PAGE

Abstract

As the Internet grows, it starts to accommodate new media. Previously, it depended mostly on static HTML pages, but now it offers audio, animations and many other forms. The main problem in transmitting such content over the Internet is that its bandwidth is significantly higher than bandwidth of HTML pages, yet we would like to deliver it to the user quickly and without delays. The solution to this problem lies in low-bitrate compression formats. They allow us to send audio and video streams over the Internet in real-time. However, the design of low-bitrate codec present several challenges. Ideally, it works on all platforms that are connected to the Internet, generate bitstream small enough to fit in Internet bandwidth and still offer good quality. The Northeast Parallel Architectures Center has started a number of projects researching possible application of low-bitrate compressions. In this paper we discuss architectures of developed codecs and compare their performance.

Comparison of architecture and performance of low-bitrate multimedia codecs for Internet applications

By
Grzegorz Lewandowski
Master’s Thesis
Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science in the Graduate School of Syracuse University

December 1997

Approved _____________________

Marek Podgorny

Date_________________________

Copyright 1997 Grzegorz Lewandowski

All Rights Reserved

Table of contents

1Introduction

Technologies
2
Video compression formats
2
Audio compression formats
4
Implementation environments
5
Architectures of low-bitrate codecs
9
Applications
9
Internet characteristics
10
Resulting architectures
13
Examples of existing architectures
16
Summary
47
Architectures
47
performance
48
Conclusions
51
Vita
53

Table Of Illustrative Materials
Figure 1 Filter graph architecture
7
Figure 2 Architecture of Telenor H.263 decoder
17
Figure 3 Architecture of BuenaVista video decoder
18
Figure 4 Architecture of BuenaVista audio decoder
19
Figure 5 Object model of the ActiveMovie H.263 decoder
22
Figure 6 Object model of the ActiveMovie ADPCM decoder
24
Figure 7 Flow of data in H.263/ADPCM decoder
25
Figure 8 Flow of quality management data
27
Figure 9 Object model of the Java H.263 decoder
31
Figure 10 Object model of the Java ADPCM decoder
33
Figure 11 Flow of data in Java H.263/ADPCM decoder
35
Figure 12 Interaction diagram of audio type negotiation
38
Figure 13 Architecture of Telenor H.263 encoder
40
Figure 14 Architecture of BuenaVista video encoder
41
Figure 15 Architecture of BuenaVista audio encoder
42
Figure 16 MPEG to H.263/ADPCM converter
43
Figure 17 Object model of the ActiveMovie H.263 encoder
44
Figure 18 Object model of the ActiveMovie ADPCM encoder
45
Figure 19 Flow of data in H.263/ADPCM encoder
46
Figure 20 Comparison of performance of decoders
49
Figure 21 Comparison of performance of encoders
50

Acknowledgements

The author would like to thank to the following people for a lot of help they provided:

Lukasz Beca

Pawel Roman

Tomasz Stachowiak

Konrad Olszewski

Piotr Sokolowski

Remigiusz Trzaska

Special thanks to my advisor Dr Marek Podgorny.

Introduction

In recent years, we observe a phenomenon often described as “the explosion of the Internet”. The number of computers connected to the Internet increases dramatically every year. However, as more and more users are entering the cyberspace, the Web itself changes. Increasing number of available contents are not static HTML pages but applets, CGI scripts etc. In addition, there is a growing number of applications that allow user to communicate with other people over the Internet. These are Internet telephones, like IBM BambaPhone, or full video conferencing systems e.g. CU-SeeMe. There is also a new domain: video-on-demand systems that allow user to watch movies over the Internet.

The main problem that this new phenomenon encounters is low bandwidth available on the Internet. It is not sufficient for real-time transfer of uncompressed audio and, of course, video. The only solution that is available right now is to use low-bitrate video and audio compression formats. They were primarily meant for video communication over the very slow links, so the Internet with its low bandwidth is an ideal application for them.

Recognizing importance of this trend, Northeast Parallel Architectures Center engaged in number of projects dealing with low-bitrate compressions and their applications in the Internet. As a part of ‘Collaboration and Interactive Visualization’ project, multi-platform videoconferencing system was developed. Another project, ‘Video-on-Demand’ deals with application of low-bitrate compressions in video-on-demand systems and presentations.

The main objective of this paper is to present low-bitrate codecs developed in Northeast Parallel Architectures Center during various projects and to compare their architectures, in order to analyze how design priorities and decisions specific to Internet applications of low-bitrate codecs influence their architecture and, in turn, functionality, flexibility and performance.

This paper is organized in a following way: First, technologies that are present in discussed codecs are briefly described. Then, environments used in development are presented. Next section discusses influence of intended application and environment on architecture of a codec and presents examples of codecs’ architectures. The last section contains comparison of previously described architectures and their performance on PC platform. The section also contain summary of this paper.

