
Java Grande: Software Infrastructure for HPCC
Geoffrey Fox gcf@npac.syr.edu

NPAC Syracuse University
111 College Place

Syracuse NY 13244-4100

Abstract
We describe the definition, motivation and current status
of Java Grande activities. We introduce 3 roles of Java in
Grande programming at client, middleware or backend
tiers of a computing system. We start with Java as a
language and describe where it is clearly good and where
it could be good! The Java Grande Forum has numerical
and distributed computing working groups and projects
include the study of changes to Java and its runtime to
enhance Grande applications and their programming
environment community. There is an important activity to
define seamless interfaces allowing universal access to
general hosts. Benchmarks for all sorts of Grande
applications are critical. We discuss Java for Parallel
Computing including message passing (MPI) and data
parallelism.

1 Use of Java in Technical Computing
For some years, my research has been influenced by the
difficulties of turning good research ideas in HPCC into
quality deployable software. We believe that it is perhaps
impossible for our field to develop sustainable high
quality programming environments without taking more
advantage of commodity software systems. HPCC as a
field is perhaps 1% of the total computing activity but has
probably the hardest problems to solve with large
applications exhibiting critical performance requirements.
We note that the commodity Web and distributed object
communities have produced a rich software
infrastructure. This is of direct relevance as it supports
with open interfaces a complete distributed computing
model – something not contained in previous mainstream
computing systems such as those of standalone PC’s or
those still used to run IBM Enterprise Information
servers. Our plan is to focus HPCC software on only
those areas where there are special high performance
needs. For instance we view parallel computing as just a
“special case” of a distributed system requiring low
latency and high bandwidth. Whether or not you fully
agree with this approach, many researchers consider it
interesting to look at the opportunities of using Web,
distributed object and/or Java technologies in HPCC. We
consider the latter here and describe the Java Grande
process and its initial results. Our understanding of these

issues has been influenced by the work reported at four
workshops held in Syracuse (Dec. 96), Las Vegas (June
97), Palo Alto (February 98) and Southampton (England,
September 98). [1-4] We refer the reader to our papers on
the “Pragmatic Object Web” for a more general
discussion of the relevance of other emerging commodity
software technologies.[5-8] Java is a little more general
than one might think. For instance, the use of CORBA
might in fact require our study of high performance Java
as the CORBA broker is quite likely to be written in Java.
In general we except Java to underlie much important
distributed object and web software infrastructure.
 In Fig. 1, we picture three possible roles for Java
corresponding to its use respectively in the client, middle-
tier or backend tiers of a computing environment. The use
of Java at the client is well understood and in spite of the
battle between Microsoft and Netscape, seems likely to
flourish with some competition from increasing use of
dynamic HTML. The use of Java at the middle (server)
tier is perhaps the dominant use of Java in the Intranet
software industry and Java is attractive here because it is
a very productive programming environment. C++
currently gives higher performance but Java servers are
already very robust and new generations of Java
compilers are expected to give excellent performance.
Finally there is the third role of Java – that as a basic
programming environment. Here performance is also
critical and involves special consideration because of the
importance of floating point arithmetic, which is less
relevant in the middle tier.

Figure 1: Three Roles of Java in HPCC

2 Why Explore Java as a Technical Computing
Language?

Why would one use Java to code one’s favorite scientific
code? One can cite the usual features. Firstly, the Java
Language has several good design features. It is in
particular secure, safe (with respect to bugs), object-
oriented, and familiar (to C, C++ and even Fortran
programmers). Secondly, Java has a very good set of
libraries covering everything from commerce,
multimedia, images to math functions (see for instance
NIST’s library under development at [9-10]). These
frameworks can embody both real software (i.e. fully
coded methods) but also interfaces which define
standards that lead to uniform easier to use uniform
environment where different vendors can focus on the
best implementation of a particular service without using
their own irrelevant proprietary names. It is curious that
the Fortran community never agreed on the names of
basic numerical libraries – we should spend our creative
energy on the best coding of the best FFT algorithm and
not on the subroutine calling sequence.

