
ntists
 a
overy,
y inte-

rface
pid

le,

ically
any

coordi-
,

ing the
 diffi-
 uti-

 tool-
ering
project
ke it

e-
es,

the

1]

r-

.
ble to
pyGlobus: A Python interface to the Globus Toolkit

Keith R. Jackson
Lawrence Berkeley National Laboratory

Abstract

 Developing high-performance problem solving environments/applications that allow scie
to easily harness the power of the emerging national-scale “Grid” infrastructure is currently
difficult task. Although many of the necessary low-level services, e.g. security, resource disc
remote access to compute/data resource, etc., are available, it can be a challenge to rapidl
grate them into a new application.

To address this difficulty we have begun the development of a Python based high-level inte
to the Grid services provided by the Globus Toolkit [ref]. In this paper we will explain why ra
application development using Grid services is important, look briefly at a motivating exam
and finally look at the design and implemenation of the pyGlobus package.

Introduction

 The emergance of large-scale “Computation/Data Grids”[4] offers the promise of dynam
constructing domain specific problem solving environments[2] to support high-end science. M
science projects today, e.g., high-energy physics and observational cosmology, require the
nated use of organizationaly and geographically distributed simulation codes, data archives
instruments, and research teams. While the community has made great progress in provid
basic Grid services, it can be challenging for non-computer scientists to access them. This
culty impedes the goal of allowing application scientists to rapidly develop applications that
lize Grid services.
 To address this problem, we have begun the development of higher-level object-oriented
kits that support rapid application development through the use of modern software engine
techniques. In addition to the Python based toolkit that is our focus, there is also a related
to provide a similar toolkit in Java[7]. We believe that Python has several properties that ma
well suited for Grid programming.
1. It’s a high-level object-oriented programming language with; automatic memory manag

ment, dynamic typing and binding, simple, easy to learn syntax, and support for packag
modules and classes.

2. It has a wide variety of built in data structures including, lists, hash tables, and through
NumericPython package, high-performance multi-dimensional arrays.

3. There exist a wide variety of modules to perform various tasks including support for XM[1
processing, SOAP[9], MPI, etc.

4. It’s portable across any platform that supp/dev/md/rdsk/d1orts ANSI-C. The Python inte
preter is written in ANSI-C and compiles under all flavors of UNIX, Win32, and MacOS.

5. Python code is easy to develop and maintain due to the simplicity of the syntax.
6. It is easy to integrate native C/C++ or Fortran code into Python as an extension module
7. Excellant performance. Through the use of extension modules for key areas, it is possi

achieve performance within one or two percent of optimized C code.
July 23, 2001 1

ows

row-
n
gy
com-

f the
Grid
e most

hal-
id
ful use
n help

s-

celerat-
-
ased

ources.
 and
copo-
gener-

ed. The
sky

rs. The
tellites.
t may

find the
ata in
ears.
e tight
. As

ossible
8. Python is currently extensively used in the high-performance computing world, so many
application scientists are already familiar with it.

9. Platorm independent GUI toolkits and Open Source IDE’s.
10. Support for meta-programming. Python offers built-in support for introspection, which all

for automatic discovery of interfaces by applications and GUI builder tools.
11. The Python language is Open-Source.

[need tie-in paragraph here]

Motivation

We are currently in the midst of a fundamental shift in the way science is done due to the g
ing ability to dynamically couple heterogenous compute, data, instrument, and collaboratio
resources. NASA’s Information Power Grid (IPG) and the NCSA Alliance’s National Technolo
Grid have demonstrated the feasability of providing persistent Grid Services to the scientific
minity. One similarity anongst these Grids is the use of the Globus toolkit to provide many o
underlying Grid Services. The Globus toolkit provides a number of modules that implement
Services for security, resource discovery, data transfer/management, etc. It has become th
popular solution to providing these services.
 Although many of the necessary services are becoming available, they can still be very c
lenging to use. To fully realize the goal of allowing application scientists to routinely use Gr
Services, more must be done to ease the burden of Grid application development. The care
of appropriate abstractions and higher-level constructs such as objects and components ca
hide much of the complexity of Grid programming from the application scientist.
 We now consider a motivating example from the field of observation cosomology that illu
trates many of the requirements we see for 21st century science.
 Recent studies of distant supernova have shown that the expansion of the universe is ac
ing under the influence of a new force, calleddark energy. Current studies are conducted by geo
graphically distributed research teams, and involve the coordinated use of several ground-b
observatories, the Hubble space telescope and multiple distributed compute and storage res
For example, the Supernova Factory at LBNL utilizes instruments in Hawaii and California,
storage and compute resources at Cal Tech and LBNL. As the program progresses, it will in
rate resources in Chile and the Canary Islands. This program is a stepping-stone to the next
ation search, the space-based Supernova Acceleration Probe (SNAP).