Technologies

Video compression formats

With bandwidth currently offered, it is impossible to send uncompressed video sequences over the Internet in real time. Even sequences of images of average quality generate bitrate that is larger by several orders of magnitude than the one that is possible to achieve
. So, in order to make feasible to deliver video sequences over the Internet, it is necessary to use some kind of video compression. Still, only special low-bitrate compression formats achieve compression ratio large enough to enable video transmissions over the Internet.

International Telecommunication Union has issued a number of recommendations dealing with low-bitrate compression formats. In this paper, the H.263 recommendation released in 1996 will be described.

H.263

The H.263 is an ITU-T video compression standard. It is an extended version of H.261 standard, which was designed for low-bitrate communication (at bit-rates between approximately 40kbps and 2Mbps). The coding algorithm is a hybrid of inter-picture prediction to utilize temporal redundancy and transform coding of the remaining signal to reduce spatial redundancy. As a transform coding algorithm, Discrete Cosine Transform is used. Frames that were compressed using only DCT compression are called INTRA, while frames encoded by temporal compression and DCT are called INTER (as they are dependent on previous frames).

To permit use of single Recommendation in countries that use different television standards (625 and 525 line standards), the encoder operates on frames in common intermediate format (CIF). In H.261 Recommendation, two frame scanning formats have been provided: CIF — has 352 X 288 luminance resolution and 176 X 144 chrominance resolution (human eye is less sensitive to color information), smaller format QCIF has 176 X 144 luminance resolution and 88 X 72 chrominance resolution. All codecs are required to support QCIF format, while CIF support is optional. The H.263 Recommendation, extended number of available formats to five. These are: sub-QCIF (128 X 96), QCIF, CIF, 4CIF (706 X 576) and 16CIF (1408 X 1152). All decoders have to support sub-QCIF and QCIF formats, while encoders have to support only one of them (sub-QCIF or QCIF).

In addition, four negotiable options are included for improved performance:

· Unrestricted Motion Vectors – in this mode motion vectors are allowed to point outside of the picture; it allows to gain a significant improvement in compression if there is movement across edges of the frame,

· Syntax-based Arithmetic Coding – arithmetic coding is used instead of variable length coding; it improves compression ratio but makes encoding and decoding slower,

· Advanced Prediction – four 8 x 8 vectors instead of one 16 x 16 vector are used; they use more bits but that is compensated by better motion prediction,

· PB-frames – two pictures are encoded as one unit; in this mode frame rate can be increased without increasing bitrate much.

For more information about H.263 compression see [1] and [2].

Audio compression formats

There are basically three factors that determine the size of digital audio data: sampling rate (varies from 8 kHz to 44.1 kHz), sample size (usually 8 or 16 bits per sample) and number of channels (1 channel for mono, 2 channels for stereo, etc.). It is easy to calculate that even average quality audio stream has bandwidth too large to allow transmission of uncompressed data over the Internet
. As a consequence, some audio compression format has to be used.

ADPCM

ADPCM (Adaptive Differential Pulse Code Modulation) is a family of speech compression algorithms. The most common implementations take 16-bit linear PCM samples and convert them to 4-bit samples, thus providing compression ratio of 4 to 1. The algorithm is based on the assumption that two adjacent audio samples have similar values, so it can be beneficial to send just a difference between those samples, instead of entire sample. The advantage of ADPCM algorithm is its simplicity, which results in easy to implement and, what’s event more important, fast compression and decompression routines. The disadvantage of ADPCM is its relatively small compression ratio and the fact that it introduces dependency between compressed audio samples
. More information about ADPCM and other audio compression formats available in [3].

Implementation environments

One of the things that have major influence on architecture and performance of an application is an environment in which given application is implemented and executed. So in order to analyze architectures and performances of low-bitrate codecs, it is necessary to describe and analyze their environments. An environment of codec consists of three main components: platform (operating system, Java virtual machine), programming language and libraries, toolkits or frameworks used. It is characterized by a support it offers for multimedia applications and an overhead it introduces.

X Window System

The X Window system is the standard graphical user interface for UNIX operating system. It is also a collection of protocols, file formats and documentation. It was designed at MIT but its continued development has been taken over by the X Consortium, which is made up of developers, vendors and users of X. The X Window System specifications and source code are freely available. As a result, it has been widely accepted by the computer industry.

The X Window system has a unique division of responsibilities in managing graphical user interface. The application (called X client) makes requests to X server, which has exclusive control over display. The X protocol allows application to contact X server on another machine in the same manner as server on local machine so it is possible to redirect display of a given application.

Win32

The Win32 is a family of Microsoft 32 bit operating systems currently consisting of Windows NT and Windows 95. It is also a set of application programming interfaces (APIs) that are supported by Windows NT operating system. Windows 95 and Win32s (extension to Windows 3.1x) also support them, but some functions are not implemented (for instance thread API is not implemented on Windows 3.1x).

Generally, operating systems that belong to Windows family are not considered very efficient in comparison with UNIX operating systems. However, there are some interesting architectures available on Win32 systems that offer significant support for multimedia programming.

