
Towards a Common Development Framework for

Distributed Applications

Fethi A. Rabhi

School of Information Systems, University of New South Wales,

Sydney 2052, Australia.

Email: f.rabhi@unsw.edu.au

The last decade has witnessed a convergence in several concerns related to the development of dis-

tributed applications ranging from concurrency issues to architectural platforms. However, these

concerns are often addressed within the speci�cities of a particular application area or a speci�c

requirement such as performance. This paper is a contribution towards de�ning a common devel-

opment framework speci�cally for distributed applications. It de�nes the salient characteristics

of such applications and discusses emerging concepts and techniques from a number of disciplines

namely concurrency theory, real-time systems, distributed systems and parallel processing. It

concludes on their possible role in an integrated development framework that would be suitable

for distributed applications.

keywords: Parallel processing, distributed processing, software engineering, design methods

1. INTRODUCTION

In recent years, there has been a considerable interest in distributed applications

due to the availability of low cost hardware and large computer networks. By

distributed application, we mean \a system of several independent software com-

ponents, cooperating in a common purpose, or to achieve a common goal" (Burns

and Wellings [1997]). This represents a signi�cant proportion of computer software,

including the following classes (identi�ed by Bal, Steiner, and Tanenbaum [1989]):

|parallel and high performance applications (e.g. parallel CFD simulations)

|fault-tolerant applications and real-time systems (e.g. safety critical process con-

trol)

|applications using functional specialisation (e.g. distributed information systems)

|inherently distributed applications (e.g. World Wide Web applications)

Each of these classes has historically emerged from a distinct computing discipline

such as operating systems, networks, high performance computing and real-time

systems. Experiences, techniques and tools for software development are usually

adapted to the particular requirements of the relevant discipline. However, there

is much to learn from adapting concepts from one discipline to another since there

are many common problems such as specifying the interaction between concurrent

activities or mapping a process graph on a given architectural platform. Moreover,

there are many applications which cannot be contained within a single discipline.

For example, metacomputations [Smarr and Catlett 1992] are applications intended

for either parallel architectures and distributed systems. Another example is in



2 � F.A. Rabhi

−Computational model (e.g. performance, dependability, 

−Component identification (e.g. process identification)
−Interaction management (e.g. communication management, 

−Logical−physical mapping

−Architectural model

−Computational resources (e.g. vector processors)
−Specialised resources (e.g. mass storage, graphics)
−Hardware devices (e.g. sensors, actuators)
−Network technology (e.g. LAN,WAN)

IMPLEMENTATION

DESIGN

REQUIREMENTS ANALYSIS

timeliness, quality of service)

interfaces definition)

Fig. 1. Additional needs and constraints within a basic development cycle

distributed multimedia applications where real-time constraints often have to be

dealt with in a distributed processing context.

Therefore, there is a need for a rigorous common development framework for

distributed applications especially large and complex ones. To study this claim,

the paper is divided into three parts:

|the �rst part (Section 2) examines the additional requirements and constraints

imposed by distributed systems in relation to the sequential software development

cycle

|the second part focuses on selected research areas and how they address to some

extent the needs of distributed applications; these areas are concurrency theory

(Section 3), real-time systems (Section 4), distributed systems (Section 5) and

parallel processing (Section 6).

|the last part (Section 7) considers opportunities for generalisations and cross-

discipline fertilisations that will be bene�cial in the long term for the establish-

ment of a rigorous development framework suitable for distributed applications.

2. DISTRIBUTED APPLICATION DEVELOPMENT CYCLE

For the sake of simplicity, we are limiting ourselves to the well-known three phases

of requirement analysis, design and implementation in a waterfall model although

issues such as maintenance and testing are still very important in this context.

Figure 1 illustrates the additional needs and constraints which should be taken

into account at di�erent stages of this basic cycle when considering distributed

applications. The rest of this section discusses these characteristics in more detail.



Towards a Common Development Framework for Distributed Applications � 3

2.1 Requirements analysis

Requirement analysis is the �rst phase in the development process in which the

requirements for the system are established and speci�ed in detail for further de-

velopment. The amount of information speci�ed should be minimal yet complete.

A common requirement for any application is its functionality i.e. the functions it

is supposed to achieve. Distributed applications mostly di�er in the non-functional

requirements, some of which relate to the dynamic behaviour of the system in terms

of its concurrent entities and the interaction between these entities. For these ap-

plications, the most important non-functional requirements can be grouped in the

following categories:

|performance : this is required for parallel and high performance applications

where maximum speedup and eÆciency must be attained according to a speci�c

architectural model.

|dependability (or robustness): includes availability, reliability, safety and security.

These requirements are essential for fault-tolerant applications and those using

functional specialisation.

|timeliness: the system must satisfy the established temporal constraints. This is

an essential feature of real-time systems.

|quality of service: needed for applications using functional specialisation, partic-

ularly distributed multimedia. These requirements relate to the quality require-

ments on the collective behaviour of one or more processes. They are expressed

in terms of both timeliness constraints and guarantees on measures of communi-

cation rate and latency, probabilities of communication disruptions etc. [Coulson

and de Meer 1997]

|dynamic change management: the system must accommodate modi�cations or

extensions dynamically. This is needed for example in mobile systems as the

con�guration of software components evolves over time [Kramer and Magee 1990].

One of the outputs of requirements analysis is a set of system models called the

requirements speci�cation which represents an abstraction of the system being stud-

ied and serve as a bridge between the analysis and design processes. Some formal

and semi-formal models for requirements analysis will be described in Sections 3

and 4.2 respectively.

Functional and non-functional requirements relate to what the program is sup-

posed to achieve (computational model). In addition, there may be a speci�cation

of the architectural platform on which the program is to be executed (architec-

tural model). This is needed particularly for parallel and inherently distributed

applications. Parallel architectural models will be discussed in Section 6.2.

2.2 Software design

Given some system requirements and models, the design stage involves developing

several more detailed models of the system at lower levels of abstraction. Consider-

ing distributed applications, the main concepts that need to be embodied in every

design can be grouped under these three categories:

|Structure and component identi�cation: describes di�erent components of the

system such as processes, modules and data and their abstractions. In this paper,



4 � F.A. Rabhi

we will only concentrate on components that exhibit some concurrent behaviour.

|Interaction management: considers the dynamic aspects and semantics of com-

munication. e.g. de�ning interfaces and communication protocols between com-

ponents, which components communicate with which, when and how communi-

cation takes place, contents of communication etc.

|Logical-physical mapping: de�nes the mapping of logical entities from the compu-

tational model to physical entities from the architectural model. Such mappings

can be de�ned statically (decided at compile-time) or dynamically (decided at

run time).

Although strategies for designing sequential systems have been extensively stud-

ied, little is know about the design of distributed applications. Existing design

methods that address some of the above issues will be examined in Section 4.3.

2.3 Implementation

The implementation stage consists of transforming the software design models into

a set of programs or modules. Distributed applications are characterised by a wide

spectrum of implementation platforms. In its simplest form, a platform consists of

a set of homogeneous processing nodes connected by a network. In a more general

context, a platform consists of several resources connected through one or several

high-speed networks. There are several types of resources including:

|Computational resources such as PCs, workstations and vector computers.

|Specialised resources such as mass storage archives and graphics processors.

|Hardware devices such as sensors and actuators.

There are also several types of networks including custom networks (such as those

in dedicated parallel architectures), Local Area Networks (LANs) and Wide Area

Networks (WANs).

2.4 Conclusion

This section has outlined the speci�c needs of distributed applications within the

development cycle. The paper now brie
y reviews a selected number of research

areas, focusing on their speci�c contribution towards the development cycle in gen-

eral. The areas reviewed are concurrency theory (next Section), real-time systems

(Section 4), distributed systems (Section 5) and parallel processing (Section 6).

