
1

Parallel Iterative Solvers for Unstructured Grids using
Directive/MPI Hybrid Programming Model for GeoFEM

Platform on SMP Cluster Architectures

Kengo Nakajima(1) and Hiroshi Okuda(2)

(1) Department of Computational Earth Sciences, Research Organization for Information

Science and Technology (RIST), Tokyo, Japan (e-mail: nakajima@tokyo.rist.or.jp, phone: +81-3-

3436-5271, fax: +81-3436-5274) (2) Department of Quantum Engineering and Systems Science,

The University of Tokyo, Tokyo, Japan (e-mail: okuda@q.t.u-tokyo.ac.jp, phone: +81-3-5841-

7426, fax: +81-3818-3455)

Abstract

In this study, efficient parallel iterative method for unstructured grid has been

developed for SMP (shared memory symmetric multiprocessor) cluster architec-

tures on GeoFEM platform. 3-level hybrid parallel programming model has been

applied : 1. message passing for inter SMP node communication, 2. loop direc-

tive for intra SMP node parallelization and 3. vectorization for each PE (proc-

essing element). Simple 3D elastic linear problems with more than 108 DOFs

have been solved by 3x3 block ICCG(0) with additive Schwartz domain decom-

position and PDJDS/CM-RCM ((Parallel Descending-order Jagged Diagonal Stor-

age/Cyclic Multicolor-Reverse Cuthil Mckee)) re-ordering on 16 SMP nodes of Hi-

tachi SR8000 and 20 GFLOPS performance has been obtained. PDJDS/CM-RCM

reordering method provides excellent vector and parallel performance in SMP

nodes. This re-ordering is essential for parallelization of forward/backward sub-

stitution in IC/ILU factorization with global data dependency. Developed method

was also tested on NEC SX-4 and attained 969 MFLOPS (48.5% of peak perform-

ance) using single processor. Additive Schwartz domain decomposition method

provided robustness to the GeoFEM's parallel iterative solvers with localized

preconditioning.

1. Introduction

In recent several years, SMP (shared memory symmetric multiprocessor) cluster type architecture
has been very popular in massively parallel computers. For example, all of the ASCI machines
have adopted this type of architecture[1].

In 1997, the Science and Technology Agency of Japan (STA) began a five-year project to
develop a new supercomputer, the Earth Simulator[2]. The goal is the development of both hard-
ware and software for earth science simulations. The Earth Simulator is also a SMP cluster type
architecture and consists 640 SMP nodes where each SMP node has 8 vector processors. The pre-
sent study is conducted as a part of the research on a parallel finite element platform for solid
earth simulation, named GeoFEM[3].

In this type of architecture, "Loop Directive + Message Passing" style hybrid programming
model seems very effective where message passing such as MPI[4] is used in inter SMP node
communication and intra SMP node parallelization is guided by loop directive such as OpenMP[5].
A lot of research works have bee done in recent 2 or 3 years[6][7] but most of them are for applica-
tions with structured grids such as NPB (NAS Parallel Benchmarks)[8] and very few examples for
unstructured grids.

2

In this study, parallel iterative methods with unstructured grids for SMP cluster architecture
have been developed on Hitachi SR8000[9] in the University of Tokyo[10]. Parallel programming
model with the following 3 level hierarchy has been developed :

• Inter SMP node MPI
• Intra SMP node Compiler Directive for Parallelization
• Individual PE Compiler Directive for Vectorization/Pseudo Vectorization[9]

Entire domain is partitioned into distributed local data sets[3] and each partition is assigned to one
SMP node (Fig.1).

In order to achieve efficient parallel/vector computation for applications with unstructured
grids, following 3 issues are critical :

• Local Operation, No Global Dependency
• Continuous Memory Access
• Sufficiently Long Loops

Special re-ordering technique proposed by Washio et. al.[11][12] has been implemented to parallel
iterative solvers with localized preconditioning developed in GeoFEM project[3] in order to attain
local operation, no global dependency, continuous memory access and sufficiently long loops.

In the following part of this paper, we describe the overview of GeoFEM's parallel iterative
solvers, local data structure, re-ordering technique for parallel and vector computation on SMP
node and Hitachi SR8000 hardware and show results for 3D solid mechanics.