ActiveMovie is a Win32 runtime that can process and play multimedia streams in various formats. It is built using Microsoft COM architecture and uses components called filters connected together to create an entity called a filter graph. Filter graph is controlled by an object called the filter graph manager, which exposes COM interfaces to applications that want to use ActiveMovie capabilities. There are basically two ways of communication between an application and ActiveMovie runtime. Applications that require an access to low-level functions can call filter graph manager directly and directly retrieve filter graph events. Another way is to use ActiveMovie ActiveX control that provides higher-level interface. Currently there is a final version of ActiveMovie 1.0 runtime released and ActiveMovie 2.0 (renamed DirectShow) in beta testing stage.

Filter graph architecture

As was mentioned above, a filter graph is a set of components called filters. Usually, a filter graph configuration consists of a source filter, which provides data, several transform filters and a renderer which displays data (or plays it in the case of an audio stream). All filters are connected by pins, which represent connection points. Multimedia data flows from the source filter, which receives then from a data source (local file or URL) through a series of transform filters to a renderer, which sends them to a data destination (screen, audio device, file). The filter graph manager controls this entire structure.

[image: image1.wmf]Filter Graph

Application

Filter Graph

Manager

Source Filter

Transform

Filter

Transform

Filter

Renderer

Filter

Filter Graph

Data

Source

Data

Destination

Figure 1 Filter graph architecture

All these components are implemented as COM objects. In order to communicate with each other, COM objects expose interfaces consisting of methods. For detailed description of COM architecture see [10].

Time-stamped media streams

Multimedia data are processed by ActiveMovie runtime in media samples. A media sample is an arbitrarily chosen amount of data which is delivered to a filter in one step. For instance, it can be a frame of video sequence in the case of a video processing filter. A media sample is stamped with the time it is due to be rendered. When it arrives at the renderer, it is held until the time of synchronization device (usually an audio renderer, because audio hardware is often equipped with a clock) is the same as that stamped on the sample. This mechanism is used for maintaining correct framerate of video sequences, synchronization between different streams (e.g. video and audio) and quality management. The last mechanism is described in more detail below.

Quality management

When playing media streams, there is a possibility of encountering a situation when runtime cannot handle the amount of data necessary. The ActiveMovie architecture provides means for handling of overloaded or underloaded media streams. The filter that detects the need for quality adjustment is a renderer, which compares times stamped on media samples with a time of synchronization clock. The appropriate interface is used to send quality-control notifications from a renderer filter either upstream, to the filter capable of adjusting quality, or directly to a designated quality control manager. If notification is sent upstream, it is resent by all filters that are unable to perform necessary adjustment, until it reaches a proper filter (typically source filter or stream parser).

For more information about ActiveMovie see [4].

Java Virtual Machine

Java is a programming language developed by Sun Microsystems. Unlike many other programming languages (C and C++ are good examples), Java is an interpreted language i.e. it depends on a special runtime called Java virtual machine to be executed. This feature is an advantage as well as disadvantage of Java. It is an advantage because it gives Java unique cross-platform capability, Java application’s binary can be executed on every computer that has Java virtual machine installed regardless of an operating system or hardware. However, interpreted languages have much worse performance, which is an effect of additional layer of software necessary to translate application’s bytecode (intermediate stage of application’s code, between source and executable) into machine language instructions.

Currently many of Java virtual machines have a feature called Just-In-Time compiler or JITC. JITC compiles currently executed Java class in order to make its execution faster. Microsoft Java virtual machine is equipped with JITC and is particularly effective in terms of performance.

More information about Java programming language and Java libraries in [5] and [9].

Architectures of low-bitrate codecs

This analysis of architectures of low-bitrate multimedia codecs will start with a look at what applications such codecs can have in the Internet environment. Then, design issues will be discussed. Finally, developed architectures will be described.

Applications

There are several kinds of possible applications for low-bitrate multimedia codecs in the Internet. These are:

· Internet telephone systems — the applications that allow two users to communicate over the Internet using audio (sometimes audio and video); they can usually connect only two users at a time

· Videoconferencing systems — those applications can connect more than two users at a time and are capable of sending and receiving video and audio streams

· Video-On-Demand systems — this software performs the video and audio delivery over the Internet; it is usually integrated with a database that holds data about available movies and lets user to choose a clip he wants to see

· Presentation applications — they allow to present some content over the Internet, so they are really rather a subclass of VoD systems.

In this paper, Internet telephony will be treated as a special (simpler) case of videoconference, and presentation applications will be described together with VoD systems.

Internet characteristics

Multiplatform environment

As the Internet is a network connecting computers running many not compatible operating systems, the ideal Internet application would be able to run on several (preferably all) different platforms. However, ensuring portability of an application between operating systems is not an easy issue. UNIX systems guarantee source portability, provided that an application does not use platform specific libraries, as is often the case with multimedia programs. Win32 systems offer binary portability between them. In practice however, it often turns out that some programs behave differently on Windows NT and 95 systems.

