NPAC Support for Sandia Commodity Clustering (C-Plant) Technologies –

Pilot Project Final Report (Draft)
Geoffrey C. Fox and W. Furmanski

Northeast Parallel Architectures Center, Syracuse University, Syracuse NY

November 22, 1998

11.
Executive Summary

2.
Sandia C-Plant Control Software Requirements
2
3.
JWORB based Approach Proposed by NPAC
2
3.1. Pragmatic Object Web
2
3.2. Java Web Object Request Broker (JWORB)
3
3.3. High Performance commodity computing (HPcc)
3
3.4. Relation to Other Metacomputing Systems
4
3.5. Recommended Architecture
4
3.6. High Level Architecture for Meta-Computing Federation
5
4.
Tasks Accomplished So Far
6
· 4.1. Commodity Cluster Testbed Installation and NPAC
6
4.2.
Core Cluster Management Functions in JWORB: Heartbeat, Failover
7
4.3.
WebFlow as Visual Componentware Dataflow Facility for JWORB
8
4.4.
XML Support in JWORB for Uniform Middleware Datastore
9
4.5.
HLA Federation model for Meta-Metacomputing
9
4.6.
Building JWORB based Distributed + Remote Computing Application Demo
10
5.
Unanswered Questions and Possible Next Steps
12
5.1.
Thin versus Fat Nodes
12
5.2.
Choice of the Fine Grain HPC Cluster Management Software
12
5.3.
Security
12
5.4.
Resource Database
13
5.5.
Load Balancing
13
5.6.
Metadata Framework
13
5.7.
High Level Application Frameworks
13
· 5.8. Specific Application Requirements for Sandia, C-Plant and ASCI
14
6.
Related 1998 Publications
14

1. Executive Summary

We report here on the results of our pilot project with Sandia Labs, conducted in summer and fall 1998 and focused on providing initial support in the area of commodity cluster management software for Sandia C-Plant architecture. We summarize here the requirements identified during the pilot project phase (Chapter 2), we describe our proposed architecture based on our JWORB (Java Web Object Request Broker) server that integrates several commodity technologies of Java, CORBA, COM and XML (Chapter 3), we summarize the tasks accomplished so far (Chapter 4), we collect the list of unanswered questions that could provide natural next steps for a possible follow-on project (Chapter 5) and we include a list of our 1998 papers that illustrate positive response to our ideas and prototypes from various computational communities. Attached to this report is our SC98 demo handout (described in Section 4.6) and our recent RCI report that offers a comprehensive review of our recent work in various domains.

2. Sandia C-Plant Control Software Requirements

Based on NPAC visit at Sandia in June and the follow-on email exchanges, we collected necessary information and constructed an effective set of requirements to be imposed on C-Plant control software design, addressed by our pilot project. The requirement list includes the following items:

· The software should run on heterogeneous community clusters, including Linux, NT and Solaris nodes;

· The software should support or be compatible with the cluster management utilities under development by Sandia such as bebpod, pct, pingd and yod;

· The overall architecture should be scalable and capable of delivering robust supercomputing services;

· The software should be consistent with the overall ASCI wide DRM architecture based on 7 conceptual layers;

· The software should facilitate interoperability between C-Plant nodes and other entities, managed by a variety metacomputing models including Globus, Legion and others;

· The software should be compatible with the high performance commodity networking modules such as VIA.

· Applications include both classic HPCC simulations but also emerging manufacturing requirements of linking to persistent object product databases and of supporting many engineers whose individual needs could be quite modest.
3. JWORB based Approach Proposed by NPAC

· Based on the analysis of requirements listed above, we proposed a model and methodology for C-Plant control and management software based on JWORB (Java Web Object Request Broker) middleware architecture, developed recently by NPAC and now being adapted for several application domains. We describe here in more detail our proposed architecture. Note that JWORB is standards compliant for the four commercial object models described in section 3.1. Thus our solutions built on JWORB can be re-implemented in terms of commercial servers as these become available.
3.1. Pragmatic Object Web

· We observed that today’s and coming distributed and distance computing technologies are becoming increasingly influenced and shaped by the four major commodity software forces: Java by Sun Microsystems, CORBA by Object Management Group, DCOM by Microsoft, and the new World-Wide Web Consortium technologies such as XML or HTTP-NG. We believe that the best results in robust distributed systems engineering can be obtained today by mix-and-match and domain-specific adaptation of these four, partially complementary and partially competing technology domains. We term this emergent environment as the Pragmatic Object Web (POW) and we refer to the four major players as POW Stakeholders. We are formulating our approach in the coming Wiley book on Building Distributed Systems on the Pragmatic Object Web – The Best of Web, Java, CORBA and COM. The attached RCI Report New Systems Technologies and Software Products for HPCC: Volume III – High Performance Commodity Computing on the Pragmatic Object Web contains a more HPC centered overview of our concepts, prototypes and recommendations. Our other 1998 publications summarized in the attached list contain specific projections of our concepts for the individual computational domains and communities such as Modeling and Simulation, Test and Evaluation, High Performance Computing, Web based Computing and Metacomputing.