Fig.1 Parallel FEM computation on SMP cluster architecture.
Each partition corresponds to SMP node

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

Node-1Node-0

Node-3Node-2

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

Node-0 Node-1

Node-2 Node-3

3

2. Parallel Iterative Solvers in GeoFEM

2.1 Localized Preconditioning
The Incomplete Lower-Upper (ILU)/Cholesky(IC) factorization method is one of the most popu-
lar preconditioning techniques to accelerate the convergence of Krylov subspace iterative meth-
ods. Among ILU preconditioners, ILU(0), which allows no fill-in beyond the original non-zero
pattern, is the most commonly used. The backward/forward substitution (BFS) is repeated in each
iteration. BFS requires global data dependency and is not suitable for parallel processing in which
the locality is of utmost importance.

Most preconditioned iterative processes are a combination of :

• Matrix-Vector Products
• Inner Dot Products
• DAXPY (αx+y) Operations[13] and Vector Scaling
• Preconditioning Operations

The first three operations can be parallelized relatively easily[13]. However, generally speaking,
preconditioning (BFS) operation composes almost 50 % of the total computation if ILU(0) is im-
plemented as preconditioner. Therefore, a high degree of parallelization is essential in the BFS
operation.

Localized ILU(0) is a pseudo ILU(0) preconditioner that is suitable for parallel processors.
This method is not a global method but a local method in each processor or domain. The ILU(0)
operation is performed for each processor by zeroing out the matrix components that are located
outside the processor domain. This localized ILU(0) provides data locality on each processor and
good parallelization because no inter-processor communications occur during ILU(0) operation.

However, localized ILU(0) is not as powerful as the global preconditioner. Generally, the
convergence rate worsens as the number of processors and domains increases[14][15]. At the critical
end, if the processor number is equal to the number of DOF, this method is identical to diagonal
scaling.

2.2 Additive Schwartz Domain Decomposition
In order to stabilize the localized ILU(0) preconditioning, additive Schwartz domain decomposi-
tion method for overlapped regions[16] has been introduced. Procedures of additive Schwartz
method are described as follows :

(1) Global preconditioning process rMz = where M is preconditioning matrix and r and z are
vectors.

(2) If the entire domain is divided into 2 domains Ω1 and Ω2 , such as in Fig.2(a), precondi-
tioning matrix is solved locally in localized preconditioning :

222111

11 , Ω
−
ΩΩΩ

−
ΩΩ == rMzrMz

(3) After local preconditioned matrices are solved, effects of overlapped regions Γ1 and Γ2 are
introduced by following global nesting correction (Fig.2(b)):

)(1111

11111111

−
ΓΓ

−
ΩΩΩ

−
Ω

−
ΩΩ −−+= nnnn zMzMrMzz

)(1111

22222222

−
ΓΓ

−
ΩΩΩ

−
Ω

−
ΩΩ −−+= nnnn zMzMrMzz

where "n" denotes cycle number of additive Schwartz domain decomposition
(4) Repeat (2) and (3) until certain convergence

4

Table 1 shows the effect of additive Schwartz domain decomposition (ASDD) for solid mechan-
ics example with 3x443 DOFs. Computations were done on Hitachi SR2201 in the University of
Tokyo and 1 ASDD cycle per iteration has been introduced. Without ASDD, iteration number
until convergence increases according to partition number. On the contrary, if ASDD is intro-
duced, iteration number until convergence remains constant although computation time for one
iteration increased.

 (a) Local Operation (b) Global Nesting Correction

Fig.2 Operations in additive Schwartz domain decomposition : examples for 2 domains

Table 1. Effect of additive Schwartz domain decomposition for solid mechanics example with
3x443 DOFs on Hitachi SR2201.

PE # Iter. # Sec. Speed Up Iter.# Sec. Speed Up
1 204 233.7 - 144 325.6 -
2 253 143.6 1.63 144 163.1 1.99
4 259 74.3 3.15 145 82.4 3.95
8 264 36.8 6.36 146 39.7 8.21
16 262 17.4 13.52 144 18.7 17.33
32 268 9.6 24.24 147 10.2 31.80
64 274 6.6 35.68 150 6.5 50.07
Number of ASDD cycle/iteration = 1, Convergence Criteria ε=10-8

2.3 Distributed Data Structures
A proper definition of the layout of the distributed data structures is very important for the effi-
ciency of parallel computations with unstructured meshes. GeoFEM's local data structures are
node-based with overlapping elements[4][11]. As is mentioned before, each partition is assigned to
one SMP node in this study.