Java is regarded as a very productive programming
environment. Partly this reflects that industry is
aggressively developing for Java the best integrated
program development environments. However the
productivity of Java also reflects its natural integration
with network and universal machine which supports its
powerful “write once-run anywhere” model

Again, Java has best available electronic and paper
training and support resources. There are in particular
over 1000 books in Java. There is a large and growing
trained labor force. Java is already being adopted in many
entry-level college programming courses. In fact, it seems
likely that in the future, students entering college will
increasingly have Java expertise. They will learn about it
from their excursion on the Internet while it should grow

in interest as the language used to teach programming at
middle and high schools. (Note NPAC’s Java Academy at
[11]) which was very successfully taught each Saturday
in the depth of a bleak Syracuse winter to a group of
middle and high school students and teachers). Java’s
natural graphical (applet) view makes it a very social
language whose value is more obvious to a beginning
programmer than C++ or Pascal. Of course, the Web is
the only real exposure to computers for many children,
and the only languages, to which they are typically
exposed today, are Java, JavaScript, and Perl. We find it
difficult to believe that entering college students, fresh
from their Java classes, will be willing to accept Fortran,
which will appear quite primitive in contrast. C++ as a
more complicated systems-building language may well
be a natural progression, but although quite heavily used,
C++ has limitations as a language for simulation. In
particular, it is hard for C++ to achieve good performance
on even sequential and parallel code, and we expect Java
not to have these problems if the process described in sec.
3 is successful.

As well as these laudable positive features of Java,
we can also compare Java with the “competition” which
is Fortran or C++ for serious technical computing.

Fortran77 has excellent compilers, good user
base but will not be taught broadly and clearly limited in
capabilities; in particular it is not object oriented. It
appears that although Fortran90 and HPF have useful
features, they have not “taken off” and it seems likely that
they will not “make it”

Five years ago, it looked as though C++ could
become language of choice in complex scientific codes
(perhaps with Fortran as inner core and especially when
irregular data structures could not be easily expressed in
Fortran). However this movement appears stalled – partly
because this trend was halted by a growing interest in
Java and users are awaiting events. C will remain widely
used as a simple elegant language but object oriented
techniques seem essential in large software systems and
so the essential competition appears to lie between C++,
Fortran90 and Java. Note that the C++ language is
complex and splintered with no agreement on standards
for libraries and parallelism. This is partly because its use
in Grande applications is too small to motivate standards
and partly due to the prevailing culture.

So we argue that although existing large-scale codes
are written in Fortran C and C++, the associated
unattractive and comparatively unproductive
programming environment handicaps developers.
Current languages and tools are sufficient but it does not
seem likely that one can easily greatly improve on
existing environments without a radically new approach.
We suggest that it will easier to try to build an attractive
technical computing environment around Java rather than
the existing languages.

We can list some additional reasons why we might
be more successful in Java than previous Fortran or C++
based programming environments. Firstly, Java has some
natural advantages due its Internet base with threads and
distributed computing built in. Secondly, Java is a young
language and we can take steps now to avoid
unproductive proliferation of libraries and parallel
constructs. We could be third (Fortran, C++, and now
Java) time lucky. More seriously, if our proposed
changes, described later, are adopted, Java should exhibit
the expressivity and object oriented advantages of C++
combined with performance levels of C and Fortran.
Finally we note that one can use Java’s clear advantages
in building user interfaces as an entrée into its use in
other aspects of large-scale programming.

However there are some serious problems to be
solved if Java is to realize its potential in technical
computing and now we turn to discuss these.

3 Java Grande

First we need to define a Grande application as any sort
of large-scale or technical commercial or academic
problem. Thus it subsumes areas such as High
Performance Network Computing or HPDC (High
Performance Distributed Computing); Scientific and
Engineering Computation; (Distributed) Modeling and
Simulation; Parallel and Distributed Computing; Data
Intensive Computing; Communication and Computing
Intensive Commercial and Academic Applications; High
Performance Computing and Communication (HPCC);
and finally Computational Grids.

We adopted this offbeat nomenclature, as it was
hard to find a “conventional name” that doesn’t get
misunderstood by some community. Now Java Grande is
the application of Java to Grande applications;
Grandecomputers are of course compute engines used to
execute Grande codes and the adjective can be used in
other related ways.

The Java Grande forum was set up to enhance
the possibility that one can build around Java a better
Grande application environment than is available through
Fortran or C++. We described in the previous section
why this might be possible and the Forum’s sole goal is
sponsor community activities designed to realize the
“best ever Grande programming environment”. The
Forum products include recommendations and
community actions that could lead to necessary changes
to Java or establishment of standards (frameworks) for
“Grande” libraries and services. We have had internal
meetings in March, May and August 1998 and a public
discussion of our initial conclusions at SC98 in Orlando
on November 13 98. The current status is given at our
home page [12] while the NPAC resource[13] has more

personal broader collection. The Forum is interacting in
two rather different dimensions. In the near term, we need
to work with the computing mainstream and Sun to
discuss a few key changes in Java to allow it to be a
complete efficient Grande Programming Language. This
includes the floating-point processing, complex type and
RMI performance issues described later.