3. CONCURRENCY THEORY

3.1 An overview of proposed theories and models

Concurrency theory whose roots are in the early 60s [Dijkstra 1968; Petri 1962] has

emerged in response to problems encountered in the design of concurrent systems

from di�erent areas in computer science. One type of problems is caused by the

presence of concurrent threads of control (i.e. processes) which lead to subtle er-

rors such as interference, deadlock and livelock. The other problem is since most

concurrent systems are reactive in nature (e.g. real-time and distributed systems),

traditional notions of correctness do not apply. Therefore, formal models have

an important role to play during requirements analysis particularly in specifying



Towards a Common Development Framework for Distributed Applications � 5

the dynamic behaviour of an application in terms of its concurrent activities and

interaction between these activities.

One popular approach is to use process algebra, which are mathematical for-

malisms (based on set theory) that can be used to describe the interaction and

synchronisation between concurrent processes. They only use few constructs such

as sequential and parallel composition and non-deterministic choice but allow the

expression of the full complexity of concurrent computations. Algebraic laws al-

low the transformation of one system into another. Amongst the formalisms avail-

able are Hoare's CSP (Communicating Sequential Processes) [Hoare 1985], Milner's

CCS (Calculus of Communicating Systems)[Milner 1989] and LOTOS [Bolognesi

and Brinksma 1988]. These theories employ interleaving i.e. they treat the concur-

rent execution of a program as the interleaving of the operations that constitute its

processes.

An alternative to interleaving is true concurrency where concurrency is treated

as a primitive notion i.e. the behaviour of the system is represented in terms of

the causal relations between the events performed at di�erent locations. A number

of truly concurrent models with associated graphical notations exist. Amongst

them Petri Nets [Peterson 1981] which were introduced in the early 60's by Petri

[1962]. Petri Nets are useful in the description and analysis of synchronisation,

communication and resource sharing between concurrent processes. They can be

described pictorially by means of a bipartite directed graphs and have a small set

of simple rules.

For dynamic systems, some theories which can model processes with evolving

communication structure have been proposed. An example is Milner's �-calculus

[Milner 1991; Milner et al. 1992] where a system is viewed as a collection of in-

dependent processes which may share communication links or bindings with other

processes. These binding are referred to by unique `names' and constitute the most

primitive entities in the calculus. By naming links (instead of processes), it is pos-

sible for example to model client/server interactions (see Section 4.3) i.e. clients

request a service without knowing which process will ultimately handle it.

3.2 Conclusion

Despite their advantages, formal models are still far from being widely used because

formal speci�cation and veri�cation of a concurrent system is a non-trivial task

which requires mathematical expertise and skills, particularly when tackling large

and complex systems. While there has been some success in applications involving

safety-critical requirements, it is not clear how current techniques could address

other requirements as well.

Another problem is the lack of integration within the rest of the development

cycleromising development is the increased availability of a number of tools to sup-

port the formal speci�cation and veri�cation of concurrent systems. These tools

typically allow model checking and the veri�cation of some properties such as ab-

sence of deadlock, livelock etc. A survey of these tools is presented by Cleaveland

et al. [Cleaveland 1996]. Examples include the Facile system [Thomsen et al. 1996]

(CCS) the�-calculus Mobility Workbench [Victor 1994] and LTSA tool [Magee and

Kramer 1999] (see example in Appendix). However, these tools are still perceived

by practitioners as having limited practical value.



6 � F.A. Rabhi

4. REAL-TIME SYSTEMS

We now consider another discipline, which is that of real-time systems design and

implementation. We �rst start by brie
y presenting \traditional" approaches of

developing systems, which only address the implementation phase of the develop-

ment cycle. Then we discuss progress in software engineering techniques speci�cally

aimed at addressing the needs of real-time systems at the requirements and design

stages.

4.1 Implementation issues

For various reasons such as easy interaction with hardware, memory size limi-

tations, performance and time management, real-time software development has

mostly been carried out at the assembly-language level. To address the problems

of complexity and lack of portability, a number of \lightweight" operating sys-

tems have been proposed. These operating systems speci�cally address the needs

of real-time systems by o�ering features such as support for time, exceptions and

scheduling. Some operating systems such as Chorus [Rozier et al. 1988] also provide

support for real-time systems on distributed platforms (more details on distributed

operating systems will be given in Section 5.2).

There have also been e�orts at designing programming languages speci�cally for

real-time systems. Ada [Barnes 1995] is probably the most famous example of a

high-level language commissioned by the US Defense Department to address the

needs of embedded real-time systems. It has support for concurrent tasks, timing

and a client/server form of interaction called the rendezvous. occam [Limited 1988]

is another example of a programming language which supports concurrent processes

and a synchronous (CSP-style) message-passing mechanism.

4.2 Semi-formal models for requirement analysis

Considering existing models for requirements analysis, most of the work has con-

centrated on the functional aspects of the application. Amongst the most useful

models are data 
ow models (DFDs) [DeMarco 1978; Yourdon 1989] which rep-

resent the functions performed by the system and data movements between these

functions. Recently, there has been a considerable interest in object models in which

a system is decomposed into objects that represent real-world entities [Awad et al.

1996; Meyer 1988]. Various notations exist such as the one used by Booch [1994]

and UML (to be described later).

Considering the dynamic behaviour of a real-time application, state models are

useful in specifying such behaviour [Allworth and Zobel 1987; Minsky 1972]. As-

suming that at any time, the system is in one of a number of possible states, an

event (or stimulus) forces a transition to another state. The most basic notation

for state models is a State Transition Diagram (STD) [Hopcroft and Ullman 1979].

Harel's Statecharts [Harel 1988] is another visual notation which can be regarded

as an improvement over an STD as it supports some abstraction mechanisms such

as concurrent states, hierarchical decomposition of states and aggregation of state

transitions.

Other notations for specifying dynamic behaviour exist. For example, UML's Se-

quence Diagram [Eriksson and Penker 1998] shows sequences of actions performed

by concurrent activities as vertical lines and interactions between actions as hori-



Towards a Common Development Framework for Distributed Applications � 7

zontal lines. This can be useful in showing temporal dependencies that are diÆcult

to model using other notations. All notations discussed so far are referred to as

semi-formal. It is also possible to use any of the formal notations discussed earlier

in Section 3.1.

4.3 Design methods

Given some system requirements and models, the design stage involves developing

several more detailed models of the system at lower levels of abstraction. Consid-

ering component identi�cation, early structured methods such as JSD [Cameron

1986] and CODARTS [Gomaa 1993] provide one type of component which exhibits

concurrent behaviour called a task. More recent structured methods such as Mascot

[Simpson 1986] di�erentiate between lightweight concurrent entities called threads or

activities and heavyweight concurrent activities usually called processes or objects.

Another example is HRT-HOOD [Burns and Wellings 1994; Burns and Wellings

1995] which provides additional process types such as cyclic (or periodic) processes

and sporadic processes. Object-oriented methods can be divided into explicit and

implicit methods [Awad et al. 1996]. Explicit methods provide a separate notation

for processes and objects early in the design stage. Implicit methods (such as UML

[RATIONAL 1999; Eriksson and Penker 1998]) initially consider all objects as po-

tentially concurrent entities. Later in the design stage, some objects are referred

to as active objects i.e. they have an independent thread of control associated with

them.

Processes have an external interface through which they interact with other pro-

cesses. An advantage of (implicit) object-oriented methods is that that is no need to

distinguish between interfaces for active objects and other (passive) objects. Pro-

cesses also need a speci�cation of their internal behaviour i.e. how do they react to

external events. Some methods use standard techniques such as DFDs and STDs.