3.2. Java Web Object Request Broker (JWORB)

Central to our 3-tier approach is a powerful multipurpose middleware layer, given by a mesh of interactive JWORB (Java Web Object Request Broker) servers. JWORB is a multi-protocol network server implemented in Java. It currently supports and integrates HTTP and IIOP protocols, i.e. it can act simultaneously as a Web server and a CORBA client, broker or server. We are also building JWORB support for ORPC (Microsoft DCOM protocol) and for XML streaming. Being based on a set of open and actively developed standards, JWORB is functionally equivalent to a collection of servers, dedicated to the individual protocols listed above but our integrated approach offers substantial economy for the middleware software development, installation, management and support. On top of JWORB “software bus”, we build a set of core services and high level horizontal (generic) and vertical (domain specific) facilities, following the overall software architecture of CORBA. We differ from OMG by: a) developing prototype implementations, not only specifications, of all design components; b) mixing-and-matching design components from other competing technologies (such as COM or Web); and c) moving faster and more directly towards distributed and distance computing services and facilities in support for advanced metacomputing applications.

3.3. High Performance commodity computing (HPcc)

JWORB based approach is an example and a specific instantiation of our more general HPcc (High Performance commodity computing) concept which recommends to build modern HPC on top of Web/Commodity technologies. In this approach, High Performance is simply one of several “illities” addressed by CORBA and to be provided by a set of suitable Quality of Service add-ons and the associated Interceptors that assure access to high bandwidth communication channels and dedicated HPC hardware and software modules, but only when really required by the application. In such conceptually 3-tier model, most of the control and management tasks is performed by the high functionality modest performance commodity software in the middle tier (JWORB), and the control is passed to the (expensive) high performance back-end tier only to handle dedicated, computationally or bandwidth intensive operations. Experience from addressing realistic large scale applications shows that such genuine HPC components can be often represented by and encapsulated in a relatively small fraction of the whole application code, even if the associated HPC computation might consume large fraction of the global CPU time used by the application.

3.4. Relation to Other Metacomputing Systems

· Current generation Metacomputing environments such as Globus or Legion follow an alternative, bottom-up custom rather than commodity software based development strategy. Such systems are tuned for and can offer more directly high performance for small focused problems but they can hardly facilitate development of high functionality realistic large scale metacomputing applications of relevance to the ASCI mission. We view Globus as a useful low level metacomputing toolkit which is however incomplete for building comprehensive high functionality middleware infrastructure for broad based metacomputing. We believe that building high level metacomputing services such as resource management or security can be accomplished much more efficiently on top of commodity technologies and standards rather than in a heroic from scratch development effort. In a similar way, Legion can be viewed as a custom distributed object system and hence several of its components can be now replaced by a suitable mixture of commodity technologies from the POW arsenal, most notably CORBA and DCOM. We can take several design lessons from Globus and Legion when building our environment but some specific implementations need to be reworked in our new overall software engineering framework based on commodity technologies and standards.

On the other hand, our approach naturally matches the 7 conceptual layers of the ASCI DRM model with our JWORB based tier 2 corresponding to the core DRM Resource Management Service, with the DRM User + Security + User Interface layers mapped on our Tier 1 Services and Facilities, and with the DRM Resources, Resource Interfaces and Resource Policies mapped into our Tier 3 Services and Facilities. It will clearly take a lot of experimentation and prototyping to fully specify, implement, test and fine-tune individual components of the ambitious DRM design. We feel that one should start this process from the middleware “software bus” layer and use the Java platform which, due to its portability, growing installation base and functionality, offers now a perfect programming environment for rapid prototyping of powerful middleware. We therefore propose to use JWORB model as a prototype implementation framework for ASCI DRM, to be applicable to all ASCI platforms and to be initially focused on commodity clusters such as C-Plant.

3.5. Recommended Architecture

· In the simplest, fully homogeneous and perhaps somewhat idealistic mode, a JWORB server operates on each node of a distributed or distance computing environment, and hence on each node of a C-Plant cluster. In a reality checked, fine-tuned and performance optimized production mode, some more structured, hierarchical and heterogeneous approach will be likely more appropriate and/or practical. For example, C-Plant project currently experiments with fat (service) and thin (compute) nodes and develops small dedicated control software modules for managing such scalable units. In such host-node model, JWORB would fit more naturally on the service/host nodes. However, following our HPcc philosophy, we would recommend for the initial bootstrap phase to use JWORB as a core component to be present on all cluster nodes, and to be perhaps scaled down to more optimized, dedicated daemons on the compute nodes later. Thus we suggest clarifying the required functionality and interconnect features of such node daemons after they are prototyped, tested and fine-tuned using the simpler and more robust (albeit potentially lower performance) JWORB based homogeneous model.