Secondly The Forum needs to work within the
Grande community to encourage and initiate those
activities that will lead to standards in such areas as
numeric libraries and the Seamless Computing Interface.
We suggest that the Grande community has unnecessarily
handicapped progress by having as much creativity in the
interfacing of its artifacts as in the essential algorithms.
As we illustrate in the next section for databases,
sometimes all can benefit if one agrees to standard which
initially handicap particular and perhaps even the best
implementations.

The Forum is set up currently with two major
working groups. The Numerics working group is led by
Ron Boisvert and Roldan Pozo from NIST and is
centered on Java as a language for mathematics. Issues
studied include changes in Java controversial handling of
floating point, which currently has goal of reproducible
results, but this leads to non-optimal accuracy. They
address the support for efficient Complex types or
classes. This can be implemented with lightweight classes
and operator overloading, which can also be applied in
other circumstances. Support for “Fortran rectangular
multidimensional arrays” is important as Java’s current
multi-subscript language construct gives “arrays of
arrays”, which often do not lead to efficient code.
Another major activity is the design and implementation
of high quality math libraries with agreed interfaces –
examples are FFT, Matrix algebra, and Transcendental
functions.

Performance and expressivity and their tradeoff
underlie these proposed enhancements. As discussed in
the four workshops on Java for Science and Engineering
computation [1-4], the goal is Java compiler’s that obtain
comparable performance to those for C or Fortran. Marc
Snir has given a very clear analysis [14] of the different
issues that inhibit the performance of Java on classic
array-based scientific codes. Industry efforts are mainly
focussed on Just in Time compilers (JIT) which support
the critical applet and servlet models of computation.
However traditional native machine specific compilers
are possible and will surely be useful. It will be
interesting to compare their performance with the best
JIT’s and see if and for what application any performance
degradation for servlets and applets outweighs the
convenience of their mobile dynamic portable computing
model. A related issue is if the Java language version of a
code has any more information for a native or JIT
compiler than the VM (or Java bytecode) representation.

Initial studies suggest that the VM and language versions
of the code can be compiled with comparable
performance. Difficulties in compiling Java [15,16]
include quite surprising points such as Java’s rich
exception framework that could restrict compiler
optimizations. Users would need to avoid complex
exception handlers in performance critical portions of a
code. An important feature of Java is the lack of pointers
and their absence, of course, allows significantly more
optimization for both sequential and especially parallel
codes. In general with some possible restrictions on
programming style, we expect Java compilers to be
competitive with the best Fortran and C compilers. Note
that we can also expect a set of high performance ``native
class'' libraries to be produced that can be downloaded
and accessed by applets to improve performance in the
usual areas one builds scientific libraries.
The charter of the second working group led by Dennis
Gannon and Denis Caromel (INRIA, France), includes
issues associated with coarse grain distributed scientific
objects; distributed and parallel computing,
metacomputing [17-20], concurrency support and
applications. The detailed agenda includes the
performance of RMI or “remote method invocation”
which is the attractive Java distributed object model.
More broadly the concern is the performance of Java
runtime (the virtual machine VM) with lots of threads,
I/O, and large memory use. There are several important
parallel computing interfaces including Java MPI binding
and higher level interfaces such as that in the data parallel
HPJava mentioned in the final section 5.
The Grande organization effort is working on two MPI
bindings for Java. One is a natural extension of current
C++ binding. A second more powerful approach ignores
MPI’s Fortran and C heritage and exploits the object
structure of Java. The current proposals for Java MPI
bindings are available at the Java Grande homepage and
are based on three current implementations. Firstly,
mpiJava from NPAC is modelled after the C++ binding
for MPI and implemented through JNI wrappers to native
MPI software.[21] Secondly, JavaMPI from Westminster
University London uses automatic generation of wrappers
to legacy MPI libraries using a C as opposed to C++-like
implementation.[22] Lastly, MPIJ is a pure Java
implementation of MPI from BYU, which is closely
based on the C++ binding. A large subset of MPI has
been implemented using native marshaling. [23]

As well as standardizing these interfaces, the group
is developing a framework for a universal Java Seamless
interface to computing resources, which we will discuss
in the next section.[24] Finally a major activity is the
development of Grande Application benchmarks. This
overlaps the activities of the first working group, which
has already started an interesting numeric kernel
collection at NIST[10]based on the ideas pioneered in the

Java version of LinPack [25]. The Edinburgh group has
started a collection while is online at [26].