Usually, functional and behavioural information are held separately. UML o�ers a

rich set of notations for specifying the behaviour of objects, amongst them STDs

(based on Statecharts) and Sequence Diagrams (mentioned in Section 4.2). Time

speci�cations and constraints can be added these diagrams.

The most basic form of interaction in most design methods is message-passing. In

JSD and Mascot, tasks communicate through streams or shared data speci�ed using

a network diagram. The network description includes the functions associated with

particular events. Timing constraints can be added to the design to specify the time

between input and output events. In CODARTS, task architecture diagrams show

the decomposition of the system into concurrent tasks and the interfaces between

them in the form of messages, events and modules. More elaborate forms of inter-

action include the client/server model. In such a model, a server process provides a

service or a function through its interface. Several client processes send requests to

the server which, once the connection is established, provides the required service

(this involves data transfer in both directions).

In UML, as active objects are conceptually no di�erent from other (passive ob-

jects), the most basic means of communication is the operation call mechanism

which is equivalent to synchronous message passing. An object can also send an

explicit signal object to another object. Such signals are interpreted as events and

can be handled through the object's behaviour representation (e.g. an STD). Since



8 � F.A. Rabhi

signal are objects, they can carry both information and behaviour about the event

and this allows for a variety of interaction forms to be modelled. Interaction with

hardware devices is possible through hardware wrapper classes which present inter-

faces to the communication protocol of the devices.

In a distributed context, design methods should also provide a means for logical-

physical mapping which refers to mapping logical entities (in the computational

model) to physical entities (in the architectural model). It may also involve spec-

ifying the order of execution for processes running within a single distributable

entity particularly in the presence of real-time constraints (i.e. a task scheduling

strategy).

Physically distributable entities are called virtual nodes by Burns and Wellings

[1997], subsystems by Gomaa [1993] or distributable components by Ng, Kramer,

Magee, and Dulay [1996]. The mapping activity in UML is essentially a match-

ing exercise between two diagrams: the Component Diagram which describes the

run-time components of the system and the Deployment Diagram which speci�es

the physical resources. A Deployment Diagram shows the computers and devices

(called nodes) that comprise the system. The type of network (e.g. TCP/IP, DEC-

NET) is also shown on the diagram. Vickers and McDermid [1992] use a similar

type of model for specifying a distributed real-time architecture. Their notation

allows the representation of processors, memory units, communication links, infor-

mation transducers and the environment. In most cases, the mapping activity is

the prime responsibility of the user. HRT-HOOD is the only method which specif-

ically provides a set of guidelines for logical-physical mapping taking into account

both the non-functional requirements of the application and the constraints of the

execution environment.

4.4 Conclusion

Software engineering methodologies and their real-time extensions provide a rich set

of user-friendly notations for process identi�cation and interaction management. A

number of CASE tools that support these methodologies are available. Examples

include STATEMATE [Harel et al. 1990] and Rhapsody [Harel and Gery 1997].

Most of these tools also translate models into code skeletons that are used as a

basis for the implementation stage. The code is usually in C++ or Java.

A problem which is far from resolved is how to make best use of a methodology

in a particular context or in the presence of particular requirements. Structured

method usually advocate a top-down strategy which may not be suited to real-time

systems since non-functional requirements play an important role. Object-oriented

methods also do not come with any clear design strategies particularly when it

comes to identifying active objects. In such cases, an iterative approach such as

the one proposed by Burns and Lister [1991] would be more appropriate. Another

problem with most of the approaches decribed earlier is the lack of formal semantics

underlying their notations, which can lead to ambiguities and make it diÆcult to

achieve automatic code generation. For instance, e�orts to de�ne a formal semantics

for UML are still under way [Breu et al. 1997]. The expressive power of most

established methodologies is also fairly limited. For example, they are only suitable

for static systems and do not provide suitable replication structures.

Finally, logical-physical mapping is still a much neglected activity in the design



Towards a Common Development Framework for Distributed Applications � 9

process, mainly due to the lack of uni�ed architectural models which can represent

the physical resources in terms of processors, memory, communication etc.

5. DISTRIBUTED SYSTEMS

The next research area to be considered is distributed systems which have witnessed

an explosive growth over the recent years thanks to the popularity of the Internet

and the World Wide Web. These systems, initially provided to support sharing of

resources such as printers and disks, now play a much wider role in providing a

variety of services not only over local-area clusters of workstations but over a wide

range of other communication networks as well.

In this section, we give a brief overview of existing approaches for implementing

distributed systems followed by a selection of higher-level approaches aimed at

improving the development process.

5.1 Implementation issues

Most operating systems o�er a variety of concurrent and distributed processing fa-

cilities. For concurrent processing (within one workstation), routines are provided

for process handling and communication management such as process creation,

shared-memory access and message-passing. Recent e�orts have led to a stan-

dard for specifying the creation and manipulation of local concurrent processes (i.e.

threads) known as POSIX [Burns and Wellings 1997]. For distributed processing,

a remote procedure call (RPC) mechanism is provided whereby a client process can

invoke a procedure based on a remotely located server. Despite their 
exibility,

operating systems are perceived as too low-level and as a result, concurrent and

distributed programming language design is an area which has been extensively

studied and a number of surveys notably by Andrews and Schneider [1983] and

Bal, Steiner, and Tanenbaum [1989] have been made. Two approaches are worth

highlighting in this paper. The �rst one is a tendency to provide an \add-on"

library to a sequential language such as C. Examples include PVM (Parallel Vir-

tual Machine) [Geist 1994] and MPI (Message Passing Interface) [Pacheco 1996].

These standards support basic forms of message passing (e.g. send/receive) as well

as group communication routines. Their main advantage is that they have ports

on most distributed platforms so they come with a guarantee of code portability

across a wide range of systems. The second approach that is growing in popularity is

the use of object-oriented languages which support multithreaded and distributed

objects [Meyer 1993; Papathomas 1995]. Examples include Java [Lea 1997] and

Modula 3 [Nelson 1991]. As message-passing is the natural communication mecha-

nism between objects, interactions evolve around the client/server model whereby

a client object sends a request for a method to be invoked on a server object. For

distributed programming, there have been several proposals for the provision of dis-

tributed objects either as a completely new language or supported by a distributed

operating system (see next section). This is still an active research area [Cahill

et al. 1997].

5.2 Distributed operating systems and middleware

A distributed operating system (DOS) provides a variety of mechanisms for the

management of distributed services such as �le transfer, remote execution and



10 � F.A. Rabhi

Server skeleton

Application
Server

Automatically generated 

OBJECT REQUEST BROKER (ORB)

Client stub

Client 

Application

IDL Interface

Fig. 2. The CORBA Client/Server Model of Communication

control of resource access. Distributed operating systems also o�er support for

threads (lightweight processes) and clusters (a grouping of several threads). Usu-

ally, threads interact through shared memory and clusters by message-passing via

communication ports. Examples of such operating systems include Chorus [Rozier

et al. 1988] and The Open Software Foundation's Distributed Computing Environ-

ment (OSF/DCE) [OSF 1992].

Most DOS support client/server forms of interaction which are more elaborate

versions of the traditional RPC mechanism. Some DOS o�er much richer forms of

interaction. For example, clients can group several services in an atomic transaction.

Since operations in a transaction all succeed or all fail with no e�ect, transactions

are useful for handling updates in database systems.

Another recent development has been to enable distributed applications to coop-

erate with each other irrespective of the hardware or operating system being used.

The most important standard that has been developed is the Common Object

Request Broker Architecture (CORBA). CORBA, which is a product of the Ob-

ject Management Group (OMG) [OMG 1998], is described in several recent books

[Baker 1997; Orfali and Harkey 1998; Otte et al. 1995].

In CORBA, clients and servers that are potentially distributed across di�erent

platforms communicate through an Object Request Broker (ORB) (see �gure 2).