Communication among partitions (SMP nodes) occurs during computation. Subroutines for
communications in structured finite-difference type grids are provided by MPI. However, users
have to design both the local data structure and communications for unstructured grids. In Geo-
FEM, the entire region is partitioned in a node-based manner and each local data contains the
following information :

• Nodes originally assigned to the partition
• Elements which include the assigned nodes
• All nodes which form elements but are located outside of the partition
• Communication table for sending and receiving data
• Boundary conditions and material properties

Nodes are classified into the following three categories from the viewpoint of message passing :

NO Additive Schwartz WITH Additive Schwartz

Ω1 Ω2
Ω1 Ω2

Γ1 Γ２

Overlapped
Regions

5

• Internal nodes (originally assigned nodes)
• External nodes (nodes which form the element in the partition but are located outside of

the partition)
• Boundary nodes (external nodes of other partitions)

Communication tables between neighboring partitions are also included in the local data. Values
in boundary nodes in the partitions are sent to the neighboring partitions and they are received as
external nodes at the destination partition.

This data structure described in Fig.3 provides excellent parallel efficiency[15].

Fig.3 Example of GeoFEM distributed local data structure by node-based partitioning with
overlapping elements at partition interfaces

3. Re-Ordering Methods for Parallel/Vector Performance in SMP Node

In this section, re-ordering methods for parallel/vector performance in SMP node are described.
As is shown in Fig.1, the entire domain is partitioned into local data sets and each local data cor-
responds to one SMP node.

3.1 CM-RCM Re-Ordering
As is mentioned before, in order to achieve efficient parallel/vector computation for applications
with unstructured grids, following 3 issues are critical :

• Local Operation, No Global Dependency
• Continuous Memory Access
• Sufficiently Long Loops

PE#0 PE#1

PE#2 PE#3

PE#1

PE#3

PE#2

PE#0

6

For unstructured grids where data and memory access patterns are very irregular, re-ordering
technique is very effective in order to achieve nice parallel and vector performance. Most popular
re-ordering methods are Hyperplane/RCM (Reverse Cuthil-Mckee) and Multicolr (MC) [17]. In
both methods, elements located on the same hyperplane (or classified in the same color) are inde-
pendent. Therefore, parallel operation is possible for the elements in the same hyperplane/color
and number of elements in the same hyperplane/color should be as large as possible in order to
get granularity for parallel computation or sufficiently large loop length for vectorization.

Hyperplane/RCM (Fig.4(a)) re-ordering provides fast convergence of IC/ILU precondi-
tioned Krylov iterative solvers but size of hyperplane is irregular. For example in Fig.4(a), the
size of the 1st hyperplane is 1 but 8 for the 8th hyperplane. On the contrary, MC provides uni-
form element number in each color (Fig.4(b)) but it is widely known that convergence of IC/ILU
preconditioned Krylov iterative solvers are rather slow. Convergence can be improved by in-
creasing the number of colors but number of elements in each color decreases.

Remedy for this trade-off between two methods is cyclic multicoloring on Hyper-
plane/RCM ordering[11]. In this method, hyperplane number is re-numbered in cyclic manner.
Fig.4(c) shows the example of CM-RCM (Cyclic Multicolor on Hyperplane/RCM) reordering. In
this case, number of color is 4. Therefore 1st, 5th, 9th and 13th hyperplanes in Fig.3(a) are classi-
fied in the 1st color. Number of elements in each 4 color is equally 16.

In CM-RCM, number of color should be large enough so that the elements in the same
color would be independent from each other.