Java seems to offer full portability of binaries, provided that they do not contain any calls to native methods. However, Java applications’ performance is often very poor and native methods are used to improve it, thus destroying Java’s portability. Another problem is that current version of Java libraries do not offer support for features like audio or video capturing, forcing developers to use native code to make up for lack of functionality.

Low bandwidth

The bandwidth possible to achieve over the Internet varies depending on many factors like location of sender and receiver, traffic generated by other users, network resources available in given time etc. It can be lower than 1 kbps when network load is heavy or when some sections are damaged. On the other hand it can reach order of Mbps, when transmitting on short distances without interference from other parties. In this paper we will assume that average achievable bandwidth is of order of tens of kilobits per second.

The video streams compressed using low-bitrate compression algorithms have also bitrates of order of tens of kilobits per second. Considering this fact, it is obvious that transmission of video streams will not be an easy task. Additional problem is created by the fact that low-bitrate compression algorithms tend to be very computationally expensive, so performance of the codec can prove to be a bottleneck as well, especially for applications written in Java.

What’s more, average low bandwidth is not the only problem that is encountered by Internet applications. Today’s Internet does not support quality of service. Data can arrive in bursts leading to temporary overflow or starvation of the application. In addition, data can arrive at destination in different order than they were sent. Obviously, the wrong sequence of video frames or audio samples would be immediately visible (audible) so application has somehow to compensate this effect.

There is couple of possible approaches to this problem, used by different classes of applications:

· Use protocol that resolves this problem – application can use transfer protocol, which provides error correction (for instance TCP). However, this feature comes at a price, as some of available bandwidth is used by error recovery mechanisms (acknowledgments of messages, retransmission requests and retransmission itself). What’s more, TCP guarantees that messages will arrive in the same order that they were sent, what means that sometimes there will be a big delay because data will not be available until they can be ordered (so one late message can block other messages, that otherwise would be available).

· Use UDP protocol and implement error recovery by yourself. This approach gives more control over the network transmission. Possible solutions range from full implementation (with retransmission request or error correction coding) down to very simple algorithm that basically just provides information about error and does not try to recover from it. The last solution is based on observation that often, application will do much better without data, than it would be after delay caused by retransmission. For instance, the lack of one video frame may be invisible to the user, while the delay is likely to be spotted.

· Disregard transmission errors. It is simplest solution, but can lead to very poor quality. Decompression of damaged H.263 stream can prove to be impossible, effectively denying any video to the user. Moreover, audio distortions caused by transmission errors are easily audible, what decreases quality even further.

Resulting architectures

As explained above, Internet applications have to operate under specific conditions. Those conditions have different influence on different kinds of applications. Below, we will examine issues associated with videoconferencing systems and, later, with video-on-demand systems.

Videoconferencing systems

Videoconferencing systems provide communication between two or more users. As most of communication systems they operate under strict real-time constraints. Strict constraints for videoconference result mostly from a fact that audio communication between people is very sensitive to delays. While people are used to delays in video transmission (or no video communication at all, like in telephone), audio delays are not acceptable, as they make normal conversation impossible. This fact narrows the range of actions that videoconferencing system can take in order to recover from transmission error. The requirement for small delay means that only relatively small amount of received data can be buffered, what effectively makes retransmission of lost packets impossible and ordering of out-of-order messages very hard. That is the reason why most of videoconferencing systems do not attempt to retransmit lost data, even if it means lower quality of delivered video and audio.

Another important issue associated with videoconferencing systems is performance of video encoders. As was mentioned earlier, low-bitrate compression algorithms are CPU intensive, and it can be a problem to develop an encoder that can provide high enough frame rate. It is possible to use algorithms that are less computationally expensive, but there can be the problem with bandwidth they can achieve.

The frame rate usually achieved with an H.263 encoder is about 0.5 – 5 frames per second depending on encoder implementation and CPU. At that frame rate there is no need for exact audio-video synchronization. The most of fast movements that make lack of synchronization visible (like lips movement while speaking) are lost because of low framerate, so user cannot percieve that exact synchronization is not preserved.

Another important problem is a fact that videoconferencing system usually consists of video encoder and decoder running on the same machine (in case the user is not only sending but also receiving data). That means that more CPU intensive encoding can disable decoding routines by taking all available CPU power. This would result in loss of data, when video is received from other conference participants but it is not displayed because it cannot be decoded or it is decoded with too much delay. There are several possible solutions to this dilemma:

· fixed frame rate – user manually sets encoding rate at a value that leaves some CPU for decoder

· dynamic frame rate – application monitors CPU usage and decoding rate and if necessary decreases encoding frame rate

Provided that frame control mechanisms described above work correctly, decoder will always cope with amount of data that are received from other participants (with exception of large conferences when, for instance, 50 participants send video, but currently no videoconferencing system has capability to connect that many users in one session). That means that it is not necessary to implement separate quality control mechanism for video decoder.

Another problem in implementation of audio and video decoders for videoconferencing systems is that they have to be able to recognize input from different users and display it in a meaningful way. For instance, video streams from different participants can be displayed in separate windows, while audio received from other parties have to be multiplexed into one stream. This of course will complicate architecture of decoders used in videoconferencing systems.