The ORB, which is at the heart of the system, is responsible for delivering requests

from client applications to server applications and sending responses back to the

client applications. CORBA includes an Interface De�nition Language (IDL) for

specifying the services provided by an object. An IDL interface consists of a set

of named operations and their parameters. Once the interface is de�ned, it can

be automatically translated into interface �les for a variety of languages such as

Java, C++ and Cobol. These interface �les, shown in �gure 2 de�ne a client stub

and a server stub (known as a server skeleton). Their role is in hiding all low-level

communication aspects between the application objects and the ORB.

The CORBA standard also de�ne a range of services that are available to appli-

cation objects. One of the services provided is the Naming Service, which is simply

a repository for object references in the system. CORBA also includes a set of

facilities which are standardised IDL interfaces providing high-level functionality

at the application level. These facilities are divided into horizontal and vertical

groups. Horizontal facilities are to be used across a wide range of application and



Towards a Common Development Framework for Distributed Applications � 11

include user interface and task management facilities. Vertical facilities which are

domain-based provide functionality for speci�c application areas such as healthcare,

telecommunications and �nancial services [OMG 1998].

5.3 Design patterns

This section describes the concept of design patterns, which has consequences across

several phases in the development cycle. When designing a new system (particularly

a complex one), it is unusual for designers to tackle it by developing a solution from

scratch. Instead, they often recall a similar problem that they have already solved

and adapt its solution. The idea of design patterns, originally proposed by Gamma

et al. [Gamma et al. 1995], is to facilitate the reuse of well proven solutions based

on experiences from developing real systems. Given a library of common \patterns"

for designing software, developers choose the pattern that is most adapted to their

needs. Patterns are often associated with object-oriented systems because of their

support for reusability through classes and objects.

Patterns vary greatly in aims and scope. They o�er solutions ranging from high-

level strategies for organising software to low-level implementation mechanisms.

The documentation of design patterns is informal and varies in the literature. In

most descriptions, the information associated with the pattern (such as context,

problem and solution) is presented in a textual form. In [Buschmann et al. 1996],

structural information is presented using object diagrams and dynamic properties

are expressed using Object Message Sequence Charts, a notation similar to Sequence

Diagrams mentioned in Section 4.2.

Historically, most design patterns were identi�ed by developers of object-oriented

user interfaces whose main quality criteria were usability, extensibility and porta-

bility. However, there has been a growing number of patterns which also express

known concurrent behaviour of interacting entities over a possibly distributed plat-

form [Buschmann et al. 1996; Douglass 1998; Islam and Devarakonda 1995; Schmidt

1995]. Examples include Pipes and Filters, Master-Slave and Client-Dispatcher-

Server, illustrated in �gure 3.

The design of a complex application typically involves more than one pattern

(see Appendix for an example). Beside design patterns, implementation patterns

represent higher-level forms of programming abstractions. These patterns (called

idioms in [Buschmann et al. 1996]) refer to commonly used language-dependent

techniques which can be used to model the behaviour of interacting objects. Their

description is informal and includes reusable code in the form of interfaces, classes

and objects. Implementation patterns are being applied in a variety of contexts

from concurrent programming in Java [Lea 1997] to distributed programming in

CORBA [Mowbray and Malveau 1997]. A related concept which is closely linked

to object-oriented systems is that of a framework [Johnson 1997],

5.4 Conclusion

From the concepts presented earlier, it appears that most e�orts in distributed

systems design have concentrated in supporting a uniform view of services over

heterogeneous resources. Most systems tend to be designed in a bottom-up fash-

ion where each process is designed separately using known methods and process

interaction is outside the method's scope. This re
ects the fact that a system is



12 � F.A. Rabhi

FilterFilterFilterSource
Data Data

Sink

Master

Client

Dispatcher

Slave Slave Slave Slave

Server Server Server Server

Client Client Client

a. Pipes and Filters pattern

b. Mater-Slave pattern

c. Client-Dispatcher-Server pattern

Fig. 3. Design patterns for distributed processing

often constructed using software modules that have already been developed. This

explains the popularity of object models during the design phase since the ability of

modelling interfaces in an abstract way makes reuse in such heterogeneous settings

somewhat more manageable.

However, unlike with sequential object-oriented systems there are very few CASE

tools which speci�cally address the needs of distributed processing, which are avail-

ability, compatibility between the communication interfaces and correct behaviour.

One example is The Software Architect's Assistant [Ng et al. 1996] where the struc-

ture of the system is de�ned in terms of its components visually or textually using

the Darwin con�guration language [Magee et al. 1995]. The behaviour of each com-

ponent is speci�ed using Labelled Transition Systems (LTS) (see Section B). Reuse

is encouraged by the provision of a components library. As in Parse and ADL, the

distributed program is constructed by binding components together using a visual

tool. Automatic code generation in C++ is also possible.

In any development environment, one of the major problems is the diÆculty in

providing an integrated view of a distributed application's dynamic behaviour. One

\formal" solution is the use of a con�guration language such as Polylith [Purtilo

1994], Durra [Babacci et al. 1993] and Darwin [Magee et al. 1995] for specifying



Towards a Common Development Framework for Distributed Applications � 13

the interaction between processes. A more \ad-hoc" alternative involves the use of

design patterns that facilitate the reuse and sharing of successful experiences and

techniques for designing distributed systems.

6. PARALLEL PROCESSING

The �eld of parallel processing has experienced a considerable growth since the early

80s, mainly encouraged by the high demands in computational power emerging from

various science and engineering disciplines. Despite the fall in hardware costs and

the availability of powerful high-performance platforms, the �eld has not delivered

most of its promises due to the diÆculty to deliver stable, eÆcient and portable

software [Skillicorn and Talia 1998]. For this reason, the design of architectural and

programming models for parallel processing as well as tools to support them is still

an active research area. This section discusses some of the progress in this area and

their relevance to the general software development process.

6.1 Implementation issues

Languages for parallel processing can be divided into low-level languages which are

fairly close to the architectural model they are intended for and high-level languages

in which additional levels of abstraction are provided.

Low-level languages for parallel processing are conceptually no di�erent from

languages for real-time systems (see Section 4.1) and distributed processing (see

Section 5.1). In addition, most parallel computers are now provided with standard

libraries such as PVM and MPI (see Section 5.1) which ensure code portability on

both parallel and distributed platforms.

Some projects have attempted to address the low-level nature of these languages

by providing visual programming tools. Programs are typically represented as

graphs where processes correspond to nodes (possibly annotated with code in a

given language) and where arcs represent the 
ow of data between processes. As in

pure data
ow, the activity of processes is triggered by the arrival of messages (�ring

rules). Examples include CODE [Browne et al. 1989] (based on Ada, FORTRAN

and C) and POKER [Snyder 1984]. TRAPPER [Schafers et al. 1995] is a more

comprehensive graphical programming environment for parallel systems. It allows

the user to specify both programs and hardware con�gurations. It also supports

hierarchical decomposition, mapping, and automatic code generation in C++ with

standard libraries (such as PVM) handling the communication aspects.

However, these visual programming environments are to a large extent already

covered by software engineering methodologies for real-time systems (see Section

4.3). Low-level programming models and their associated tools still do not address

some of the typical needs of parallel applications such as:

|predictability: although the problem of portability has been addressed to a large

extent, \portability of code" does not necessarily imply \portability of eÆciency".

For example, porting PVM code to a di�erent platform does not carry the guar-

antee that the eÆciency gains will be maintained.

|\scalable" abstractions: some parallel systems consist of hundreds or thousands

tasks, explicitly specifying the decomposition into tasks the actions of each task,

as well as the interactions between tasks is an enormous burden to the program-



14 � F.A. Rabhi

mer. Thus there is a need for scalable decomposition and replication abstractions

to handle these large systems.

