PETASIM -

 A Performance Simulator for parallel hierarchical memory computers.

Abstract

We will provide a reasonably accurate simulator for the performance of problems from a general field of synchronous or loosely synchronous structure on hierarchical shared and distributed memory computers. We will include the point designs and applications studied in the 1996 PAWS and PetaSoft workshops.

We will not implement the general case initially and later describe a set of simplifications which can be relaxed in further versions if the initial system is successful.

Overall Approach

We will provide a general framework in which the user specifies the computer and problem architectures. The computer and problem can be expressed at any level of granularity - typically the problem is divided into objects which fit into the lowest interesting level of the memory hierarchy which is exposed in the user specified computer model.

The computer and problem can both be hierarchical but initially we will focus on "flat" problems with arbitrary hierarchy for the computer.

Both distributed and shared memory architectures and their mixture can be modeled.

Synchronous, loosely synchronous (and the typically easier embarrassingly parallel) problems will be supported. These are divided into phases - in each phase all objects are computed - with synchronization (typically also communication or redistribution) at the end of each phase. Problems must have a fixed distribution into objects during each phase but can be redistributed at phase boundaries.

The basic idea here is to use a sophisticated spreadsheet. Each cell of the spreadsheet represents a memory unit of the computer. For each phase, the user provides a strategy which moves the problem objects through the cells. The simulator accumulates communication and computer costs. Some special cells (e.g. those corresponding to the lowest memory hierarchy exposed) have CPU's attached to them and objects are computed when they land on a CPU cell. The phase terminates when all objects have been computed.

Note that a "real computer" would determine this cell stepping strategy from the software supplied by the user and the action of the hardware. The simulator will supply a helpful framework but the user is responsible for understanding both the problem and the machine well enough to supply this cell stepping. One could expect to gradually automate parts of this in future activities.

Note that in general, there are many more memory cell than particle objects. Usually the number of particle objects is greater than or equal to the number of cells with CPU's.

Note the special case of a distributed memory machine with no memory hierarchy at each node. Then the number of cells, CPU's and particle objects are all equal. The cell stepping strategy involves one step in which all objects are computed.

We will provide both a C and Java version of the simulator. The visualization of the results will use a set of Java Applets based on extensions of NPAC’s current Java interface to Illinois's Pablo performance monitoring system.

Note that you can use any level of fidelity that you like but the user is responsible for estimating the compute cost when an object arrives at a CPU cell. This could involve an estimate of the effect of lower memory levels in the hierarchy which are not modeled directly.

Problems and computers are both specified as a set of units labeled by a hierarchy level and a position (labeled by a one or multidimensional index) within a given level. The user must specify the linkage between these units with an appropriate associated function (or simply a weight) which calculates the communication performance between units in the computer model and needed message traffic for the problem model. The initial system will only support "flat" problems but general hierarchies for computers will be implemented. A further initial simplification will be that only homogeneous systems will be supported. It is believed that these specifications can be straightforwardly removed in fut