Video-on-demand systems

Video-on-demand systems provide video over the network. The user can chose a video sequence, he desires to see and the VoD system delivers data from the video server, decodes them at user machine and displays them. VoD systems usually allow user to interact with the video. Common set of permitted action consists of play, pause and stop commands, sometimes with addition of full random access. Such additional functionality (not possible in videoconferencing) makes VoD implementations more complicated. The issue associated with random access implementations is that the H.263 compression format (similarly to MPEG and H.261) uses a temporal compression mechanism, what means that encoded frames are not independent. This problem can be resolved by inserting INTRA frames into the encoded video stream. However, this solution enables the decoder to “jump” only to INTRA frames in the stream, so decoder must have some additional information about location (offset) of such frames in the stream. These information can be provided by video server (or video database) or they can be obtained by pre-scanning the stream. There is also another possibility of scanning the stream for INTRA frames as it is played the first time, but this scheme enables random access only after first playing. Another solution that do not require knowledge about locations of INTRA frames is to jump to specified location and start scanning the stream for presence of I frames from this point.

Video-on-demand systems enjoy one significant advantage over the videoconference systems, namely that there are no real-time constraints on encoding. The delivered contents are usually created earlier and off-line, what means that performance of encoder can no longer prevent us from creating streams with higher frame rates. The only limit is imposed by a bitrate of created streams. However, higher quality of video and audio creates another problem. Now, both streams have to be precisely synchronized because offset as small as 0.25 second is visible especially if video shows talking people (lack of synchronization between sound and moving lips is very well visible). So, VoD systems have to provide an additional synchronization mechanism.

Higher quality of delivered streams creates also another problem. There exists possibility that decoder would not be able to decode received amount of data in real-time. As this would mean immediate loss of audio-video synchronization, the need for some kind of quality management scheme arises. It would, in such circumstances, drop frames in order to decrease decoder load and to preserve synchronization.

Now, we will examine examples of existing implementations of codecs.

Examples of existing architectures

Telenor H.263 decoder

Introduction

This H.263 decoder was developed by Telenor Research, Norway as a part of research on very low-bitrate compression. It is one of few public domain H.263 decoders, so it is very popular and has been used by many other research projects. As this decoder it is not really an Internet application (it can only decode from local file) it is described here for comparison only.

Telenor decoder can be compiled on Win32 or X Windows systems (IRIX and Linux were tested).

Architecture

The Telenor decoder has a very simple, monolithic architecture. There exists only one module and all function belong to it (they operate on global variables). This module performs all operations necessary to decode an H.263 stream, it read data from file, parses read stream, performs decoding, then converts resulting YUV image to RGB image that can be displayed and if necessary dithers it in order to lower number of colors. This of course results in very complicated, not flexible code.

[image: image2.wmf]File

H.263

Decoder

File or

Display

H.263

Figure 2 Architecture of Telenor H.263 decoder

Functionality

The Telenor H.263 decoder supports all five CIF formats as well as all negotiable options. However, it can only decode from local file to local file or to display. As H.263 is a video only compression, Telenor decoder does not support any audio compression format, so it does not have any audio-video synchronization mechanism. It also does not have quality management scheme, just a simple rate control mechanism (it reads frame rate data from H.263 stream).

NPAC BuenaVista H.263 and ADPCM decoders

Introduction

BuenaVista videoconferencing system is a product developed in Northeast Parallel Architectures Center as a part of Collaboration and Interactive Visualization project. There are two separate versions of BuenaVista system, one for Silicon Graphics workstations and another for Win32 machines. It is a standalone videoconferencing system, and it is also integrated with TANGO collaborative environment. Together with TANGO, BuenaVista was used during fall semester of 1997 as a distant learning tool for course held from Syracuse University to Jackson State University.

Architecture of the H.263 decoder

In this section, we will discuss architecture of part of BuenaVista system that deals with video decoding. This part is a separate application called Video Tool. Other parts, dealing with session management, user directories etc. will be ignored, as they don’t have a direct influence on H.263 decoding. More information about BuenaVista available in [6].

[image: image3.wmf]RTP

Analyzer

Decoder

Users

Demultiplexer

Display

Display

Decoder

Decoder

Display

Display

Figure 3 Architecture of BuenaVista video decoder

Figure 3 presents part of Video Tool that is responsible for video decoding. It consists of following components:

· RTP Analyzer – receives data from the network, recognizes packet source and compression type (Video Tool can use compression formats other than H.263)

· Decoder – there is actually more than one decoder, what is caused by the fact that Video Tool uses multiple compression formats; data are sent to one of decoders depending on compression format used

· Users Demultiplexer – sends received data to different windows depending on source from which they came; this allow to show data coming from different users on separate displays

· Display – each of displays shows data from different user

Architecture of the ADPCM decoder

Architecture of audio decoder in BuenaVista system is quite similar to the architecture of video decoder. The audio codec is also a separate application called Audio Tool. Its architecture is presented on Figure 4.