6.2 Architectural models

Since performance requirements are the main driving force for designing a parallel

system, an essential feature of the development process should be the availability

of a detailed architectural model, preferably with execution-time cost measures.

Therefore, one of the prime contributions of parallel processing research is a wealth

of architectural models, all of them providing cost information about the following

three aspects:

(1) computational structure: relates to the way the execution proceeds. For ex-

ample, operations can be carried out synchronously (SIMD mode) or asyn-

chronously (MIMD mode).

(2) memory organisation: relates to the way data is stored and accessed. For

example, in a shared-memory model, all data is kept in a central storage area

and in a distributed-memory model, each processor keeps a portion of data

locally and remote access to other portions is done through message-passing.

(3) communication provision: relates to the communication infrastructure between

processors and the associated costs, which can vary depending on the underlying

network used for interconnecting processors and memory modules. Networks

can be of �xed topology (e.g. rings, meshes and hypercubes) or may use a

dynamic routing scheme (e.g. bus or switching network).

These models are powerful enough to represent a large spectrum of architectural

designs. They can be low-level where precise details of operations and communica-

tions need to be speci�ed or they can provide some degree of abstraction over one

or several of the three aspects identi�ed earlier. A popular low-level model is the

Parallel Random Access Memory (PRAM) model [Akl 1989] and its variations. It

assumes an ensemble of processors acting synchronously on a uniformly accessed

memory. This model requires details of the operations performed by processors and

requires that memory con
icts be avoided.

A higher-level model is the Bulk Synchronous Parallel (BSP) [McColl 1995; Skil-

licorn et al. 1996] which is based on a distributed-memory MIMD architecture. The

model requires the identi�cation of parallel tasks and a series of supersteps. Com-

munication between tasks only take e�ect at the the end of a superstep where all

tasks engage in a barrier synchronisation. The advantages of the model is that it

can provide cost measures (in terms of execution time) without any concern about

the underlying interconnection network while allowing for both local and global

communication to take place.

6.3 Data parallel programming models

We now examine some higher-level programming approaches which aim at pro-

viding adequate structures to handle large scale parallel systems. An important

class of parallel and high performance applications is concerned with the manipu-

lation of large data structures (e.g. vectors) in parallel. Such applications, which

are referred to as data parallel [Hillis and Jr. 1986], include solving large systems



Towards a Common Development Framework for Distributed Applications � 15

of partial di�erential equations, image processing and molecular dynamics. Conse-

quently, a number of abstractions for data parallel applications have been proposed.

They include include element-wise operations (e.g. adding two vectors), broadcast

and reduction (e.g. computing the sum of a vector). Some languages provide pro-

grammers with a macroscopic view (APL style) in which data structures can be

manipulated as a whole. Alternatively, some languages allow the programmer to

specify how individual data items are modi�ed is relation to an indexing system

(this is called the microscopic view).

The advantage of data parallel abstraction mechanisms is simplicity of program-

ming while eÆcient compilers, suitable for a wide range of parallel machines, can be

developed. Examples of data parallel languages include C* [Frankel 1991] and High

Performance Fortran (HPF) [Loveman 1993]. Another advantage is that empirical

models for performance analysis can be developed.

6.4 Skeletons

The concept of a skeleton [Cole 1989] is very similar to that of a pattern (see Section

5.3) except that it emerged from a di�erent research area (parallel programming

instead of object-oriented programming) and is perceived to be more formal and sys-

tematic in its approach. It is based on the observation that many parallel programs

share a common set of known interaction patterns such as pipelines, master/slave,

data parallel etc. for which implementations have been studied extensively on a

variety of languages/machines.

Most of the work on skeletons is associated with functional languages, as these

skeletons can be modelled as higher-order functional structures. Amongst the vari-

ety of skeleton-related projects are those concerned with de�ning elementary skele-

tons from which parallel programs can be constructed. For example, the two well-

known list processing operators map and reduce form a set of elementary skeletons

with inherent parallelism. Despite the fact that equivalent operators are provided

in most data parallel languages (map corresponds to an element-wise operation

and reduce to a reduction), the main advantage of using elementary skeletons is the

availability of a formal framework for program composition. This allows for a rich

set of transformations (e.g. transforming one program into a more eÆcient one)

to be applied. In addition, cost measures can be associated with these elementary

skeletons and their compositions. As an example of elementary skeletons, a group

at Imperial College [Darlington et al. 1995a; Darlington et al. 1995b] proposes a

range of simple skeletons for data distribution, alignment , communication, etc.,

from which data parallel applications can be constructed.

The main problem with elementary skeletons is that there is little guidance as

to how to compose them in order to get the best eÆciency. In addition, there have

been very little practical implementations due to the diÆculty in adapting arbi-

trary composition structures to a variety of hardware platforms with very di�erent

characteristics. To address these problems, more elaborate skeletons which model

complex interaction patterns can be de�ned. For example, the divide-and-conquer

skeleton captures a well-known algorithmic design strategy for which several eÆ-

cient implementations can be developed [Rabhi and Manson 1991]. Several of such

skeletons have been developed around particular data structures. These skeletons,

which are derived from category theory [Skillicorn 1992], are known as homomorphic



16 � F.A. Rabhi

skeletons [Skillicorn 1994]. They provide a similar level of abstraction than data

parallel operators considered earlier but in addition, they also o�er a more formal

framework for program construction and transformation. Homomorphic skeletons

have been proposed for a variety of data structures such as lists, arrays, trees and

graphs (see the survey by Skillicorn and Talia [1998]). They act in a similar way

to an abstract data type in providing a set of known-to-be parallel operators while

hiding the internal implementation details. A related proposal is that of Parallel

Abstract Data Types (PADTS) [Wu et al. 1997] which is essentially an abstract

data type for irregular data structures.

In the skeletons described so far, the communication structure is implied by the

(often recursive) way operators are de�ned. There are skeletons which work around

a �xed communication structure. For example, the Static Iterative Transformation

(SIT) skeleton [Rabhi 1995a] which captures a series of iterative transformations

being applied to a large data structure and for which several programming envi-

ronments have been proposed and implemented [Parsons and Rabhi 1995; Parsons

and Rabhi 1998; Rabhi 1995b; Schwarz and Rabhi 1996].

7. CONCLUSION

This paper presented a variety of concepts and techniques from di�erent research

areas related to the development of distributed applications. This section now con-

cludes by summarising the strengths of each discipline and then outlines remaining

problems and possible directions for future work.

7.1 Strengths of each discipline and overlappings

Figure 4 summarises the role and main contribution to the development cycle (in-

troduced in Section 2) of most of the techniques discussed in this paper. Overall,

the profusion of concurrency models and tools means that they are expected to

have a more important role to play during the speci�cation and requirements anal-

ysis phase of the cycle. This study also reveals that design approaches for de�ning

concurrent behaviour, static scheduling and interaction management have been ex-

tensively studied in the context of real-time systems. Distributed systems research

o�ers detailed studies of dynamic behaviour (e.g. patterns) as well standard inter-

faces and communication protocols over a wide range of platforms. Finally, parallel

processing research is the most advanced in providing concise architectural models

with cost measures, a rich set of data, process and communication replication struc-

tures (e.g. skeletons); and various implementation strategies for these structures.

7.2 The case for integrated approaches

Despite their apparent disparity, we believe that there are several common issues

related to all distributed applications, such as process management, communica-

tion and synchronisation, distribution and logical-physical mapping. Despite the

use of di�erent notations and terminology, many similarities exist in areas such as

semantics of communication, visual display of information and automatic code gen-

eration. As an example of \overlapping" of work, most programming abstractions

provided in parallel processing tools (see Section 6.1) are to a large extent already

available in software engineering methodologies for real-time systems (see Section

4.3).



