord/.

30. Microsoft Co. DCOM Technical Overview (White Paper), 1999.
31. L.E. Moser and P.M. Meillar-Smith and D.A. Agarwal and R.K. Budhia and C.A. Lingley-Papadopoulos.

Totem : A Fault-Tolerant Multicast Group Communication System. Communications of the ACM, 39(4),
1996

32. A. Montresor. Jgroup. Phd Thesis, University of Bologna, 2000.
33. S. Mishra and L. Peterson and R. Schlichting. A membership protocol based on partial order. In

Proceedings of the International Workshop on Parallel and distributed Algorithms, pages 137-145, 1991.
34. ObjectSpace. JGL - Generic Collection Library. http://www.objectspace.com/products/jgl/, 1999.
35. OMG. The Common Object Request Broker: Architecture and Specification. February 1998.
36. OMG. CORBAservices: Common Object Services Specification. December 1998.
37. B. Oki and M. Pfluegl and A. Siegel and D. Skeen The Information Bus - An Architecture for Extensible

Distributed Systems. In Proceedings of the 14th ACM Symposium on Operating System Principles, pages
58-68, December 1993

38. G. Popek and R. Guy and T. Page and J. Heidemann. Replication in Ficus Distributed file systems. In
the Workshop on Management of Replicated Data, pages 5-10, 1990.

39. D. Powell. Group Communications. In Communications of the ACM, 39:4, pages 50-97, April 1996.
40. K. Petersen and M.J. Spreitzer and D.B. Terry and M.M. Theimer and A.J. Demers. Flexible Update

Propagation for Weakly Consistent Replication. In Proceedings of the 16th ACM Symposium on Operating
Systems Principles (SOSP-97), pages 288-301, 1997.

41. A.M. Ricciardi and K.P. Birman. Using Process Groups to Implement Failure Detection in Asynchronous
Environments. In Proceedings of the 10th ACM Symposium on Principles of Distributed Computing
(PODC-91), pages 341-352, 1991.

42. D. Rosenblum and A. Wolf. A Design Framework for Internet-Scale Event Observation and Notification. In
Sixth European Software Engineering Conference/ACM SIGSOFT Fifth Symposium on the Foundations
of Software Engineering, September 1997.

43. B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service with
quenching. In Proceedings of the Australian UNIX and Open Systems User Group Conference (AUUG-97),
1997.

44. Sun Microsystems Inc. Java Remote Method Invocation - Distributed Computing for Java (White Paper).
http://java.sun.com/marketing/collateral/javarmi.html/, 1999.

45. TIBCO Inc. TIB/Rendezvous White Paper. http://www.rv.tibco.com/whitepaper.html, 1999.
46. R. van Renesse and K.P. Birman and S. Maffeis. Horus : A Flexible group communication system.

Communication of the ACM, 39(4), 1996.
47. J. Waldo and G. Wyant and A. Wollrath and S. Kendall. A Note on Distributed Computing. Sun

Microsystems Inc., November 1994.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



26 P.TH. EUGSTER ET AL.

10. Appendix 1: Topic reliable broadcast protocol

This section presents the TR Broadcast algorithm without the parts related to gossiping of
network knowledge and acknowledgements (anti-entropy).

1: this-p: this participant
2: channelState(i,j): channel exists between i and j as seen by this-p (true or false)
3: channelState(i): i-th row of channelState; has a timestamp tsp(channelState(i)) associated
4: messagesReceived : set of messages received by this-p
5: idMessagesReceived(q): set of ids of messages received by participant q as seen by this-p
6: maxGarbagedId(q): highest id of messages received by all and published by q as seen by this-p
7: awaitedIdMessages(q): set of ids of messages that have not yet been acknowledged by all

8: function firstParticipant(m,q) {return true if this-p is the firstParticipant to send m to q}
9: neighbours = {r | channelState(r,q) is true} {ordered with increasing p-id()’s}

10: for all p-id(r) | r ∈ neighbours up to p-id(this-p) - 1 do
11: if m-id(m) ∈ idMessagesReceived(r) then
12: return false
13: return true

14: procedure updateIdMessages(idMessagesReceivedq , maxGarbageIdq , awaitedIdMessagesq , q)
15: for all participant r �= this-p do {update ids}
16: idMessagesReceived(r) ←− idMessagesReceived(r) ∪ idMessagesReceivedq(r)
17: for all id ∈ maxGarbageIdq \ awaitedIdMessagesq do
18: idMessagesReceived(q) ←− idMessagesReceived(q) ∪ id

19: procedure check&forward() {upon a change in channelState}
20: neighbours = {r | channelState(r, q) is true}
21: for all r ∈ neighbours do
22: for all m ∈ messagesReceived and m-id(m) �∈ idMessagesReceived(r) do
23: if firstParticipant(m,r) then
24: TM-cast(m, idMessagesReceived, r)