Both working groups have made substantial progress
in the last few months with initial reports including key
issues we need to bring up with Sun in both the Numerics
and RMI performance areas. We need broad community
involvement in critiquing our proposals, collecting Java
Grande benchmarks, and defining standard classes and
libraries. We hope to get good participation in a set of
workshops on the seamless computing framework. We
also need applications that will stress Java and Java
runtime (the VM) with large applications – we need to
find those weak links of the VM, which lead to
performance problems? Note that enterprise Intranets will
lead to some such scaling tests but there are some
features that will only appear with Grande problems.

4 Desktop Access to Remote Resources

Many computer users are not so interested in the full
features of metacomputing but rather in being able to run
their jobs in a seamless way that does not keep changing
as backend computer resources are upgraded. Viewing
computing as a distributed (object) service, we can satisfy
this need by developing a "Java Framework for
Computing Services". This enables development of web
interfaces to run a given job on any computer with any
data source compliant with this framework. This is
analogous to JDBC (Java Database Connectivity), which
gives a universal interface to any relational database. Our
proposed framework can be used in metacomputing
environments to allow linkage of multiple computers to
run together on a single job. Such a framework can be
implemented in other approaches and form for instance, a
CORBA vertical facility. In fact, we are defining methods
and properties of computers and programs viewed as
distributed objects. We term the effort generically as
DATORR, which stands for Desktop Access to Remote
Resources. The Computing Services Framework will
allow vendors to compete on either the user front-end
(GUI) or back end services with the DATORR
framework providing universal linkage.[27,28] We
brought together many of the major metacomputing [17-
20] and universal interface[29,30] project leaders together
for a meeting on Oct 8-9,98 at Argonne and held a
successful SC98 Birds of a Feather session. We are
collecting information on projects and abstracting
requirements from user and system point of view. We
hope over the next year to build consensus on standard
interfaces and so develop the proposed Java framework
for computing services. Information on this effort can be
found at [24] with email reflector datorr@mcs.anl.gov.

We now list some of the possible services whose
interfaces could be defined in the DATORR framework.
There is the area of Grande resource discovery, allocation

and scheduling, where the recent JINI Sun technology
looks attractive. Other services could include compiling
and executing jobs with a specification of features needed
for execution optimization. The latter includes parameters
needed by MPI/HPF decompositions such as the number
of processors. A key capability would be interfaces to
resource management and scheduling systems such as
Codine or LSF.[31,32] More mundanely but perhaps
more importantly, we need universal interfaces to
accounting and here we may be able to take advantage of
Web electronic commerce technology. Security and
authentication services are essential and especially hard
in metacomputing where one must link several different
management policies. Again, the public key infrastructure
being developed for Internet commerce will be very
important.

5 Parallelism in Java
In order to discuss parallelism in Java, we divide the
forms of parallelism seen in applications into four broad
categories.

1. Modest Grain Size Functional Parallelism: Here

we are thinking of the type of parallelism used when
computation and I/O operation are overlapped as
exploited extensively by web browsers but can also
be seen in possible overlap of message traffic with
computation in the Java plus MPI parallel
programming paradigm. This parallelism is built into
the Java language with threads but has to be added
explicitly with (thread) libraries for Fortran and C++.
In the browsers, one typically sees the different
components (multiple images, applets etc.) processed
by different threads concurrently.

2. Object Parallelism: This is quite natural for C++ or
Java where the latter can use the applet mechanism to
portably represent and invoke concurrently objects.
This familiar in distributed military simulations that
already use large-scale object based models
including a standard HLA (High Level Architecture)
distributed object framework.[33] We have in fact
successfully implemented a Java Server based
approach to this, called WebHLA and believe that
base Java capabilities are well suited to this field.[5-
8]

3. Metaproblems: This is the parallelism in
applications that are made up of several different
sub-problems which themselves may be sequential or
parallel. Multidisciplinary applications such as the
linkage of ocean-atmosphere or fluid flow-structures
illustrate this problem class. The middle tier shown
in figure 1 is precisely a metaproblem.