· With JWORB server in each node of a metacomputing cluster, the overall software architecture becomes clean and powerful. Node application modules are written in the developers’ favored languages and they are wrapped as CORBA, COM or Java components, conforming to some high level programming model. One such distributed model, WebFlow, offering AVS-like computational graph based dataflow with visual authoring tools, is bundled with JWORB as a default horizontal facility for high level visual metacomputing. A mesh of JWORB servers manages itself via a suite of core cluster management services such as heartbeat and failover, and it communicates with the tier 3 computational modules and with the tier 1 user interface modules using suitable component wrappers and one of the JWORB supported protocols. For example HTTP can be naturally used for communication with browsers, IIOP for communication with the front-end ORBlets or the back-end CORBA servers, XML and Java for database linkage, ORPC for communication with the front-end Active X controls or the backend DCOM servers etc.

Detailed selection of specific protocols from the available JWORB suite is left for application developers. Our recommended approach for the optimial usage of the POW assets is the following:

· Use Java as the node implementation language only; minimize the use of Java RMI until Sun improves its implementation and clarifies the relationship with IIOP. The Java Grande forum has proposed high performance enhancements to RMI. However one should monitor new developments for Java distributed computing such as JINI and UC Berkeley’s ninja project which might bring near term implications for commodity cluster computing.

· Use COM for high performance desktop (e.g. DirectX for fast real-time visualization) and SAN (System Area Network) computing (e.g. VIA for fast optimized network communication)

· Use CORBA primarily for the Intranet scale distributed computation. Individual labs or projects will typically use ORB products from different vendors and the wide-area Inter-ORB interoperability, even if formally assured and enforced by CORBA 2, is yet to be verified and fully tested for the large scale Internet applications.

· Use XML for wide-area communication and data transfers between geographically separated labs, different organizations and their security domains. Convert XML data streams to your favored distributed object framework, process on your local Intranet, and transform the results back to XML for shipment to other sites or domains.

3.6. High Level Architecture for Meta-Computing Federation

Even if we believe JWORB is a good and complete model, there will be always other schools of thought that lead to other metacomputing systems we need to federate with. We feel that federation technologies should come from outside of the core POW technology suite as none of the current Stakeholders has significant experience in federating with competitive approaches. In our opinion, the most promising standard in this area is currently offered by High Level Architecture (HLA) from the DoD Defense Modeling and Simulation Office (DMSO). DoD Modeling and Simulation (M&S) is perhaps the most advanced area of federally funded distributed computing, so far pursued quietly and in separation from the HPC community, but now getting merged via the DoD HPC Modernization Program (HPCMP). NPAC leads the academic part of the FMS (Forces Modeling and Simulation) technology area within the HPCMP and we have therefore the first hand insight into this field.

As a large, complex and heavily funded domain (representing some 10% of the overall DoD software budget), DoD M&S developed a spectrum of systems and paradigms, represented by different time management schemes, object models, communication strategies etc. These various simulation systems were pursued independently until mid 90s but now they are being forced to interoperate and federate due to the DoD downsizing and the associated budget cuts across the whole DoD. The resulting HLA architecture for federating independent simulation subsystems is a high quality, future oriented, domain independent IEEE standard. It is being currently proposed by DMSO to OMG as a new advanced CORBA Federation Facility, and it is already mandated as the DoD-wide simulation interoperability architecture to be fully enforced by the year 2001.

· Further developments in HLA are monitored and recommended by the DoD AMG (Architecture Management Group) and facilitates by SISO (Simulation Interoperability Standards Organization). Large manufacturing industry such as Boeing appear to be seriously involved in HLA as this standard is likely to have major impact for Virtual Prototyping, Concurrent Engineering, Collaboratory Manufacturing and Simulation Based Acquisition. Overseas and non-DoD applications of HLA are starting to take off now that the standard is stabilized and passed to IEEE in 1997/1998.

We are involved in HLA activities within the DoD HPCMP and we also view HLA as a promising broader framework for Meta-Metacomputing, i.e. for federating various Metacomputing domains. In our JWORB framework, we developed recently a set of HLA related services, most notably the Object Web RTI i.e. full implementation of DMSO RTI 1.3 which represents the middleware communication layer or software bus of the HLA infrastructure. HLA federations are built, often from pre-existing application modules or subsystems, by specifying Federation Object Model which defines a set of distributed objects to by supported by RTI and to be available for sharing by all federates forming a federation. Each federate can join an existing federation or start a new federation and it can interact with other federates via the FOM elements. Federates communicate by publishing and subscribing to selected FOM objects or their attributes and/or by sending interaction objects (i.e. discrete events). Both the interaction delivery and shared attributes update is handled transparently by RTI via the performance and bandwidth optimized routing spaces.

4. Tasks Accomplished So Far

· In this pilot project that effectively started in July after our visit to Sandia, we addressed a set of initial tasks towards building a JWORB based commodity cluster management software with HLA based federation support for meta-metacomputing. We installed at NPAC a small testbed PC cluster to enable experiments with various software platforms, we developed the overall design for the JWORB services as outlined above, and we prototyped selected components including Heartbeat/Failover and XML support for Resource Database Management. We discuss below the specific tasks accomplished so far, followed by the list of unanswered questions or pending issues that can indicate possible next steps for a follow-on project.