 (a) Hyperplane/RCM (b) Multicolor (MC) : 4 colors (c) CM-RCM : 4 colors

Fig.4 Example of Hyperplane/RCM, Multicolor and CM-RCM re-ordering for 2D geometry

3.2 DJDS Re-Ordering
CRS (Compressed Row Storage)[13] type matrix storage format is very memory efficient but
length of the innermost loop is relatively small due to matrix-vector operation as follows :

do i= 1, N
 do j= 1, NU(i)
 (operations)
 F(i)= F(i) + A(k1)*X(k2)
 enddo
enddo

1 2

2 3

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12

8 9 10 11 12 13

9 10 11 12 13 14

10 11 12 13 14 158 9

7 8

6 7

5 6

4 5

3 4

1 2

2 3

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12

8 9 10 11 12 13

9 10 11 12 13 14

10 11 12 13 14 158 9

7 8

6 7

5 6

4 5

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

7

In order to get sufficiently long length of the innermost loop, the following loop exchange is ef-
fective :

DJDS (Descending-order Jagged Diagonal Storage)[12] is suitable for this type of operation where
rows are permuted into order of decreasing number of non-zeros as in Fig.5(a). Because elements
on same hyperplane are independent, this permutation inside the hyperplane does not affect the
computational results at all. Thus 1D array with continuous memory access for matrix coefficient
can be obtained as is shown in Fig.5(b).

(a) Permutation of Rows into Order of Decreasing Number of Non-zeros

(b) 1D Array for Matrix Coefficient

Fig.5 DJDS (Descending-order Jagged Diagonal Storage) re-ordering for
efficient vector/parallel processing

3.3 Distribution in SMP Node : PDJDS Re-Ordering
Currently, we have 1D array for matrix coefficient with continuous memory access. This array is
suitable for both parallel and vector computing. The loops for this type of array is easily distrib-
uted to each PE in SMP node by loop directive. In order to balance the computational works
among PEs in the SMP node, DJDS array should be re-ordered again in cyclic manner. Procedure
of this re-ordering (PDJDS = Parallel DJDS) is described in Fig.6 :

do j= 1, NUmax
 do i= 1, N
 (operations)
 F(i)= F(i) + A(k1)*X(k2)
 enddo
enddo

8

 (a) (b)

Fig.6 PDJDS (Parallel Descending-order Jagged Diagonal Storage) re-ordering for load-
balanced parallel processing in SMP node : Example with 4 PEs in a SMP node (a) Re-ordering
in cyclic manner (b) 1D array assigned to each PE after re-ordering and load-balancing

3.4 Summary : Re-Ordering Methods
Procedures of the re-orderings for parallel/vector performance in SMP node described in this
section is summarized as follows :

(1) RCM (Reverse Cuthil Mckee) re-ordering on original local matrix for independent sets
(2) CM (Cyclic Multicolor) re-ordering to sufficient and uniform loop length
(3) DJDS (Descending-order Jagged Diagonal Storage) re-ordering for efficient vector proc-

essing. 1D arrays for coefficient array with continuous memory access are obtained.
(4) Cyclic re-ordering for load-balancing among PEs on a SMP-node.
(5) PDJDS/CM-RCM re-ordering is completed.

Typical loop structure of the matrix-vector operations is PDJDS /CM-RCM re-ordered matrices is
described as follows with pseudo-vector and parallel directives of Hitachi SR8000.

do col= 1, COLORtot
 do j= 1, NUmax(col)
*POPTION, INDEP : Parallelized in SMP node
 do pe= 1, SMP_PE_tot
 iS= NstartU(col,j,pe)
 iE= NendU (col,j,pe)
*VOPTION, INDEP : Vecorized for each PE
 do i= iS, iE
 (operations)
 enddo
 enddo
 enddo
enddo

PE#0

PE#1

PE#2

PE#3

9

4. Hitachi SR8000

Hitachi SR8000 is a parallel system with distributed memory consisting of four to 128 nodes. The
nodes are connected by a high-speed multidimensional crossbar network. Each node consists of
multiple (8) microprocessors (IPs). These IPs perform high-speed operation simultaneously via
the cooperative microprocessor (COMPAS) feature[9].

In this study, the 128-node system in the Computing Center, University of Tokyo has been
used. Each node has 8 GFLOPS peak performance and total peak performance is approximately 1
TFLOPS[10].