As the scale of these searches has increased, a number of new requirements have emerg
first is the shear scale of the data handling and compute tasks involved. Raw, uncorrected
images must be transferred nightly from the remote observatories to compute facilities. The
images are then corrected and calibrated to remove any atmospheric effects or tracking erro
results are then compared to baseline sky catalogs to eliminate asteroids and man-made sa
Finally algorithms are applied to the images to search for increases in stellar magnitude tha
indicate a supernova event. The resulting data is then analyzed manually be researchers to
most promising candidates to observe. This process involves aproximately 50 gigabytes of d
500 files to be transfered, processed, and archived daily for the life of the project - 5 to 10 y

Secondly, as the accuracy of supernova models increases, it should be possible to allow th
integration of simulation data with experimental data to help filter out candidate supernovas
more accurate supernova simulations are developed over the next year, it should become p
July 23, 2001 2

paring
out

high-
It will
most

o
n the

th the
per-
 code

-
pper

use of
ondi-
tions,
 the

pro-
en the
r most

e, in
help
WIG)
ypes
e of

first
 Glo-
do a
pro-

nents
ple,
the
rid-
, log-
to use these to filter out candidate supernovas for further observvation. This process of com
simulation with experiment must happen within a 24 hour time period to be of use in filtering
candidate supernovas.

Requirements

[to be completed]

pyGlobus Overview

 The rest of the paper will focus on the Python CoG Kit, pyGlobus, and explain; what the
level goals for the project are, and how Globus concepts are mapped to the Python idiom.
also discuss some of the underlying implementatin details before examining a number of the
commonly used interfaces.
 This projet began with a number of important high-level goals in mind. First, we wanted t
ensure performance levels at or near the native Globus C code. To do this we have relied o
use of native extension modules in Python. This allows Python code to cleanly interface wi
underlying C code. By using Python solely as a very thin control proxy, we can minimize the
formance cost associated with the wrapping. Second, where possible map the underlying C
to a natural Python idiom. For example, in C it is normal to return anint status code and use point
ers to pass in other output variables. In Python functions may return multiple values. The wra
functions take care of mapping between these two styles. Another important example is the
exceptions. Python provides support for catching and throwing exceptions to indicate error c
tions. The pyGlobus wrappers convert the underlying Globus error codes into Python excep
allowing for much cleaner error handling at the Python level. The third goal was to minimize
complexity of Grid programming as much as possible by the careful use of object-oriented
gramming techniques such as abstraction, encapsulation, and polymorphism. We have tak
approach of using abstraction and default arguments to provide a simple clean interface fo
users, while still providing access to a more rich set of capablities for the advanced user.
 While it is possible to generate wrapper functions by hand to interface C and Python cod
practice this is a very mechanical and time consuming process. A number of tools exist to
automate this process. We have chosen to use the Simple Wrapper Interface Generator (S
[10] to generate our interfaces. SWIG supports the mapping of built in and user defined C t
into Python types, including the ability to override the default type mappings. Although the us
SWIG does not eliminate the need to write wrapper code, it does minimize this.
 We have found it useful to distinguish between two categories of code in pyGlobus. The
provides a low-level mapping between Globus functions and Python methods. Although the
bus toolkit is written in C, it is still an object-oriented architecture. Hence it was possible to
fairly direct mapping into Python proxy classes. For example, the Globus ftp client module
vides a number of functions that take aglobus_ftp_client_handleattr_t pointer as their first argu-
ment. In pyGlobus, we have aFtpClientHandleAttrobject that acts as a proxy for all of these
functions. In addition to these proxy classes, we intend to build a set of higher-level compo
that build upon, and extend the basic functionality provided by the Globus toolkit. For exam
we are working with the supernova group to develop a set of components to help manage
shepharding of 500 files a night from three different locations. This will use the underling G
FTP [1] protocol to transfer the data, but will add support for automated performance tuning
ging, and fault recovery.
July 23, 2001 3

e to
com-
 gen-

base

-

and
Package Overview

In this section we will look at a number of the major modules that provide the basic interfac
the Globus toolkit. Although we will look at several code examples, this is not intended as a
plete introduction to the pyGlobus package. Instead we hope to provide an overview of the
eral functionality provided by pyGlobus. For further information consult the online API
documentation [8].