[image: image4.wmf]RTP

Analyzer

Decoder

Users

Demultiplexer

Speaker

Audio

Multiplexer

Decoder

Decoder

Figure 4 Architecture of BuenaVista audio decoder

BuenaVista audio decoder consists of following parts:

· RTP Analyzer – very similar to RTP Analyzer used in Video Tool, it can recognize audio format of received packet

· Decoder – similarly to Video Tool, Audio Tool can use several audio compression formats. Each of decoders can decode audio compressed in different format

· User Demultiplexer – places decompressed audio data in different buffers, according to the source that they came from; that is necessary to properly multiplex audio streams into one

· Audio Multiplexer – multiplexes audio from different users into one stream that is sent to audio output

Functionality

BuenaVista Video Tool can decode following video formats: H.263 (very low bitrate), H.261 (less efficient predecessor of H.263) and Intel YUV9 (high bandwidth but very easy to decode). It allows different users to use different compression formats. It does not use any of H.263 negotiable options and do not implement any quality management mechanism. There is no rate control as data are decoded at a rate which they arrive from network.

The Audio Tool can handle the following audio formats: GSM, Intel/DVI ADPCM and PCM. As for Video Tool, it permits different users to use different audio formats. The Audio Tool complexity varies on IRIX and Win32 systems. This is because SGI audio library has internal audio multiplexing mechanism and SGI audio device supports full-duplex mode. These features are not available on Win32 so they have to be implemented by Audio Tool.

As it is suggested by the fact that Audio Tool and Video Tool are separate applications, there is no audio-video synchronization mechanism.

NPAC ActiveMovie H.263 and adpcm decoders

Introduction

The H.263 and ADPCM decoder were implemented in ActiveMovie (AM) as a part of NPAC Video-On-Demand project. As VoD system uses ActiveMovie architecture, the H.263 decoder also has to be AM compatible. That means that it has to be able to receive an encoded stream from standard ActiveMovie source filters (and from any other supporting appropriate interfaces) and to send a decoded stream to the AM renderer. It also had to react to commands sent by the filter graph manager and participate in the quality management system. To achieve this goal, the decoder was implemented as a set of filters supporting necessary interfaces.

Architecture of the H.263 decoder

Architecture consisting of two filters (one handling H.263 stream parsing and decoding and a second for YUV to RGB conversion) was chosen for implementation, as a solution providing the most flexibility with less inter-filter communication overhead and less effort needed to modify existing code.

The Unified Modeling Language (see [8]) is used for following object models.

[image: image5.wmf]CTransformFilter

CPullPin

CMediaPosition

CH263PullPin

CH263MediaPosition

1

1

CH263Decoder

1

1

1

CTransformOutputPin

1

1

CTransformInputPin

CYUV2RGB

1

1

1

Figure 5 Object model of the ActiveMovie H.263 decoder

Implemented classes:

· CH263PullPin — class which handles connection to pins supporting asynchronous reading, it implements the IPin interface responsible for connections between filters; this class also parses H.263 data obtained from a connected pin supporting the IAsyncReader interface and sends them to an object of CH263Decoder class one frame at a time.

· CH263Decoder — class which handles H.263 decoding, it receives data from an object of the CH263PullPin class, processes them and sends them to an object of the CTransformOutputPin class; this class exposes the IFilter interface and IMediaPosition interface responsible for seek operations on the H.263 stream; it is also capable of dropping frames on request from the video renderer to decrease its load.

· CH263MediaPosition — class providing the CH263Decoder class with services necessary to implement the IMediaPosition interface.

· CYUV2RGB — class which converts YUV frames resulting from H.263 decompression to RGB frames acceptable to the ActiveMovie video renderer; this class also implements quality management and is capable of dropping frames if the renderer is overloaded.

Standard ActiveMovie classes visible on diagram:

· CTransformFilter — this is an abstract class simplifying filter creation. It provides most of the methods needed to implement the IFilter interface. It uses CTransformInputPin and CTransformOutputPin classes for pin objects
.

· CTransformInputPin — class implementing input pin functionality. It exposes the IPin interface and can handle most of connections with the exception of a connection using IAsyncReader interface.

· CPullPin — this is an abstract class providing the basic functionality necessary to connect to and retrieve data from any pin exposing IAsyncReader interface.

· CTransformOutputPin — like the CTransformInputPin but it handles outgoing connections.

· CMediaPosition — abstract class, which is a template for creating classes implementing the IMediaPosition interface. All methods of this interface are pure virtual.

Architecture of the ADPCM decoder

As ADPCM decoding (and of course ADCPM decoder) is much simpler then H.263 decoding, the architecture of this module is also less complicated. The decoder consists of only one filter, implemented by the following classes.

[image: image6.wmf]CTransformInputPin

CTransformFilter

CMediaPosition

CPullPin

CTransformOutputPin

CNPACAudioPullPin

CAudMediaPosition

CNPACAudio

1

1

1

1

1

1

Figure 6 Object model of the ActiveMovie ADPCM decoder

Implemented classes:

· CNPACAudioPullPin — implements methods necessary to establish connection with the output pin of an asynchronous source filter (i.e. a pin supporting IAsyncReader interface), the class inherits from CPullPin and CTransformInputPin classes.