4.1 Cooperative microprocessors (COMPAS)[9]

This functionality performs high-speed activation of multiple processors in a node simultaneously.
Each microprocessor in the node executes one of the threads into which the original program is
divided. The compiler automatically performs parallelization in the node so that the user can code
data without being aware of hardware. Parallelization of vector operations simplifies conversion
from the standard vector operations.

4.2 Pseudo-Vectorization[9]

Pseudo-vectorization performs high-speed numerical computation in the microprocessor. Each
microprocessor in a node can pipeline data from memory without stopping subsequent instruc-
tions. Therefore, large scale computing is possible at high speed by supplying a large amount of
data to the computing element from the memory.

Generally, a RISC processor machine has a cache memory between the processor and the
main memory for high-speed data transmission to the processor, thereby increasing the perform-
ance. For the numerical calculation programs such as FORTRAN, however, the cache memory
cannot be used fully because a large range of array data has to be defined and referenced through
loops. Eventually performance decreases.

As a solution to this performance decrease, the SR8000 provides pseudo-vector processing
for high-speed transmission of data from the memory to the processor. Pseudo-vector processing
generates an object program that processes the data referenced in a loop in one of the following
ways.

• The data is loaded beforehand in a floating-point register and the data loading is completed

while the loop that references the data is performing calculations from previous iterations.
(preload optimizing)

• The data is transferred beforehand onto memory cache and the transfer to the cache memory
is completed while the loop that references the data is performing calculations from previous
iterations. (prefetch optimizing)

5. Examples

Developed methods are applied to large scale example cases for 3D solid mechanics described in
Fig.7 which is linear elastic problem with homogeneous material property and boundary condi-
tions. Each element is a cube with unit edge length. Each node has 3 DOFs (degree of freedoms),
therefore there are 3*Nx*Ny*Nz DOFs in the entire problem.

3x3 Block ICCG(0) with PDJDS/MC-RCM re-ordering has been applied where full LU
factorization is applied for each 3x3 diagonal block. 1 additive Schwartz domain decomposition
is applied to each iteration.

Vector performance has been evaluated on NEC SX-4 (JAERI/CCSE) and Hitachi SR2201
(University of Tokyo) and SMP parallel performance was tested on Hitachi SR8000.

10

Fig.7 Problem definition and boundary conditions of example cases for 3D solid mechanics.
Linear elastic problem with homogeneous material property and boundary conditions. Each ele-
ment is cube with unit edge length. 3*Nx*Ny*Nz DOFs in the entire problem.

5.1 Vector/Vector Parallel Performance
Before computations on Hitachi SR8000, vector performance of the method has been evaluated
using NEC SX-4 and Hitachi SR2201. Parallelization for SMP node has not been applied, there-
fore matrices are re-ordered in DJDS/CM-RCM manner.

Example with 413 nodes (= 206,763 DOFs) has been solved on NEC SX-4 using 1 PE. 969
MFLOPS performance was obtained in linear solver part where peak performance was 2
GFLOPS. This corresponds to 48.5% of the peak performance.

Evaluations for parallel computing have been done using Hitachi SR2201 in the University
of Tokyo[10]. Pseudo vectorization can be also applied to SR2201 and each PE acts like vector
processor. Fig.8 shows GFLOPS rate and work ratio (= real computation time/elapsed execution
time including communication) under various problem size configurations. In these computations,
problem size for 1 PE has been fixed. The largest case is 27,168,372 DOFs on 252 PEs. Perfor-
mance of 16.2 GFLOPS has been obtained. Since each processor has 300 MFLOPS peak perfor-
mance and total peak performance is 75.6 GFLOPS with 252 PEs. Therefore this 16.2 GFLOPS
corresponds to 21.4% of the peak performance. Fig.8(b) shows that work ratio is larger than 90%
if problem size for 1 PE is sufficiently large, more than 24,000 DOFs in this case.