25: To execute TR-broadcast(m):
26: messagesReceived ←− messagesReceived ∪ m
27: idMessagesReceived(this-p) ←− idMessagesReceived(this-p) ∪ m-id(m)
28: neighbours = {r | channelState(r, q) is true}
29: for all r ∈ neighbours do
30: TM-cast(m, idMessagesReceived, maxGarbageId, awaitedIdMessages, r)
31: TR-deliver(m) {delivers m to itself}

32: TR-deliver(-) occurs as follows:
33: when TM-deliver(m, idMessagesReceivedq , maxGarbageIdq , awaitedMessagesq , q)
34: if m-id(m) > maxGarbagedId(q) and m-id(m) �∈ awaitedIdMessages(q) then
35: updateIdMessages(idMessagesReceivedq , maxGarbageIdq , awaitedIdMessagesq , q)
36: if m �∈ messagesReceived then
37: messagesReceived ←− messagesReceived ∪ m
38: idMessagesReceived(q) ←− idMessagesReceived(q) ∪ m-id(m)
39: TR-deliver(m) {delivers m}
40: check&forward()

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 27

41: To execute TM-cast(m, idMessagesReceived, maxGarbageId, awaitedMessages, q):
42: for all participant r do
43: if [channelState(r) changed since the last message sent to q] then
44: tsp(channelState(r)) = tsp(channelState(r))+1 {update tsp}
45: channelStateq ←− channelStateq ∪ channelState(r) {update channelState}
46: send(m, idMessagesReceived, maxGarbageId, awaitedMessages, channelStateq) to q

47: TM-deliver(-) occurs as follows:
48: when receive(m,idMessagesReceivedq ,maxGarbageIdq ,awaitedMessagesq ,channelStateq) from q
49: for all [participant r | ∃ channelStateq(r)] do
50: if tsp(channelStateq (r)) < tsp(channelState(r)) then
51: channelState(r) = channelStateq(r)
52: tsp(channelState(r)) = tsp(channelStateq (r))
53: TM-deliver(idMessagesReceivedq , maxGarbageIdq , awaitedMessagesq , q)

54: when messagesReceived �= ∅
55: for all m ∈ messagesReceived do
56: if [∀ participant r | m-id(m) ∈ idMessagesReceived(r)] then
57: messagesReceived ←− messagesReceived \ m
58: for all participant r do
59: idMessagesReceived(r) ←− idMessagesReceived(r) \ m-id(m)
60: if maxGarbagedId(m) > m-id(m) then
61: awaitedIdMessages(m) ←− awaitedIdMessages(m) \ m-id(m)
62: else
63: maxGarbagedId(m) = m-id(m)
64: for all m-id(m) > j > maxGarbagedId(m) do
65: awaitedIdMessages(m) ←− awaitedIdMessages(m) ∪ j

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



28 P.TH. EUGSTER ET AL.

11. Appendix 2: Topic reliable broadcast properties

This appendix sketches the properties of our TR Broadcast algorithm given in Section 6. For
this, we suppose that the system has reached an agreement on channelState.

Validity is implicit since at line 31 p delivers it directly by appending m to messagesReceived.
That way, when p TR-broadcasts m, p will automatically TR-deliver m. Even if p does not
incorporate a subscriber, the message will still be buffered.

Agreement is fulfilled if one participant p eventually TR-delivers m, then every participant
q of the topic delivers m. Partitions remerge eventually, and therefore there will be a time t at
which p ❀t q. A message m is only garbage collected when all neighbours have acknowledged
it (line 56), and the algorithm will forward missing messages to lagging processes in task
check&forwardp. Therefore, every participant (and thus every subscriber) will eventually TR-
deliver m.

Uniform Integrity is ensured in procedure TR-deliver. In fact, a participant knows at every
moment if it has already delivered message m, by storing m-id(m). The algorithm keeps track
of the identifiers of garbage collected messages. Furthermore, since we are in an environment
devoid of byzantine failures, no spurious messages are delivered.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls



EFFECTIVE MULTICAST PROGRAMMING IN LARGE SCALE 29

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

0 10 20 30 40 50 60 70 80 90 100

th
ro

u
gh

p
u

t [
m

sg
/s

]

# of participants

Max
Average

Min

(a) Unreliable Topic Broadcast

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90 100

th
ro

u
gh

p
u

t [
m

sg
/s

]
# of participants

Max
Average

Min

(b) Reliable Topic Broadcast

Figure 9. Throughput of Reliable/Unreliable Topic Broadcast

12. Appendix 3: Detailed performance measurements

We present here the detailed results of our performance measurements summarized in
Figure 8(a). Figure 9 shows the performance of both broadcast protocols, together with the
variance of the measurements.

In the case of the unreliable broadcast, the variation decreases when the number of
participants increases, as conveyed by Figure 9(a). This is due to the fact that the performance
is bound by the global performance of the network. In the case of Figure 9(b) in return, the
variance remains more stable since the limits of the network are reached very quickly.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2000; 0:0–0
Prepared using cpeauth.cls