4.1. Commodity Cluster Testbed Installation and NPAC

· We specified, ordered and installed hardware & software required to construct a simple heterogeneous commodity cluster that would act as testbed for this project. Later on, we intend to reconstruct at NPAC as detailed as possible CPLANT configuration but we decided to start with some natural commodity components to give the project a quick start. Our cluster includes:

· 4 NT workstations, running standard Microsoft desktop software, and managed by two NT servers running Microsoft Cluster Server and other BackOffice servers (SQL Server, Exchange Server); and

· b) 4-node Linux cluster, managed by Beowulf and running standard GNU and/or RedHat utilities including compilers, thread libraries etc.

· Each node (both in NT and Linux sub-clusters) also runs JWORB server. The mesh of these servers is connected via core cluster management services described below and it also enables higher level frameworks such WebFlow dataflow, XML datastore and HLA federation, discussed in the following sections.

4.2. Core Cluster Management Functions in JWORB: Heartbeat, Failover

A mesh of JWORB servers can build a cluster provided that they know that the other servers are alive. Hence, one of the issues involved in the cluster management is high availability. The basic technique used in clusters to achieve high availability is Failover. The concept is simple enough: One computer watches another computer. If one dies the other takes over. So an important issue is to provide support for reliable and efficient detection of the node failure, followed by a subsequent move of the critical system and application resources from the faulty node to another working node.

Fault tolerance support in CORBA is at the level of RFP and a set of pending proposals. Java or XML do not offer any solution yet. COM offers a proprietary solution called Wolfpack or Microsoft Cluster Server. While monitoring CORBA Fault Tolerance activities and installing Wolfpack on NPAC cluster, we decided to develop a simple failover support in JWORB as part of this project. To provide this functionality, the following two algorithms have been designed and implemented.

HeartBeat In this approach, a simple HeartBeat object is implemented as a CORBA object. This Object is activated whenever the server gets activated and tries to find out other servers that are running. A simplistic heartbeat functionality can be provided in terms of a fully interconnected cluster or by dedicating one node to act as a central server acting as a heartbeat monitor. However, the former solution is not scalable and the latter solution is not fault tolerant by itself.

Therefore, our current design builds a hierarchical representation for the servers. Each sub cluster will have 5-10 servers and each group’s representative forms another such group on the higher level, and so on. In each group only one server takes the central server role and it communicates with the other central servers in upper hierarchy within another group.

· Main elements related to this service are: HeartBeat Daemon and HearBeatListener. The HeartBeatDaemon offers an interface for providing information about the state of the cluster based on registration to this service. It also starts up the HeartBeatListener object. The HeartBeatListener sends periodic messages to its peers. It also updates the state information by informing HeartBeatDaemon object. If the central server dies, its role is taken over by the other member of the group with the minimal ID value.

Keep Alive Ring In this design a cluster or sub-cluster is created by forming a virtual ring of JWORB servers. This has been implemented by a creating set of CORBA objects. When a server gets activated it can either join a cluster or create a new sub-cluster. Since there is no central server it eliminates a single point of failure. Any number of servers can create a cluster.

When a server joins a cluster, the ring is reorganized to include the new server. Each entity in the ring is aware of its left and right neighbors. Each entity sends periodic messages to its right neighbor and checks for messages from its left neighbor. Thus any failure or crash is promptly detected and the cluster reorganized. If the right node dies, a warning message is reflected back to the left node and its left neighbors until all active nodes are notified and ready to adjust the ring topology.
Main elements in this service are: Daemon, Cluster Monitor and Ring Manager. The Daemon is invoked when the server is activated and which provides functionality of joining a cluster or creating a sub cluster. It also starts the ring manager. The Cluster Monitor is a visual interface and provides information about the state of the cluster. This information includes the number of servers, current servers and deactivated servers. It also provides details about current servers like machine name, neighbor’s etc. The Ring Manager creates threads for passing of messages as well as receiving of messages. It adjusts the ring when new servers join When an alive message is not received it tries to contact the neighbors of the deactivated server to reorganize the cluster.

4.3. WebFlow as Visual Componentware Dataflow Facility for JWORB

WebFlow is a Web based distributed dataflow application, originally constructed at NPAC as 100% pure Java system, running on a mesh of Java Web Servers, using Java servlets for middleware management and offering Java applet based AVS-like visual authoring tools for assembling distributed computational graphs and monitoring the ongoing computations.

Current WebFlow modules follow a custom Java interface model and the inter-module inter-server communication is based on Java sockets. We are currently integrating JWORB with WebFlow so that WebFlow modules could be represented as CORBA objects or components such as JavaBeans. With core WebFlow middleware packaged as a CORBA service, we will provide simple cluster management discussed above packaged as additional CORBA service and layered on top of base WebFlow communication and session management services.

In parallel with the general support for high availability summarized above, we are also prototyping specific cluster management tools for simple trial JWORB configurations and specific high level application frameworks. Our initial focus is on single hierarchy layer multi-node dataflow computation such as in our WebFlow environment. The near term goal is to extend current WebFlow so that

· module placement is automated via some simple scheduling algorithm;

· the system supports fault-tolerance via module mobility.