Exceptions
The pyGlobus package makes extensive use of exceptions for error handling. It provides a

class for all package exceptions,pyGlobus.util.globusException.GlobusException, that inherits
from the built-in exception base class,exceptions.Exception. Each of the other modules in pyGlo
bus defines its own sub-classes ofGlobusException, e.g., the gramClient module defines aGram-
ClientExceptionthat extends fromGlobusException. This provides for a great deal of flexibility in
error handling.

Resource Acquisition
 ThegramClient provides the main interface to the Globus GRAM [3] protocol to provide
resource acquisition and management functionality. It supports the ability to remotely start
manage compute jobs through a uniform interface. TheGramClient class provides methods to
submit, check status of, and cancel jobs. The following example illustrates using theGramClient
class to submit a simple job.

from threading import *
from pyGlobus.gramClient import GramClient
Callback function for job state changes
cond = 0
def func(cv, contact, state, error):
 global cond
 ... # handle various job states
 elif state == GramClient.JOB_STATE_DONE:
 print "Job is done"
 cv.acquire()
 cond = 1
 cv.notify()
 cv.release()

def test(rm, rsl):
 global cond
 condV = Condition(Lock())
 try:
 #Construct object, init’s globus modules and creates handle
 gramClient = GramClient.GramClient()
 # Set the callback to receive state changes.
 callbackContact = gramClient.set_callback(func, condV)
 # Submit the request. rm is the Resource Manager to contact
 # and rsl is the RSL describing the job request.
 jobContact = gramClient.submit_request(rm, rsl, GramCli

ent.JOB_STATE_ALL,callbackContact)
Now handle any exceptions and wait on the condition variable.
July 23, 2001 4

s fol-

d asyn-
ca-
o
tings,
, etc.
thon.

e pro-
erly-

 pro-

ports
 num-
nchro-
ansfer,

 to be
 very
ber of
elop-
et of
The Globus toolkit uses callbacks to propagate information back to the application, pyGlobu
lows the same model, but allows the callbacks to be written in Python.

Secure IO
 pyGlobus provides an easy to use interface to high-performance secure synchronous an
chronous remote IO using the Grid Security Infrastructure (GSI) [5] to support PKI authenti
tion. The GSITCPSocket class provides the main interface to the remote IO facilities. The i
module also contains a series of attribute objects that allow the user to control a variety of set
including tcp buffer size, authentication and authorization modes, out-of-band data handling
A simple example will illustrate how easy it is to create a secure authenticated server in Py

from pyGlobus.io import GSITCPSocket

 try:
 soc = GSITCPSocket.GSITCPSocket()
 print "got a socket object"
 port = soc.create_listener()
 print "created a listener on port %s" % port
 soc.listen()
 print "returned from listen"
 childSoc = soc.accept()
 str = "spam, spam, eggs, and spam"
 nBytes = childSoc.write(str, len(str))
 print "Wrote %i bytes out" % nBytes

Grid FTP
 Access to the GridFTP protocol is provided through two packages. The ftpClient packag
vides access to the client side functionality, including the ability to set parameters for the und
ing tcp connection, get and put files, make and delete directories, list files, control security
parameters, third party transfers, partial transfers, parallelism, etc. The ftpControl package
vides a lower level interface useful for writing servers.

Gass Copy
The gassCopy module provides a protocol independent interface to transfering files. It sup

the ftp, gsiftp, http, and https protocols in addition to local files. It also provides access to a
ber of configurable attributes to control various performance options, and supports both sy
nous and asynchronous transfers. The GassCopy class provides the main interface for file tr
and supports methods such ascopy_utl_to_url andregister_copy_handle_to_url.

Future Directions

 Although most of the Globus toolkit has been wrapped, there are a number of areas still
completed. In particular, the new replica catalog and replica management packages will be
useful for data intensive projects. Once these are completed, we will begin to develop a num
higher-level components for developing portals with the WebKit [ref] servlet engine, and dev
ing domain specific problem solving environments. We will also be looking at developing a s
common GUI components, using wxPython, to support file transfer, job control, etc.
July 23, 2001 5

ices
fers
ure
reate

yGlo-
ason
nce,
uta-
ia.