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-dirrection @ z=Zmin

Ny-1

Nx-1

Nz-1

11

80

85

90

95

100

0 32 64 96 128 160 192 224 256

PE #

W
o

rk
 R

a
tio

 (
%

)

0.0

5.0

10.0

15.0

20.0

0 32 64 96 128 160 192 224 256

PE #

G
F

L
O

P
S

(3x333 = 107,811)DOFs /PE (3x203 = 24,000) (3x153 = 10,125)

(a) PE# ~ GFLOPS rate relationship

(b) PE# ~ Work ratio relationship

Fig.8 GFLOPS rate and work ratio (= real computation time/elapsed execution time in-
cluding communication) under various problem size configurations on Hitachi SR2201.
Problem size/PE is fixed. Largest case is 27,168,372 DOFs on 252 PEs with 16.2 GFLOPS
(Peak performance = 75.6 GFLOPS), DJDS/CM-RCM re-ordering

12

5.2 SMP Parallel Performance
On Hitachi SR8000, following cases have been carried out :

(1) Speed up for fixed size problem (3x1283 DOFs) from 1 to 16 SMP nodes.
(2) Communication/synchronization overhead for intra SMP node parallellization under vari-

ous problem size configuration using 1 SMP node
(3) Effect of matrix storage and re-ordering under various problem size configurations using 1

SMP node
(4) Performance evaluation under various problem size configurations using 1-16 SMP nodes

Figure 9 shows the results of (1). In this example, entire problem size has been fixed as

3x1283 = 6,291,456 DOFs and speed up rate has bee evaluated for 1-16 SMP nodes. Iteration
number until convergence (ε=10-8) is 333(1-node), 337(2-nodes), 338(4-nodes), 341(8-nodes) and
347(16-nodes) respectively. Iteration number remains almost constant even if domain number
increases. This is because of additive Schwartz domain decomposition described in 2. In 2, 8 and
8 node cases, "superlinear" occurs. Speed up rate at 16 SMP nodes has been 14.2 (= 88.8%).

Figure 10 shows the results of (2). Communication/synchronization overhead occurs at par-
allel processing in each SMP node among processors. Work ratio has been measured under vari-
ous problem size configurations from 3x163=12,288 DOFs to 3x1283 = 6,291,456 DOFs on 1
SMP node. Measurement was done by XCLOCK subroutine provided by Hitachi compiler[9]. Re-
sults show that overhead is more than 30% in the smallest case but it's less than 10% if the prob-
lem size is 3x403=192,000 DOFs which corresponds to 24,000 DOFs/PE and less than 5% for
3x643= 786,432 DOFs (98,304 DOFs/PE) case. According these results, communica-
tion/synchronization overhead for intra SMP node is almost negligible in sufficiently large prob-
lems.

Figure 11 shows the results of (3), effect of re-ordering. In this case, following 3 types of
settings were compared :

• PDJDS/CM-RCM re-ordering
• PDCRS/CM-RCM re-ordering (Parallel Descending-order Compressed Row Stor-

age/CM-RCM)
• CRS without re-ordering

PDCRS/CM-RCM re-ordering is basically identical to PDJDS/CM-RCM but matrices are stored
in CRS manner after permutation of rows into order of decreasing number of non-zeros where
length of the innermost loop is shorter than PDJDS. Elapsed execution time has been measured
under various problem size configurations from 3x163=12,288 DOFs to 3x1283 = 6,291,456
DOFs on 1 SMP node.

PDCRS is faster than PDJDS in smaller problems but PDJDS outperforms for larger prob-
lems due to the effect of pseudo vectorization. Results of the cases without re-ordering show very
poor performance. Parallel computation is impossible for forward/backward substitution (FBS) of
the Incomplete Cholesky Factorization process even in the simple geometry solved in this study.
This FBS process requires about 50% of the total computation time. If this process is not paral-
lelized, performance is about 20% of the cases with re-ordering. Iteration number until conver-
gence is also larger for cases without re-ordering as is shown in Table 2.

Figure 12 shows the results of (4). This figure corresponds to Fig.8 for results by Hitachi
SR2201. Problem size is fixed for one SMP node and node number has been changed from 1 to
16. The largest problem size was 100,663,296 DOFs (=16x1283). Performance is about 20
GFLOPS for 16 SMP node cases and this corresponds to 15.6% of the peak performance.

13

Fig.12(b) shows that problem size per SMP node is relatively small (3x323=98,304 DOFs), per-
formance is almost 50% of the results for larger problem size.