We are currently integrating the hearbeat/failover support for the JWORB cluster with the WebFlow management services and we are designing simple module scheduling algorithms based on round robin or minimal workload.

4.4. XML Support in JWORB for Uniform Middleware Datastore

On another front of Web/Commodity technology tracking, we decided that the time is right to get seriously involved into XML. Indeed, following the previously specified XML 1.0 which already triggered major industry response in the first part of '98, W3C also published in August the v1.0 specs for DOM (Document Object Model) and XSL (XML Style Language) which enable middleware processing (DOM) and front-end rendering (XSL) for XML files. This way, XML becomes now the prime time Web delivery framework, useful for arbitrary structured information such as complex multimedia documents, relational or object databases etc.

· In the context of cluster management for this project, we view XML as a natural candidate for the universal middleware framework to represent hardware and software computing resources. XML’s powerful tag specification capability allows one to unify metadata and IDL support for the configuration and object structure specification needed in metacomputing. As the first step in this direction, we constructed XML support for the HLA/RTI configuration files that are used by federations to specify FOM (Federation Object Model) objects, shared by all federates. DMSO HLA comes with custom configuration file formats for describing their FOM resources. Our XML support represents the natural first step towards extending HLA/RTI for other domains, such as general purpose cluster management planned for the next phase of the Sandia project. Our work on developing a specific XML application or little language discussed here (and called HLAML) is accompanied with active monitoring of the broad front of recent XML developments, including WIDL, XML RPC, WebBroker and Microsoft SOAP.

In another recent XML activity, targeting directly the clustering infrastructure, we constructed JWORB servlet support for full XML processing pipeline, starting from the SQL database or flat file XML input, then using XSL to translate it to HTML and finally displaying in a Web browser.

Extensible Stylesheet Language (XSL) is a framework for translating XML documents to other formats, specified via a set of translation rules. JWORB currently supports this functionality through the server side solution. Three software modules required to translate XML to HTML are: XML parser, DOM (Document Object Model) support for intermediate representation of the parse tree, and XSL processor that translates the DOM tree to the required external format. We adopted base DOM code from Docuverse's FreeDom package and we upgraded it to conform to DOM 1.0 Specification. We use Microstar's XML parser and Koala XSL processor developed by INRIA. For all these packages, Java source code is freely available.

Under JWORB, we defined servlet like resource handlers for viewing XML based on file extensions and the prefix of the URI in the HTTP header. The handler reads the required XML file, parses, and passes through the XSL processor to obtain the customized HTML output.

Having establishing navigability in the XML spaces using JWORB and current generation browsers, we now proceed with building XML datastore for the cluster resource database, including detailed description of hardware and software components available in the system and to be used by management tools such as schedulers, load balancers, performance monitors etc.

4.5. HLA Federation model for Meta-Metacomputing

In a nutshell, our metaclustering concepts can be summarized as follows:

· No cluster management system is perfect for everyone, but many useful specific solutions are already available;

· Scalable federation of such specialized 'federates' seems to be the appropriate integration framework for metaclustering;

· This integration of coarse grain programs is appropriately done at the commodity middle tier and does not need high performance. Load balancing and fine grain management tasks will be implemented within particular federates and could well involve the high performance tier.

· HLA already offers a federation based interoperability framework where federates = simulations;

We propose to extend HLA to metacluster management with CPLANT scalable units as leaf node commodity federates, integrated via HLA with other federates given by more traditional HPC systems or heterogeneous clusters managed by other cluster management environments.

As a first step in this ambitious plan, we started to analyze the existing cluster management systems. While waiting for more information from Sandia on CPLANT specific management utilities, we are analyzing several well known systems including Beowulf, BSP, Codine, Condor, LSF, NOW, SHRIMP as well as new Microsoft products such as Wolfpack, Viper and Falcon. The goal is to identify common aspects of these systems that could be quantified in the next step in terms of a suitable Clustering FOM. Information being collected in this study is available in a set of Web pages on our Sandia project Web site at http://iwt.npac.syr.edu/projects/sandia.

A full HLA based metaclustering environment is beyond the scope of this pilot project. By the end of this year, we expect to have analyzed the existing clustering systems and constructed the overall design of such a system, to be implemented in the follow-on project. As discussed previously in our comments on ASCI DRM RFI, we see natural synergy between our HLA based metaclustering model and the ASCI vision and needs. Our Web/Commodity and Defense/HLA standards based approach offers a flexible prototyping platform for ASCI DRM, capable to seamlessly integrate and coordinate Globus, Legion, Lilith etc. and to add new distributed and distance computing services coming from the Web, Desktop, Enterprise and Defense domains.

4.6. Building JWORB based Distributed + Remote Computing Application Demo

Multi-language support Cluster management in JWORB is implemented as a Java CORBA service but we are also getting ready to support HPC application modules of relevance for Sandia which are typically written in more conventional languages such as Fortran, C and C++. We completed the core JWORB implementation, including support for full interoperability between our (JDK 1.2 compliant) Java ORB offered by JWORB and the C++ ORB domain. As a representative for the latter, we use omniORB v2.5 public domain GNU ORB under development by UK Oracle & Olivetti Research Lab.