Towards a Common Development Framework for Distributed Applications � 17

DESIGN

−Parallel architectural models (Section 6.2)

−Design methods for real−time systems

−Semi−formal models for real−time systems (Section 4.2)

−Parallel processing skeletons (Section 6.4)

−Concurrency models (Section 3.1)

REQUIREMENTS ANALYSIS

(Sections 4.3)
−Design patterns (Section 5.3)
−Data parallel abstractions (Section 6.3)

IMPLEMENTATION

−Real−time operating systems (Section 4.1)
−Parallel and distributed programming languages (Sections 5.1, 6.1)
−Distributed operating systems and midddleware (Secttion 5.2)
−"Implementation" patterns (Section 5.3)

Fig. 4. Concepts and techniques within an integrated software engineering cycle

The other reason for integrated approaches is that with the greater availabil-

ity and ease of use of large computer networks, there will be several applications

that cross boundaries. For example, a distributed real-time system may have to

consist of a large number of identical tasks for dealing with the fault-tolerance

requirements and for managing identical hardware devices. This requires suitable

replication structures to model and implement the concurrency, communication and

distribution aspects.

The main problems that still need addressing are:

|Little is know about design strategies for distributed applicatioins. For example,

we have seen that existing design strategies are not very well adapted to non-

functional requirements and that logical-physical mapping is a neglected part of

the development process.

|Many techniques rely on assumptions that are speci�c to the discipline they orig-

inate from so there are many diÆculties associated with adapting concepts from

one discipline to another. For example, most structured/OO design methodolo-

gies do not provide replication structures, network studies for parallel computers

are not relevant to distributed processing, etc.

7.3 Future work

Future work should concentrate around the adaptation of concepts across disci-

plines and the integration of these concepts within all the phases of a well-de�ned

development cycle.

Considering adaptation, most e�orts at the requirements stage have concentrated

on the functional requirements and the dynamic behaviour of systems. New the-

ories and models need to be developed to express requirements such as quality of

service, dynamic change management and dependability. Improved design abstrac-



18 � F.A. Rabhi

tions as well as new ones are needed e.g. those with a capacity to model actors

and intelligent agents capable of reactive, pro-active and co-operative behaviour

etc. There is also a need for new uni�ed architectural models which can represent

physical resources in terms of processors, memory, communication etc. Finally,

while middleware platforms (such as CORBA) have proven useful for applications

with loosely coupled tasks and low communication requirements, their appropri-

ateness for highly coordinated tasks with large demands on communication and

synchronisation still needs investigation.

The case for integration should give a greater role for CASE tools that emphasize

the role of formal notation, provide a rich set of design abstractions, allow model

checking and provide automatic code generation. Integration of existing or new

techniques should be achieved through formally de�ned, generic, reusable entities

and their associated tools. Some of such entities have already been described in this

paper as patterns and skeletons. This is not a new tendency but has already been

happening to a large extent at the implementation level. For example, standards

like CORBA and PVM can be regarded as \patterns" that support location trans-

parency and decouple processes from the underlying communication mechanism. It

is expected that similar approaches will be adopted at a much higher level in the

development cycle.

REFERENCES

Akl, S. 1989. The Design and Analysis of Parallel Algorithms. Prentice Hall.

Allworth, S. and Zobel, R. 1987. Introduction to Real-Time Software Design (2nd ed.).

Springer Verlag.

Andrews, G. and Schneider, F. 1983. Concepts and notations for concurrent program-

ming. Computing Surveys 15, 1 (March), 3{43.

Awad, M., Kuusela, J., and Ziegler, J. 1996. Object-Oriented Technology for Real-Time

Systems. Prentice Hall.

Babacci, M., Weistock, C., Doubleday, D., Gardner, M., and Lichota, R. 1993.

Durra: a structure description language for developing distributed applications. IEE Soft-

ware Engineering Journal 8, 2 (March), 83{94.

Baker, S. 1997. CORBA Distributed Objects Using Orbix. Addison Wesley.

Bal, H., Steiner, J., and Tanenbaum, A. 1989. Programming languages for distributed

computing systems. ACM Computing Surveys 21, 3 (September), 261{322.

Barnes, J. 1995. Programming in Ada 95. Addison Wesley.

Bolognesi, T. and Brinksma, E. 1988. Introduction to the ISO speci�cation language

LOTOS. Computer Networks and ISDN Systems 14, 1, 25{29.

Booch, G. 1994. Object Oriented Analysis and Design With Applications (2nd ed.). Ben-

jamin/Cummings.

Breu, R., Hinkel, U., Hofmann, C., Klein, C., Paech, B., Rumpe, B., and Thurner,

V. 1997. Towards a formalization of the uni�ed modeling language. In M. Aksit and

S. Matsuoka Eds., Proceedings of ECOOP'97 - Object-Oriented Programming, 11th Eu-

ropean Conference, Jyvaskyla, Finland (June 1997). Lecture Notes in Computer Science

1241, Springer Verlag.

Browne, J., Azam, M., and Sobek, S. 1989. CODE : a uni�ed approach to parallel pro-

gramming. IEEE Software 6, 4 (July), 10{17.

Burns, A. and Lister, A. 1991. A framework for building dependable systems. The Com-

puter Journal 34, 2, 173{181.

Burns, A. and Wellings, A. 1994. HOOD: A structured design method for hard real-time

systems. Real-Time Systems 6, 1, 73{114.



Towards a Common Development Framework for Distributed Applications � 19

Burns, A. and Wellings, A. 1995. A Structured Design Method for Hard Real-Time Ada

Systems. Elsevier.

Burns, A. and Wellings, A. 1997. Real-Time Systems and Programming Languages (2nd

Ed.). Addison-Wesley.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. 1996. A

System of Patterns: Pattern-Oriented Software Architecture. J. Wiley and Sons.

Cahill, V., Nixon, P., Tangney, B., and Rabhi, F. 1997. Object models for distributed

or persistent programming. The Computer Journal 40, 8, 513{527.

Cameron, J. 1986. An overview of JSD. IEEE Transactions on Software Engineering SE-

12, 2 (February), 222{262.

Cleaveland, R. 1996. Strategic directions in concurrency research. Computing Sur-

veys 28, 4 (December), 607{625.

Cole, M. 1989. Algorithmic skeletons: a structured approach to the management of parallel

computation. Research monographs in Parallel and Distributed Computing, Pitman.

Coulson, G. and de Meer, J. 1997. Special issue on quality of service. Distributed Systems

Engineering Journal 4, 1 (March), 1{3.

Darlington, J., Guo, Y., To, H., and Yang, J. 1995a. Functional skeletons for par-

allel coordination. In S. Haridi, K. Ali, and P. Magnussin Eds., EuroPar'95 Parallel

Processing (August 1995), pp. 55{69. Springer-Verlag.

Darlington, J., Guo, Y., To, H., and Yang, J. 1995b. Parallel skeletons for structured

composition. In Fifth ACM SIPLAN Simposium on Principles and Practice of Parallel

Programming (July 1995), pp. 19{28. ACM Press.

DeMarco, T. 1978. Structured Analysis and System Speci�cation. Prentice Hall.

Dijkstra, E. 1968. Cooperating sequential processes. In F. Genuys Ed., Programming

Languages, pp. 43{112. London: Academic Press.

Douglass, B. 1998. Real-Time UML: Developing EÆcient Objects for Embedded Systems.

Addison-Wesley.

Eriksson, H. and Penker, M. 1998. UML Toolkit. J. Wiley and Sons.

Frankel, J. 1991. C* Language Reference Manual. Thinking Machines Corp., Cambridge

MA, USA.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements

of reusable Object-Oriented Software. Addison Wesley, Professional Computing Series.