4. Data Parallelism: Here we refer to natural large-
scale parallelism found from parallel updates of grid-
points, particles and other basic components in
scientific computations. Such parallelism is
supported in Fortran (or C) by either high-level data
parallel HPF or at a lower level Fortran plus message
passing (MPI). Java does not have any built in
parallelism of this type, but at least the lack of
pointers means that natural parallelism is less likely
to get obscured than in C or C++. There seems no
reason why Java cannot be extended to high level
data parallel form (HPJava) in a similar way to
Fortran (HPF) or C++ (HPC++). An effort at NPAC
[34] focuses on this approach but uses a high level
SPMD rather than the traditional HPF style approach
to data parallel Java. We should note that the
powerful standard template library approach used in
C++ by POOMA[35] for data parallelism cannot be
supported in Java. The implications of this are
unclear at present.

Data parallelism can be supported using threads on
shared memory machines as pioneered at Indiana [36]
whereas in distributed memory machines, explicit
message passing must be used at the low level. This leads
to the hybrid model of fig 2. One advantage of distributed
shared memory architectures is their support of a single
Java VM and a uniform programming model. Comparing
with the discussion of category 2 above, we see that
threads can of course be used to support multiple forms
of relatively fine grain parallelism. Message passing is
clearly satisfactory for Java as the language naturally
supports inter-program communication, and as described
in sec. 3, the standard capabilities of high-performance
message passing (MPI) are being implemented for Java.

Figure 2: Hybrid Java Model for Parallelism

In summary, Java directly addresses three of the four
forms of parallelism described above. In these areas, it
seems equal to or superior to other languages. Java needs
to be augmented to fully support data parallelism but so
do Fortran and C++.

References

[1] Workshop on the Use of Java in Science and
Engineering Computation, Syracuse December 16-
17,98; Proceeding edited by Geoffrey Fox and
published in Concurrency: Practice and Experience
Vol 9 Issue 6 June 1997. Online at
http://www.npac.syr.edu/projects/javaforcse/javamee
ttalks.html

[2] ACM 1997 Workshop on Java for Science and
Engineering Computation June 21 1997 held as part
of PPoPP in Las Vegas; Proceedings edited by
Geoffrey Fox and Wei Li and published in
Concurrency: Practice and Experience Vol 9 Issue 11
November 1997. Online at
http://www.cs.ucsb.edu/conferences/java98/

[3] ACM 1998 Workshop on Java for High-Performance
Network Computing at Palo Alto Feb 28-March 1
1998; Proceedings edited by Siamak Hassanzadeh
and Klaus Schauser published in Concurrency:
Practice and Experience, Vol 10 Issue 11 November
1998. Online at
http://www.cs.ucsb.edu/conferences/java98/

[4] First European Workshop on Java for High-
Performance Network Computing at Southampton as
part of Europar ’98, September 2-3 98. Online at
http://www.cs.cf.ac.uk/hpjworkshop/

[5] G. C. Fox, W. Furmanski and H. T. Ozdemir,
Java/CORBA based Real-Time Infrastructure to
Integrate Event-Driven Simulations, Collaboration
and Distributed Object / Componentware
Computing, In Proceedings of Parallel and
Distributed Processing Technologies and
Applications PDPTA ’98, Las Vegas, Nevada, July
13-16, 1998, online at

 http://tapetus.npac.syr.edu/iwt98/pm/documents/

[6] Geoffrey Fox and Wojtek Furmanski, "Petaops and
Exaops: Supercomputing on the Web", IEEE Internet
Computing, 1(2), 38-46 (1997);
http://www.npac.syr.edu/users/gcf/petastuff/petaweb

[7] Geoffrey Fox and Wojtek Furmanski, "Java for
Parallel Computing and as a General Language for
Scientific and Engineering Simulation and
Modeling", Concurrency: Practice and Experience
9(6), 4135-426(1997).