Capability demos Java/C++ interoperability was tested using DMSO HLA application Jager (a simple multi-player video game distributed as part of DMSO HLA/RTI release). Original Jager includes C++ clients, communicating via DMSO C++ RTI bus. We repackaged it by wrapping Jager clients as CORBA C++ objects (using omniORB), talking (via IIOP) to JWORB and using our Java based Object Web RTI (OW-RTI) communication service.

We also tested the system on a simple distance computing version of the Jager demo. To facilitate demos on a popular commodity platform such as NT laptop, we replaced the DMSO Jager front-end by a modified version of the Space Donuts game offered by Microsoft as part of the DirectX SDK. We demonstrated it recently at SPAWAR, San Diego during JSIMS/PANDA meeting in August, playing Jager Donuts smoothly over the phone line between San Diego and Syracuse. The demo attracted interest of several members of the planned JSIMS/PANDA project including representatives from SPAWAR, Lockheed Martin and Boeing. The goal of PANDA is to build visual programming environment for advanced DoD M&S systems such as required by JSIMS

or Simulation Based Acquisition.

Application demo options In parallel with testing core JWORB and OW-RTI technologies for simple application demos, we are exploring possible application projects. One option discussed during our visit at Sandia is Alegra Monte Carlo code - here we are waiting for more information from the Sandia side regarding access to the code. We also made contact during this summer with Vernon F. Nicolette who is Sandia employee (vfnicol@cfd.sandia.gov), based in CNY and interested to test the VULCAN ASCI code on the JWORB cluster. Finally, we developed recently SC'98 demo for the DoD HPC Modernization Program in the area of Metacomputing Modeling and Simulations which could provide suitable computational topology for testing the JWORB cluster management software. The demo includes a set of vehicles running on various cluster nodes and propagating through a minefield, simulated on a remote high performance system. We discuss this application in more detail below.

Remote Application operational at SC'98 We are using DoD’s Comprehensive Minefield Simulation (CMS) program as the first trial application for our JWORB based cluster management system. We have just completed the development of early CMS demo for SC'98. We could naturally align its components to make a version that would be possibly adequate to mockup the planned Sandia applications and in this way offer an effective testbed for the JWORB cluster. CMS includes a set of vehicles, running on independent workstations at NPAC using ModSAF (Modular Semi-Automatic Forces) simulation system and connected to the CMS (Comprehensive Mine Simulation) system by Ft. Belvoir, parallelized by NPAC and running on Origin2000 at ARL MSRC in Aberdeen, MD and at CEWES MSRC in Mississippi. Visualization front-ends include high end SGI based Mak Stealth virtual battlefield viewer from Mak Technologies and our initial commodity software (DirectX) based 3D visualizer, running on NT laptops.

Commodity version available for Sandia The SC98 demo described above uses original ModSAF/CMS multicast connectivity over MBONE. For the Sandia project purposes, we will wrap the demo components (vehicles and the minefield) as JWORB/RTI federates and we will use JWORB cluster management tools to control the placement of vehicles over nodes. In the process of adapting this application as an initial Distance Computing demo for the Sandia project, we will also further develop and adapt for Sandia application needs our commodity graphics based DirectX front-end that will replace or operate concurrently with the high end visualization systems such as Mak Stealth.

Cluster management tested/fine-tuned for Sandia needs We have licenses and know-how and hence full control at NPAC over government owned software components of the CMS demo such as ModSAF (which is 1M lines of C code!) and CMS (which is some 100K lines of C++). We can therefore adapt, instrument and fine-tune both codes to align it best with equivalent topologies of planned Sandia applications. The general analogy of 'vehicles' viewed as 'particles' and 'minefields' viewed as 'fields' or 'propagation medium' seems to indicate that such adaptation and instrumentation is feasible, assuming we get suitable information about the Sandia application needs.

5. Unanswered Questions and Possible Next Steps

We conclude the report by listing a set of unanswered questions that could naturally point out towards next steps for a possible follow-on project.

5.1. Thin versus Fat Nodes

As discussed in Section 3.5, we suggest to start with a virtually homogenous cluster management model, including JWORB server in each cluster node. However, we are also open for experiments with two-level model as pursued by Sandia, including service and compute nodes and running dedicated optimized daemons on the compute nodes. The choice between both models involves the usual tradeoff between performance and functionality, and hence it should be addressed and carefully investigated in one of the next step R&D tasks. Note that even if JWORB runs on a compute node, one can still achieve high performance as JWORB can for example, instantiate an MPI process which communicates outside JWORB in the high performance layer. This approach naturally supports a uniform approach to fault tolerance, database access etc. as each node has fully functional middle and high performance tier capabilities.