Geist, A. 1994. Parallel Virtual Machine (PVM): a Users' Guide and Tutorial for Net-

worked Parallel Computing. MIT Press.

Gomaa, H. 1993. Software Design Methods for Concurrent and Real-Time Systems.

Addison-Wesley.

Harel, D. 1988. On visual formalisms. Communications of the ACM 31, 5, 514{530.

Harel, D. and Gery, E. 1997. Executable object modelling with statecharts. IEEE Com-

puter 30, 7 (July), 31{42.

Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, M., Shtull-

Trauring, A., and Trakhtenbrot, M. 1990. STATEMATE: a working environment

for the development of complex reactive systems. IEEE Transactions on Software Engi-

neering 16, 4, 403{414.

Hillis, W. and Jr., G. S. 1986. Data parallel algorithms. Communications of the

ACM 29, 12, 1170{1184.

Hoare, C. 1985. Communicating Sequential Processes. Prentice-Hall International.

Hopcroft, J. and Ullman, J. 1979. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, Reading MA.

Islam, N. and Devarakonda, M. 1995. An essential design pattern for fault-tolerant dis-

tributed state sharing. Communications of the ACM 39, 10 (October), 65{74.

Johnson, R. 1997. Frameworks = (components + patterns). Communications of the

ACM 40, 10 (October), 39{42.



20 � F.A. Rabhi

Kramer, J. and Magee, J. 1990. The evolving philosophers problem: dynamic change

management. IEEE Transactions on Software Engineering 16, 11 (November).

Lalonde, W. and Pugh, J. 1991. Inside Smalltalk, Volume II. Prentice-Hall.

Lea, D. 1997. Concurrent Programming in Java : Design Principles and Patterns. Addison

Wesley Longman.

Limited, I. 1988. occam 2 Reference Manual. Prentice Hall.

Loveman, D. 1993. High performance fortran. IEEE Parallel and Distributed Technology .

Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. 1995. Specifying distributed

software architectures. In Fifth European Software Engineering Conference ESEC'95

(Barcelona, September 1995).

Magee, J. and Kramer, J. 1999. Concurrency: State Models and Java Programs. John

Wiley and Sons.

McColl, W. 1995. Bulk synchronous parallel computing. In J. Davy and P. Dew Eds.,

Abstract Machine Models for Highly Parallel Computers, pp. 41{63. Oxford University

Press.

Meyer, B. 1988. Object Oriented Software Construction. Prentice Hall International.

Meyer, B. 1993. Systematic concurrent object-oriented programming. Communications of

the ACM 36, 9 (September), 56{80.

Milner, R. 1989. Communication and Concurrency. Prentice Hall.

Milner, R. 1991. The polyadic �-calculus: a tutorial. Technical Report ECS-LFCS 91-180

(October), University of Edinburgh.

Milner, R., Parrow, J., and Walker, D. 1992. A calculus of mobile processes - parts I

& II. Information and Computation 100, 1{77.

Minsky, M. 1972. Computation: Finite and In�nite Machines. Prentice Hall.

Mowbray, T. and Malveau, R. 1997. CORBA Design Patterns. Wiley Computer Pub-

lishing.

Nelson, G. 1991. Systems Programming with Modula-3. Prentice Hall.

Ng, K., Kramer, J., Magee, J., and Dulay, N. 1996. A visual approach to distributed

programming. In A. Zaky and T. Lewis Eds., Tools and Environments for Parallel and

Distributed Systems, pp. 7{32. Boston: Kluwer Academic Publishers.

OMG. 1998. The common object request broker: Architecture and speci�cation, revision

2.2. Report 98-07-01, The Object Management Group, http://www.omg.org/.

Orfali, R. and Harkey, D. 1998. Client/Server Programming with Java and CORBA

(2nd ed.). John Wiley and Sons.

OSF. 1992. The distributed computing environment (DCE). Technical report. Open Soft-

ware Foundation, http://osf.org/dce/index.html.

Otte, R., Patrick, D., and Roy, M. 1995. Understanding CORBA. Prentice Hall.

Pacheco, P. 1996. Parallel Programming with MPI. Morgan Kaufmann Publishers.

Papathomas, M. 1995. Concurrency in object-oriented programming languages. In

O. Nierstrasz and D. Tsichritzis Eds., Object Oriented Software Composition, pp. 31{

68. Prentice Hall.

Parsons, P. and Rabhi, F. 1995. Specifying problems in a paradigm-based parallel pro-

gramming system. In E. D'Hollander, G. Joubert, F. Peters, and D. Trystram Eds.,

Parallel Computing: State-of-the-Art and Perspective (1995), pp. 215{237. North Holland.

Parsons, P. and Rabhi, F. 1998. Generating parallel programs from paradigm-based spec-

i�cations. Journal of Systems Architecture 45, 4, 261{283.

Peterson, J. 1981. Petri Net Theory and the Modeling of Systems. Prentice Hall.

Petri, C. 1962. Fundamentals of a theory of asynchronous information 
ow. In Information

Processing 1962, Proc. IFIP Congress 1962 (Munich, 1962), pp. 386{390. North Holland

Publishing Company, Amsterdam.

Purtilo, J. 1994. The polylith software bus. ACM Transactions on Programming Lan-

guages 16, 1 (January), 151{174.



Towards a Common Development Framework for Distributed Applications � 21

Rabhi, F. 1995a. Exploiting parallelism in functional languages : a \paradigm-oriented"

approach. In J. Davy and P. Dew Eds., Abstract Machine Models for Highly Parallel

Computers, pp. 118{139. Oxford University Press.

Rabhi, F. 1995b. Parallel programming methodology based on paradigms. In P. Nixon

Ed., Transputer and Occam Developments, pp. 239{252. IOS Press.

Rabhi, F. and Manson, G. 1991. Divide-and-conquer and parallel graph reduction. Parallel

Computing 17, 189{205.

RATIONAL. 1999. The uni�ed modelling language (UML) resource centre. Rational Soft-

ware Corporation, http://www.rational.com/uml.

Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont, M., Her-

rmann, F., Kaiser, C., Langlois, S., Leonard, P., and Neuhauser, W. 1988. Cho-

rus distributed operating systems. Computing Systems Journal, The USENIX Associa-

tion 1, 4 (December).

Schafers, L., Scheidler, C., and Kramer-Fuhrmann, O. 1995. Trapper: a graphical

programming environment for parallel systems. Future Generation Computer Systems 11,

351{361.

Schmidt, D. 1995. Using design patterns to develop reusable object-oriented communica-

tion software. Communications of the ACM 38, 10 (October), 65{74.

Schwarz, J. and Rabhi, F. 1996. A skeleton-based implementation of iterative transfor-

mation algorithms using functional languages. In M. Kara, J. Davy, D. Goodeve, and

J. Nash Eds., Abstract Machine Models for Parallel and Distributed Computing, pp. 119{

134. IOS Press.

Simpson, H. 1986. The Mascot method. Software Engineering Journal , 103{120.

Skillicorn, D. 1992. The bird-meertens formalism as a parallel model. In J. Kowalik

and L. Grandinetti Eds., NATO ARW \Software for Parallel Computation". NATO ASI

series F: computer and systems sciences; v.106, Springer Verlag.

Skillicorn, D. 1994. Foundations of Parallel Programming. Cambridge International Se-

ries on Parallel Computation, vol. 6, Cambridge University Press.

Skillicorn, D., Hill, J. M., and McColl, W. 1996. Questions and answers about BSP.

Technical Report PRG-TR-15-96 (November), Oxford University Computing Laboratory.

Skillicorn, D. and Talia, D. 1998. Models ans languages for parallel computation. ACM

Computing Surveys 30, 2 (June), 123{169.

Smarr, L. and Catlett, C. E. 1992. Metacomputing. Communications of the ACM 35, 6

(June), 44{53.