Fig.10 Work ratio (= real computation time/elapsed execution time including
communication) under various problem size configurations on Hitachi SR8000 with
1 SMP-Node (= 8 PEs). Work ratio is more than 90% if Problem size is 3x403 DOFs
(= 192,000 DOFs) which corresponds to 24,000 DOFs/PE. PDJDS/CM-RCM re-
ordering.

Fig.9 SMP-Node# ~ Speed Up relationship on Hitachi SR8000. En-
tire problem size is fixed as 3x1283= 6,291,456 DOFs. Speed Up rate
for 16 SMP-Nodes is 14.2. DJDS/CM-RCM re-ordering.

0.0

4.0

8.0

12.0

16.0

0 4 8 12 16

SMP-Node #

S
p

e
e

d
 U

P

60

65

70

75

80

85

90

95

100

1.E+04 1.E+05 1.E+06 1.E+07

DOF #

W
o

rk
 R

a
tio

 (
%

)

14

Table 2. Effect of coefficient matrix storage method and re-ordering under various problem size
configurations on Hitachi SR8000 with 1 SMP-Node. Iteration number until convergence ε=10-8

DOF # With Re-
Ordering

Without Re-
Ordering

3x163= 12,288 44 59
3x323= 98,304 85 116
3x403= 192,000 106 144
3x503= 375,000 132 180
3x403= 786,432 168 230

Fig.11 Effect of coefficient matrix storage method and re-ordering under various prob-
lem size configurations on Hitachi SR8000 with 1 SMP-Node (= 8 PEs, peak perform-
ance= 8.0GFLOPS). Performance of the solver without re-ordering is very bad due to
synchronization overhead during forward/backward substitution of the Incomplete Chole-
sky Factorization. PDCRS/CM-RCM is better than PDJDS/CM-RCM for small problems
but getting worse for larger problems because of short length of the innermost loops.

PDJDS/CM-RCM PDCRS/CM-RCM CRS no re-ordering

0.00

0.50

1.00

1.50

2.00

1.E+04 1.E+05 1.E+06 1.E+07

DOF #

G
F

L
O

P
S

15

(3x323 = 98,304)DOFs /Node (3x643 = 786,432)

(3x803 = 1,536,000) (3x1283 = 6,291,456)

0.0

5.0

10.0

15.0

20.0

25.0

0 4 8 12 16

SMP-Node #

G
F

L
O

P
S

(a) SMP-Node#~DOF# relationship

(b) SMP-Node#~GFLOPS rate relationship

Fig.12 Problem size and GFLOPS rate under various problem size configurations on Hita-
chi SR8000. Problem Size/PE is fixed. Largest Case is 100,663,296 DOFs on 16 SMP-
Nodes

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

0 4 8 12 16

SMP-Node #

D
O

F
 #

16

6. Conclusion and Further Study

In this study, efficient parallel iterative method with unstructured grid has been developed for
SMP cluster architectures on GeoFEM platform using "Loop Directive+Message Passing" type
parallel programming model which contains the following 3 level hierarchy :

• Inter SMP node MPI
• Intra SMP node Compiler Directive for Parallelization
• Individual PE Compiler Directive for Vectorization/Pseudo Vectorization

Simple 3D elastic linear problems with more than 108 DOFs have been solved by 3x3 block
ICCG(0) with additive Schwartz domain decomposition and PDJDS/CM-RCM re-ordering on 16
SMP nodes of Hitachi SR8000 and 20 GFLOPS performance has been obtained. PDJDS/CM-
RCM reordering method provides excellent vector and parallel performance in SMP nodes.
Without re-ordering, parallel processing of forward/backward substitution of IC/ILU factorization
was impossible due to global data dependency even in the current simple examples. Communica-
tion/synchronization overhead in SMP node is less than 10% if the problem size is
3x403=192,000 DOFs which corresponds to 24,000 DOFs/PE.

Developed method was also tested on NEC SX-4 and attained 969 MFLOPS (48.5% of
peak performance) for problem with 2x105 DOFs using single processor. Vector/parallel efficien-
cy has been evaluated on Hitachi SR2201 with pseudo vectorization under various problem size
configurations. The largest case was 2.72x107 DOFs on 252 PEs with 16.2 GFLOPS (21.4% of
the peak performance) has been obtained. Work ratio is larger than 90% if problem size for 1 PE
is sufficiently large, more than 24,000 DOFs in this case.