V.
001).
 E.
E
Pitts-

ruc-

al
nce,

 and
Summary

The Python CoG Kit offers the ability to rapidly develop applications that access Grid Serv
provided by the Globus toolkit. It provides a simple high-level object-oriented interface, yet of
good performance. pyGlobus currently supports most of the functionality of Globus, and fut
work will complete the other modules. Although more feedback from users is necesary to c
more high-level components, pyGlobus has already proven useful to a number of projects.

Acknowledgements

 We are grateful to a number of individuals who have contributed to the development of p
bus. In particular we’d like to thank: Dennis Gannon, Dan Gunter, Gregor von Laszewski, J
Lee, and Jason Novotny. This work is supported by the U.S. Dept. of Energy, Office of Scie
Office of Advanced Scientific Comput-ing Research, Mathematical, Information, and Comp
tional Sciences Division under contract DE-AC03-76SF00098 with the University of Californ

References

1. B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder,
Nefedova, D. Quesnel, S. Tuecke. (Submitted to IEEE Mass Storage Conference, April 2

2. G. Allen, W. Benger, T. Goodale, H.-C. Hege, G. Lanfermann, A. Merzky, T. Radke, and
Seidel. The Cactus Code: A Problem Solving Environment for the Grid. In Proc. 9th IEE
International Symposium on High Performance Distributed Comput-ing, pages 253 260,
burg, Aug. 2000.

3. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke. A
Resource Management Architecture for Metacomputing Systems. Proc. IPPS/SPDP ’98
Workshop on Job Scheduling Strategies for Parallel Processing,1998

4. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Computing Infrast
ture. Morgan-Kaufmann, 1999.

5. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security Architecture for Computation
Grids. Proc. 5th ACM Conference on Computer and Communications Security Confere
pg. 83-92, 1998.

6. Globus. http://www.globus.org/
7. G. Laszewski, I. Foster, J. Gawor, P. Lane, A Java Commodity Grid Kit. In Concurrency

Computation: Practice and Experience, pages 643-662, Volume 13, Issue 8-9, 2001.
8. pyGlobus API documentation. http://www-itg.lbl.gov/grid/projects/pyGlobus/api_doc/

index.html
9. SOAP. http://www.w3.org/TR/SOAP/
10. SWIG. http://www.swig.org/
11. XML. http://www.w3.org/XML/
July 23, 2001 6

	pyGlobus: A Python interface to the Globus Toolkit
	Abstract
	Introduction
	1. It’s a high-level object-oriented programming language with; automatic memory management, dyna...
	2. It has a wide variety of built in data structures including, lists, hash tables, and through t...
	3. There exist a wide variety of modules to perform various tasks including support for XM[11] pr...
	4. It’s portable across any platform that supp/dev/md/rdsk/d1orts ANSI-C. The Python interpreter ...
	5. Python code is easy to develop and maintain due to the simplicity of the syntax.
	6. It is easy to integrate native C/C++ or Fortran code into Python as an extension module.
	7. Excellant performance. Through the use of extension modules for key areas, it is possible to a...
	8. Python is currently extensively used in the high-performance computing world, so many applicat...
	9. Platorm independent GUI toolkits and Open Source IDE’s.
	10. Support for meta-programming. Python offers built-in support for introspection, which allows ...
	11. The Python language is Open-Source.

	Motivation
	Requirements
	pyGlobus Overview
	Package Overview
	Exceptions
	Resource Acquisition
	Secure IO
	Grid FTP
	Gass Copy

	Future Directions
	Summary
	Acknowledgements
	References
	1. B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefed...
	2. G. Allen, W. Benger, T. Goodale, H.-C. Hege, G. Lanfermann, A. Merzky, T. Radke, and E. Seidel...
	3. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke. A Resource...
	4. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Computing Infrastructure...
	5. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security Architecture for Computational Grids...
	6. Globus. http://www.globus.org/
	7. G. Laszewski, I. Foster, J. Gawor, P. Lane, A Java Commodity Grid Kit. In Concurrency and Comp...
	8. pyGlobus API documentation. http://www-itg.lbl.gov/grid/projects/pyGlobus/api_doc/ index.html
	9. SOAP. http://www.w3.org/TR/SOAP/
	10. SWIG. http://www.swig.org/
	11. XML. http://www.w3.org/XML/