5.2. Choice of the Fine Grain HPC Cluster Management Software

Assuming we proceed either directly or in the later stages with multi-component cluster management model, decisions need to be made regarding the software to be used, adopted or developed for the high performance fine grain node components. Following the current Sandia model initiated with the bebpod, pct, pingd and yod modules is one possible option. Exploring public domain offerings available with Beowulf or early commodity solutions such as VIA or Wolfpack are possible options. Emerging HPCC systems such as Apples from UCSD are also relevant. In general existing commercial and academic systems do not have our proposed multi-tier architecture and would need some amount of reworking which we believe is needed anyway to be consistent with commodity capabilities of systems such as Jini.
5.3. Security

Security is of paramount importance for successful metacomputing in many domains, and especially for the ASCI Defense Program. We are monitoring capabilities in this area offered by DoE systems such as Globus or Akenti and we are comparing it with the general Security framework of CORBA. It seems that the latter is powerful and flexible enough to accommodate any, even the most demanding domain specific security demands. We are currently initiating the design of CORBA Interceptor support in JWORB which will offer core technology required by CORBA Security. With such Level 0 Support in place, we will be soon in position to address in more detail the Level 1 and Level 2 security requirements for ASCI and to design its possible layering over Kerberos, Akenti and other specific services.

5.4. Resource Database

We are starting the development of XML databases for the Cluster Management and Metacomputing Management Resources. Armed with powerful XML translation framework such as XSL, now built into JWORB (see Section 4.4), we will be able to quickly translate our database into any required format that might emerge as a standard later on. Some decisions need to be made soon, however, on the type and level of detail of the information on the individual hardware and software resources to be collected, placed and maintained in such databases. Here NPAC and Sandia are involved in the Datorr (Desktop Access to Remote Resources) community activity, which should develop relevant standards to specify the structure of both jobs and backend computational, network and information resources. This project will also address associated services and in particular could clarify security issues for metacomputing.
5.5. Load Balancing

Load balancing algorithms need to be designed, developed and integrated with our clustering facilities. We will develop some rudimentary support based on round robin and average workload approaches but more refined load balancing techniques require more information about the specific application domains to be targeted by a cluster environment. Some of the current cluster management systems discussed in Section 5.2 include this service. Note we are here discussing the coarse grain aspect of load balancing. We view this assignment of cluster (CPLANT) nodes to a job to be part of the commodity tier. In contrast, placement and movement of fine grain data such as particles and grid points within different nodes assigned to a job, is naturally part of the HPCC tier. Often the load balancing needs of an application can be handled without linking the load balancing services on each tier. Eventually one should link them so as to be handle dynamic application requirements where the HPC layer could request more resources from the commodity tier. Some implementations may need to support dynamic resource assignment (perhaps due to detected faults or need to support other high priority jobs) imposed by the middle tier on the HPCC subsystem.

5.6. Metadata Framework

Metadata framework need to be established for coherent management of diverse cluster resources including hardware, software, people, applications, products, projects etc. We are currently exploring for these purposes the MOF (Meta Object Facility) model by OMG and the associated XMI (XML Metadata Interchange) model for the XML metadata streaming. This general-purpose commodity approach needs to be coordinated with more specialized application or domain oriented approaches taken by various projects and communities. As XML naturally integrates metadata and general object structure specification, we expect such a metadata framework to be developed as part of the Datorr process described above.

5.7. High Level Application Frameworks

The current JWORB clustering system offers WebFlow i.e. visual distributed dataflow as one specific built-in high level application framework, suitable for coarse grain composition of distributed applications with relatively static connection topologies. Other, more dynamic frameworks might be required by specialized application domains. Such application domains needs to be identified and prioritized, and then grouped into categories corresponding to various high level frameworks to be identified, designed and supported in JWORB. In this way, one could define frameworks for areas such as Distributed Interactive Simulations, High Level Architecture, Metacomputing Federations, Agent based Computing, and Virtual Prototyping Environments for Concurrent Engineering and Simulation Based Acquisition.

5.8. Specific Application Requirements for Sandia, C-Plant and ASCI
We believe that our project will be more successful, if we could obtain more information about specific application requirements of relevance for the Sandia, C-Plant and ASCI mission. So far, we are proceeding along a rather general-purpose support path, but there is no system that can satisfy everyone needs and hence some specificity will be helpful to normalize our prototypes to Sandia and ASCI reality requirements.

6. Related 1998 Publications

We include here the list of our published 1998 papers to illustrate the positive initial response from various computational communities to our HPcc, POW and JWORB concepts. Communities addressed by the publications listed below include: General Book Publishers [1], High Performance Computing [2, 4, 5, 6, 13], DoD Modeling and Simulation [7, 14], Web Simulation [3], Test and Evaluation [9, 10, 11, 12], Distributed Computing [15], Internet Computing [8], Virtual Reality Modeling [16].

1. G. C. Fox, W. Furmanski, H.T. Ozdemir and S, Pallickara, Building Distributed Computing on the Pragmatic Object Web - The Best of Java, CORBA and COM and XML, book in progreess, Wiley 1999. Current plans are: draft by end of November 1998, final version including CD-ROM end of December 1998.