· CNPACAudio — class implementing ADPCM decoding; it implements the IFilter interface and exposes the IMediaPosition interface implemented by the CAudMediaPosition class. This class inherits from CTransformFilter class.

· CAudMediaPosition — this class implements the IMediaPosition interface exposed by objects of the CNPACAudio class. Analogous to CH263MediaPosition, it subclasses the CMediaPosition class.

Standard classes are described in section discussing H.263 decoder.

Overall architecture and functionality

Flow of information inside VoD client

[image: image7.wmf]Source

Filter

H.263

Decoder

H.263

YUV to RGB

Converter

Video

Renderer

…

YUV

RGB24

Source

Filter

ADPCM

Decoder

Audio

Renderer

ADPCM

PCM

synchronization

data

Figure 7 Flow of data in H.263/ADPCM decoder

As you can see in Figure 7, H.263 decoding and ADPCM decoding are completely separate streams in this filter graph architecture. Such a configuration is necessitated by the fact that H.263 is video only compression and there is no associated audio format, as in the case of the MPEG-1 standard where we have MPEG-1 video and MPEG-1 audio streams interleaved into one. A possible solution would be to create our own proprietary format combining H.263 video with, for instance, ADPCM audio. However, such a format would not comply with the assumption that VoD system uses only standard video and audio formats. So we decided to create architecture as shown above, using two separate data sources, parsers and decoders.

Synchronization between video and audio streams

As described above, multimedia data in the VoD client are processed in two separate streams. ActiveMovie provides the mechanism which allows synchronizing them. This mechanism relies on time-stamped media samples (in this case a media sample is a single frame). Every frame has a time stamp indicating when it should be displayed. The same stamp is attached to audio stream samples. Both audio and video renderers wait for time of the synchronization clock to be equal to the sample’s time stamp. So if equal time stamps are attached to appropriate audio and video samples, they will be synchronized.

Quality management

Most of the H.263 QCIF streams stored on NPAC VoD servers have a frame rate of 10 frames per second. This gives reasonable quality and decreases bandwidth to a number allowing the transmission of streams over an ISDN connection. However, decoding of an H.263 video stream is CPU intensive and it is likely that some machines will not be able to cope with that frame rate. As this would certainly lead to loss of audio-video synchronization, certain provisions have to be made to allow decreasing frame rate dynamically. It is possible to do so by using the ActiveMovie quality management system. The scheme of its implementation for the H.263 decoder is shown in Figure 8.

[image: image8.wmf]H.263

Decoder

YUV to RGB

Converter

Video

Renderer

Audio

Renderer

quality

msg

quality

msg

reference

time

Figure 8 Flow of quality management data

The general concept of this system is to drop a frame as early as possible. For instance, if a frame is skipped in the H.263 decoder, we save time needed for decoding it, converting it to RGB format and then displaying it. If we drop a frame in YUV converter, the time used for decoding it from H.263 is lost (as we decoded a frame and never showed it). According to this concept, the best filter for adjusting quality is a source filter, which processes frames first. This is impossible however, as most ActiveMovie source filters are format independent. This means that they do not know anything about internal structure of data they are processing. The first filter in the filter graph, which can recognize the structure of a video stream, is usually the stream parser (e.g. MPEG-1 parser or AVI parser). In the case of the H.263 decoder, parser functionality is built into the decoding filter so this is our recommended place for skipping frames.

The internal structure of an H.263 stream creates another problem concerning frame dropping. Since H.263 is a temporal compression, a given frame depends on previous ones. So if one frame is skipped, subsequent frames can be impossible to decode. The only way to avoid this is to introduce I-frames into an H.263 stream. An I-frame (INTRA frame) is a frame encoded independently from other frames. If we have such frames in H.263 stream, we can skip preceding non-I-frames (INTER frames) knowing that the decoder will resynchronize when next I-frame arrives. This mechanism is very effective (it greatly reduces the load of the H.263 decoder) but as explained above, it can work only for some H.263 streams. For other streams (i.e. those without I-frames) another solution had to be developed.

The second best possibility to skip video frames in order to relieve overloaded renderer is the YUV to RGB converter. Such conversion takes some time, so skipping a frame there would certainly be more profitable than in the video renderer. To use this possibility the YUV/RGB converter was also equipped with a quality management mechanism. When this filter receives notification from the renderer, requesting a decrease of video load, it first passes this notification to the H.263 decoder asking if it can adjust a stream. If not (because of lack of I-frames) then the frame is skipped in the converter. This solution provides us with the best scheme (i.e. skipping frames in the H.263 decoder) if possible and with an acceptable one if the best is not available.