Snyder, L. 1984. Parallel programming and the POKER environment. IEEE Computer ,

27{36.

Sommerville, I. 1996. Software Engineering (5th ed.). Addison-Wesley.

Thomsen, B., Leth, L., and Kuo, T. 1996. A facile tutorial. In U. Montanari and V. Sas-

sone Eds., CONCUR'96: Concurrency Theory, pp. 278{298. Lecture Notes in Computer

Science, Springer Verlag.

Vickers, A. and McDermid, J. 1992. An approach to the design of software for distributed

real-time systems. Technical Report YCS 211 (November), Department of Computer Sci-

ence, University of York.

Victor, B. 1994. A

veri�cation tool for the polyadic �-calculus. Technical Report DoCS 94/50, Department

of Computer Systems, Uppsala University, http://www.docs.uu.se/~victor/mwb.html.

Wu, Q., Field, A., and Kelly, P. 1997. M-tree: a parallel abstract data type for block-

irregular adaptive applications. In EuroPar'97 Parallel Processing (1997), pp. 638{649.

Lecture Notes in Computer Science 1300, Springer Verlag.

Yourdon, E. 1989. Modern Structured Analysis. Prentice Hall International.



22 � F.A. Rabhi

USER n

USER 2

WORLD
VIRTUAL

USER 1

������
������
������
������

������
������
������
������

������
������
������

������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 5. A distributed virtual environment

APPENDIX

A. A DISTRIBUTED VIRTUAL ENVIRONMENT

To illustrate a distributed application that contains many of the features discussed

in the paper, consider the example of a distributed virtual environment which is

composed of a virtual world and several participants interacting simultaneously

with it. An example application would be a surgical training system where partic-

ipants include one trainer (the surgeon) and several trainees (the observers). The

surgeon conducts the operation through a \virtual hand controller" and provides

explanations through a microphone. All observers can visualise the model patient

from various angles through a helmet mounted display as well as receive audio in-

formation from the surgeon through headphones. Another application would be a

distributed video game where several participants can interact with each other and

modify the virtual world concurrently.

Developing such an environment is a challenging task particularly for the inex-

perienced software developer. First, there are performance requirements (e.g. the

virtual world has to run the simulation eÆciently), real-time requirements (e.g.

outputs must be generated within some time constraints), reliability requirements

(e.g. the system must cope with users at di�erent geographic locations) and dy-

namic changes (e.g. users joining and leaving at any time). Secondly, during the

design activity, the concurrent aspects of the system must be correctly expressed,

an architectural model which embodies the resources and the network(s) involved

must be developed and an adequate logical-physical mapping that satis�es the re-



Towards a Common Development Framework for Distributed Applications � 23

Fig. 6. FSP Speci�cation of a Distributed Virtual Environment Protocol

quirements must be determined. Finally, the system must be implemented using a

suitable combination of language(s), operating system(s) and communication pro-

tocol(s).

B. EXAMPLE OF USING A CONCURRENCY TOOL

An example of using a tool to model the dynamic concurrent behaviour of a system

is illustrated in �gure 6. It shows the main speci�cation window of the LTSA

tool [Magee and Kramer 1999] describing the overall protocol of users joining and

leaving a virtual world (see Section A). It uses a notation called FSP (Finite State

Processes)[Magee and Kramer 1999] which similar to both CCS and CSP. The

speci�cation identi�es one process which represents the virtual world and N other

processes which represent users. Each user can submit a request for participation

(by sending some authenti�cation details) and receives either an acceptance or a

refusal. If accepted, a user generates inputs and consumes outputs until a stop

event occurs. The virtual world itself consists of two concurrent processes, one

responsible for registering users and another one for processing inputs/outputs.

The LTSA tool also supports the conversion of FSP speci�cations into �nite state

machine descriptions called Labeled Transition Systems (LTS). Figure 7 shows the

state diagram generated for one user in the system. Finally, the tool also supports

formal analysis (such a safety checking) as well as the display and animation of

speci�cations.

C. DESIGN IN UML

Considering the case study in Section A, we now model some of its design aspects

in UML. Figure 8 shows an object diagram that represents some of the structural

aspects of the system. This represents a re�nement over the initial speci�cation in

Section B but is still in need of further improvements.

Considering the dynamic behaviour of the system, �gure 9 is a UML state dia-

gram which shows that the virtual world consists of two concurrent states, one that

implements the main control loop and one that deals with registration requests. A



24 � F.A. Rabhi

Fig. 7. A Labelled Transition Diagram generated by the LTSA tool

Handler
Outputs

SpeechSensor

Input

Keyb

Handler
Inputs

1..*
Virtual World

1 Stop

Attach
1..*

Send 0..1

Update

0..1
User

1..*

Output

Display Sound Haptic

0..1

1

1

1

1

Physical

Model

1

Fig. 8. Example of a UML object diagram



Towards a Common Development Framework for Distributed Applications � 25

consistent

intermediate
world

world

InputsOutputs

authentication

authentication

wait for any

process

user request

wait for

wait for outputs

collect inputs

InputsOutputs

Accept

Authentification Details

wait for

User Request

user request

prompt for
authentification

confirmation

Accept/

Deny

Details

User Request

Authentification

Deny

Fig. 9. Example of a UML state diagram

user can only start generating inputs and collecting results once it has passed the

authenti�cation procedure.

Once all the objects have been identi�ed and their dynamic behaviour speci�ed,

they are grouped into components which are allocated to individual workstations.

Figure 10 shows a UML deployment diagram that shows that all objects that are

part of the Virtual World have been grouped into three components: one that

implements the overall control algorithm, one that maintains the physical model

and one that handles communication events. These components are then allocated

to a single workstation which will act as a Virtual World Server. The �gure also

shows that all objects in the User part have been grouped into three components,

one for collecting inputs, one for processing outputs and one for communicating with

the Virtual World Server. The �gure shows two instance users which are allocated to

di�erent workstations. All workstations communicate through an Ethernet network

and one of the workstations has access to a glove subsystem.

D. DESIGN PATTERNS

The design of the distributed virtual environment case study involves a combina-

tion of several design patterns. One of them is the Observer pattern, whose object

diagram is represented in �gure 11, which speci�es a server process in charge of

monitoring a real-time environment and informing a set of clients processes (called

the observers) when changes in the monitored values (e.g. sensor values) occur.

Observers can register or detach from the system at any time. Alternatively, mon-

itored values can be sent periodically particularly if there are risks of loosing data.

Another pattern that can be combined with this pattern is the Model-View-

Controller pattern which divides an interactive application into three components:



26 � F.A. Rabhi

Communication

Input

Output
User workstation

Communication

Input

Output
User workstation

Glove 
subsystem

Ethernet 1 MB
TCP/IP

Virtual World Server

Communication

Physical model

Control
User workstation

RS-232

Fig. 10. Example of a UML deployment diagram

Subscribe
DetachServer

1

Acquire

Server
Concrete

Observer

Update

Notification

Episodic Periodic

1..*

1..*

1

Fig. 11. Object model for the Observer pattern



Towards a Common Development Framework for Distributed Applications � 27

View Controller

Observer

Model

Attach

Attach

Get Data

1..* 1

Call Service

Call Update

Fig. 12. Object model for the Model-View-Controller pattern

the model which contains the core functionality and data, the view which represents

a set of outputs to the user and a controller which handles the user inputs. A UML

object diagram which captures the structure of this pattern is illustrated in �gure

12. Such a pattern has been used in di�erent contexts such as in designing the

Smalltalk programming environment [Lalonde and Pugh 1991].

Finally, a Client-Dispatcher-Server (see �gure 3) can be used to illustrate the

fact that users (clients) and the virtual world (server) should be able to interact

regardless of their physical location and the communication medium used.