Additive Schwartz domain decomposition method has been implemented to GeoFEM's par-
allel iterative solvers with localized preconditioning. This method provides robustness to the lo-
calized preconditioning and iteration number remains constant even if the number of partition
increases for fixed size problems.

In this study, effective hybrid parallel programming model for SMP cluster architecture has
been developed but computational performance is not large enough (16% of the peak speed).
Therefore we are going to make further optimization, especially for the single PE performance.
Other current future plans for this study are as follows :

• Porting the developed method to other SMP cluster type hardware
• Applying the developed method to real-world problems with more complicated geometry

Acknowledgments

This study is a part of the project "Solid Earth Platform for Large Scale Computation" funded by
the Ministry of Education, Culture, Sports, Science and Technology, Japan through its "Special
Promoting Funds of Science & Technology".

Furthermore the authors would like to thank Professor Yasumasa Kanada (Computing
Center, The University of Tokyo) for fruitful discussions on high performance computing, Drs.
Shun Doi and Takumi Washio (NEC C&C Research Laboratory) for discussions on precondi-
tioning methods and Mr. Shingo Kudo (Yokohama National University) for his helpful advice on
Hitachi SR8000 system.

17

References

[1] ASCI (Accelerated Strategic Computing Initiative) Web Site : http://www.llnl.gov/asci/
[2] Earth Simulator Research and Development Center Web Site : http://www.gaia.jaeri.go.jp/
[3] GeoFEM Web Site : http://geofem.tokyo.rist.or.jp/
[4] MPI Web Site : http://www.mpi.org
[5] OpenMP Web Site : http//www.openmp.org
[6] Falgout, R. and Jones, J. : "Multigrid on Massively Parallel Architectures", Sixth European

Multigrid Conference, Ghent, Belgium, September 27-30, 1999.
[7] Cappelo, F. and Etiemble, D. :"MPI versus MPI+OpenMP on the IBM SP for the NAS

Benchmarks", SC2000 Technical Paper, Dallas, Texas, 2000.
[8] NPB (NAS Parallel Benchmarks) Web Site :

http://www.nas.nasa.gov/Research/Software/swdescription.html#NPB
[9] Hitachi SR8000 Web Site : http://www.hitachi.co.jp/Prod/comp/hpc/foruser/sr8000/
[10] Computing Center, The University of Tokyo Web Site : http://www.cc.u-tokyo.ac.jp/
[11] Washio, T., Maruyama, K., Osoda, T., Shimizu, F. and Doi, S. : "Blocking and reordering

to achieve highly parallel robust ILU preconditioners", RIKEN Symposium on Linear Alge-
bra and its Applications, The Institute of Physical and Chemical Research, 1999, pp.42-49.

[12] Washio, T., Maruyama, K., Osoda, T., Shimizu, F. and Doi, S. : "Efficient implementations
of block sparse matrix operations on shared memory vector machines", SNA2000 : The
Fourth International Conference on Supercomputing in Nuclear Applications, 2000.

[13] Barrett, R., Bery, M., Chan, T.F., Donato, J., Dongarra, J.J., Eijkhout, V., Pozo, R., Romine,
C. and van der Vorst, H. : Templates for the Solution of Linear Systems : Building Blocks
for Iterative Methods, SIAM, 1994.

[14] Nakajima, K., Okuda, H. : "Parallel Iterative Solvers with Localized ILU Preconditioning
for Unstructured Grids on Workstation Clusters", International Journal for Computational
Fluid Dynamics 12 (1999) pp.315-322

[15] Garatani, K., Nakamura, H., Okuda, H., Yagawa, G. : "GeoFEM : High Performance Par-
allel FEM for Solid Earth", HPCN Europe 1999, Amsterdam, The Netherlands, Lecture
Notes in Computer Science 1593 (1999) pp.133-140

[16] Smith, B., Bjorstad, P. and Gropp, W. : Domain Decomposition, Parallel Multilevel
Methods for Elliptic Partial Differential Equations, Cambridge Press, 1996.

[17] Saad, Y. : Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996.