2. G. C. Fox, W. Furmanski, H. T. Ozdemir and S. Pallickara, New Systems Technologies and Software Products for HPCC: Volume II - High Performance Commodity Computing on the Pragmatic Object Web, Management White Paper for RCI, Ltd., submitted October 14, 1998.

3. G. C. Fox, W. Furmanski, S. Nair, H. T. Ozdemir, Z. Odcikin Ozdemir and T. A. Pulikal, WebHLA - An Interactive Multiplayer Environment for High Performance Distributed Modeling and Simulation, final submission (6 pages) for the International Comference on Web-based Modeling and Simulation, WebSim99, San Francisco, CA January 17-20 1999, submitted October 9, 1998.

4. E. Akarsu, G. C. Fox, W. Furmanski and T. Haupt, WebFlow - High-Level Programming environment and Visual Authoring Toolkit for High Performance Distributed Computing, submitted August 15, 1998, to appear in Proceedings of Supercomputing 98, Orlando, FL, November 7-13, 1998.

5. G. C. Fox, W. Furmanski and T. Haupt, Distributed Systems on the Pragmatic Object Web - Computing with Java and CORBA, presented at the Computational Aerospaces in the 21st Century workshop, Hampton VA, April 23, 1998, submitted August 1, 1998.

6. T. Haupt, E. Akarsu, G. C. Fox and W. Furmanski, Web based metacomputing, submitted July 1998, to appear in the Special Issue on MetaComputing for the FGCS Int. Journal on Future Generation Computing Systems.

7. G. C. Fox, W. Furmanski, S. Nair, H. T. Ozdemir, Z. Odcikin Ozdemir and T. A. Pulikal, WebHLA - An Interactive Programming and Training Environment for High Performance Modeling and Simulation, in Proceedings of the SISO Simulation Interoperability Workshop, SIW Fall 98, paper SIW-98F-216, Orlando, FL, September 14-18, 1998, submitted July 1, 1998.

8. G. C. Fox, W. Furmanski and H. T. Ozdemir, From JavaBean to Database Web Servers in the Pragmatic Object Web, keynote talk in the proceedings of the Internet Server Performance Workshop, Madison, Wisconsin, June 23, 1998.

9. G. C. Fox, W. Furmanski, B. Goveas, B. Natarajan and S. Shanbhag, WebFlow based Visual Authoring Tools for HLA Applications, in Proceedings of the International Test and Evaluation (ITEA) Workshop on High Performance Computing, Aberdeen, MD, July 13-16, 1998, submitted June 10, 1998.

10. G. C. Fox, W. Furmanski, S. Nair and Z. Odcikin Ozdemir, Microsoft DirectPlay meets DMSO RTI for Virtual Prototyping in HPC T&E Environments, in Proceedings of the International Test and Evaluation (ITEA) Workshop on High Performance Computing, Aberdeen, MD, July 13-16, 1998, submitted June 10, 1998.

11. G. C. Fox, W. Furmanski and H. T. Ozdemir, Object Web (Java / CORBA) based RTI to support Metacomputing M&S, in Proceedings of the International Test and Evaluation (ITEA) Workshop on High Performance Computing, Aberdeen, MD, July 13-16, 1998, submitted June 10, 1998.

12. G. C. Fox, W. Furmanski and T. A. Pulikal, Evaluating New Transparent Persistency Commodity Models: JDBC, CORBA PSS, OLEDB and W3C WOM for HPC T&E Databases, in Proceedings of the International Test and Evaluation (ITEA) Workshop on High Performance Computing, Aberdeen, MD, July 13-16, 1998, submitted June 10, 1998.

13. G. C. Fox, W. Furmanski, T. Haupt, E. Akarsu and H. T. Ozdemir, HPcc as High Performance Distributed Computing on top of integrated Java, CORBA, COM and Web standards, in Proceedings of the EuroPar98 Conference, Southampton, U.K., September 1-4, 1998, submitted May 25, 1998.

14. D. Bernholdt, G. C. Fox, W. Furmanski, B. Natarajan, H. T. Ozdemir, Z. Odcikin Ozdemir and T. A. Pulikal, WebHLA - An Interactive Programming and Training Environment for High Peerformance Modeling and Simulation, in Proceedings of the DoD HPC 98 Users Group Conference, Rice University, Houston TX, June 1-5, 1998, submitted April 30, 1998.

15. G. C. Fox, W. Furmanski and H. T. Ozdemir, Java/CORBA based Real-Time Infrastructure to Integrate Event-Driven Simulations, Collaboration and Distributed Object / Componentware Computing, in Proceedings of the Parallel and Distributed Technologies and Applications PDPTA98, Las Vegas, Nevada, July 13-16, 1998, submitted April 1, 1998.

16. D. Dias, G. C. Fox, W. Furmanski, V. Mehra, B. Natarajan, H. T. Ozdemir, S. Pallickara and Z. Odcikin Ozdemir, Exploring JSDA, CORBA and HLA based MuTech's for Scalable Televirtual (TVR) Environments, presented at the Workshop on OO and VRML at the VRML98 Conference, Monterey CA, February 16-19, 1998.

1