[8] Geoffrey Fox, Wojtek Furmanski, Hasan T. Ozdemir
and Shrideep Pallickara, “High Performance
Commodity Computing on the Pragmatic Object
Web”, 1998 unpublished

[9] Resource on Java Numerics maintained by Ron
Boisvert and Roldan Pozo at
http://math.nist.gov/javanumerics/

[10] Java Numerical Benchmarks maintained by Roldan
Pozo at http://math.nist.gov/scimark/

[11] NPAC's Java Academy for Middle and High School
Students produced by Tom Scavo Spring 1998 online
at
http://www.npac.syr.edu/projects/k12javaspring98/

[12] The Java Grande Forum with Home Page at
http://www.javagrande.org/

[13] NPAC Resource for the use of Java in Computational
Science and Engineering online at
http://www.npac.syr.edu/Java/index.html

[14] Floating Point Performance in Java presented at a
Java Grande Forum Meeting May 9 1998 by Marc
Snir (from work with Jose Moreira, Manish Gupta,
Lois Haibt and Sam Midkiff) and online at
http://www.javagrande.org/ibmgrande.pdf

[15] Optimizing Java -- Theory and Practice by Zoran
Budimlic and Ken Kennedy online as in Ref. [1] and
published Concurrency: Practice and Experience
9,445-464(97)

[16] Z. Budimlic, K. Kennedy and J. Piper The Cost of
Being Object-Oriented: A Preliminary Study online
in Ref. [4]

[17] The Grid: Blueprint for a New Computing
Infrastructure Edited by Ian Foster and Carl
Kesselman, Morgan Kaufmann Publishers, San
Francisco, California 1998

[18] LEGION, HPCC metacomputing environment
developed by Andrew Grimshaw
http://www.cs.virginia.edu/~legion/

[19] E. Akarsu, G. Fox, W. Furmanski and T. Haupt,
"WebFlow - High-Level Programming Environment
and Visual Authoring Toolkit for High Performance
Distributed Computing", paper submitted for
Supercomputing 98,
http://www.npac.syr.edu/users/haupt/ALLIANCE/sc
98.html

[20] I. Foster and C. Kessleman, Globus Metacomputing
Toolkit, http://www.globus.org

[21] mpiJava binding of Java for MPI from NPAC at
Syracuse University
http://www.npac.syr.edu/projects/pcrc/HPJava/

[22] JavaMPI binding of Java for MPI from Westminster
University London
http://perun.hscs.wmin.ac.uk/JavaMPI/

[23] MPIJ binding of Java for MPI from Brigham Young
University. http://ccc.cs.byu.edu/DOGMA/

[24] DATORR DeskTop Access to Remote Resources
Home Page at http://www-
fp.mcs.anl.gov/~gregor/datorr

[25] Linpack Benchmark -- Java Version by Jack
Dongarra online at
http://www.netlib.org/benchmark/linpackjava/

[26] Benchmark collection from Edinburgh parallel
computer center.
http://www.epcc.ed.ac.uk/research/javagrande/bench
marking.html

[27] A seamless computing technology resource
maintained by Mark Baker online at
http://www.sis.port.ac.uk/~mab/Computing-
FrameWork/

[28] A list of useful seamless computing links is
maintained in Japan by the Real World Computing
Partnership and is online at
http://www.rwcp.or.jp/people/ishikawa/seamless.htm
l

[29] WebSubmit web interface to HPCC resources from
NIST online at
http://www.itl.nist.gov/div895/sasg/websubmit/webs
ubmit.html

[30] Unicore: Uniform Interface to Computing Resources
project in Germany led by Dietmar Erwin and online
at http://www.kfa-juelich.de/zam/RD/coop/unicore/

[31] Codine commercial Resource Management System
from Genias online at
http://www.genias.de/products/codine/description.ht
ml

[32] Load Sharing Facility LSF commercial Resource
Management System from Platform Computing
online at http://www.platform.com/

[33] High Level Architecture and Run-Time
Infrastructure by DoD Modeling and Simulation
Office (DMSO), online at http://www.dmso.mil/hla

[34] Guansong Zhang, Bryan Carpenter, Geoffrey Fox,
Xinying Li, and Yuhong Wen, Considerations in
HPJava language design and implementation. In 11th

International Workshop on Languages and
Compilers for Parallel Computing, North Carolina
August 1998. Online at
http://www.npac.syr.edu/projects/pcrc/HPJava/

[35] POOMA, Los Alamos Object Oriented Scientific
Computing Environment led by John Reynders,
http://www.acl.lanl.gov/pooma/main.html

[36] Javar: A prototype Java Restructuring Compiler by
A.J. Bik, J.E. Villacis and D.B. Gannon,
Concurrency: Practice and Experience 9,1181-
1192(97)