Random access

As was mentioned in the previous section, H.263 compression format uses temporal compression, which prevents us from skipping video frames in the decoder. It also makes it impossible to ‘jump’ into a randomly chosen part of the video stream and start decoding from there. In order to decode a stream properly, the decoder has to start from an I-frame. Such frames are introduced into H.263 streams stored on NPAC VoD server, and information necessary to find them (offset within the stream) is stored in the VoD database and provided during the process of starting a video client. The VoD source filter receives this information in a form of NVS file and then passes it to the H.263 decoding filter during connection negotiations. If the H.263 filter does not detect the presence of such information, it still accepts connection but with disabled random access capability.

The choice of ADPCM as the audio format to be associated with H.263 video, created another difficulty. When the user requests access to another part of the video sequence, the audio should be rewound accordingly. However, ADPCM is an adaptive format, which means that samples depend on previous ones. To solve this problem, the concept of audio frames was introduced. Every part of the audio stream associated with one frame of video was coded relative to the same value. This way, audio synchronization points analogous to H.263 I-frames were created and access to any part of a video clip was enabled.

Summary of decoder capabilities

The current version of the H.263 decoder has the following capabilities:

· It can play H.263 streams with associated audio from NPAC VoD server

· It can also play separate H.263 (video only) or ADCPM (audio only) streams from the VoD server

· It provides full random access capability for all above cases. However this capability requires the presence of I-frames in the video sequence (see section Random access)

Although developed software was meant to cooperate with NPAC VoD system, its implementation is generic enough to permit its use without the VoD system. The developed module allows playing H.263 or ADPCM streams from any ActiveMovie filters exposing the IAsyncReader interface. These are source filters capable of receiving data from a local file or from a URL through HTTP or FTP server. There is, however, one restriction. In the case of playing from a standard filter, there is no VoD source filter present, so no one can provide the information necessary to find I-frames in the H.263 stream. This disables the random access capability for given video stream (audio still has random access).

NPAC Java H.263 and ADPCM decoders

Introduction

Java H.263 and ADPCM decoders are still under development. They are a part of the VoD project. Main goal is to create lightweight multi-platform decoder. Two versions are requested: application and applet. As problems with performance were expected, the first approach was to develop bare-bones H.263 / ADPCM decoder, to see what frame rate it can achieve. If this would prove to be reasonable, additional features would be added (more advanced error recovery, more advanced quality management, more audio formats and possible random access). Performance of Java decoder turned out to be sufficient so second stage of projects was started. The goals for this part were to add possibility of playing other audio formats (GSM), and to enable integration of decoder with other programs developed in NPAC (Java whiteboard).

Architecture of H.263 decoder

As Java standard libraries do not offer support for multimedia streaming, all functionality necessary for video decoder has to be implemented from scratch. The result is a following architecture.

[image: image9.wmf]URLVideoProvider

FileVideoProvider

VideoProvider

1

1

H263Decoder

1

1

sends data to

1

1

AVSynchronizer

VSynchronizer

Synchronizer

1

1

Graphics

1

Frame

Controller

VideoPlayer

1

1

sends frames to

1

1

1

1

1

controls

synchronizes with

1

1

Figure 9 Object model of the Java H.263 decoder

Figure 9 presents architecture consisting of following classes:

· VideoProvider – abstract class that encapsulates I/O functionality

· URLVideoProvider – subclass of VideoProvider class; it provides data from specified URL

· FileVideoProvider – subclass of VideoProvider class; it provides data from specified local file; it is not possible to use this class in the applet version of decoder

· H263Decoder – this class contains all H.263 decoding functionality; it gets data from VideoProvider, decodes them and sends them to VideoPlayer object

· VideoProvider – class that provides video rendering and timing functionality; it displays received data on externally provided object of Graphics class

· Synchronizer – abstract class that encapsulates clock functionality

· AVSynchronizer – this class is a clock synchronizing video and audio streams

· Vsynchronizer – clock for video rate control (in case there is no associated audio stream)

· Controller – class that provides instantiation, user interface and control for other classes; it is a subclass of Frame class, so it can provide Graphics object for VideoPlayer; it manages user interface

Following standard Java classes were used in implementation:

· Graphics – standard AWT class that represents an object that other objects can draw on

· Frame – standard AWT class that encapsulates functionality of a screen window; it contains window title bar, standard icons (like maximize, minimize and quit) and can be resized

Architecture of ADPCM decoder

[image: image10.wmf]InputStream

FileAudioProvider

URLAudioProvider

1

1

ADPCMDecoder

AudioProvider

AudioIOStream

1

1

Controller

AudioPlayer

1

1

1

1

Synchronizer

1

1

sends synchronization data to

controls

sends data to

1

1

1

1

1

1

1

1

DecoderFactory

AudioDecoder

1

1

exchange data with

1

..*

1

creates

1

1

..*

Figure 10 Object model of the Java ADPCM decoder

Description of implemented classes:

· AudioProvider – abstract class that encapsulates I/O functionality of ADPCM decoder

· URLAudioProvider – subclass of AudioProvider; it provides audio data from specified URL

· FileAudioProvider – subclass of AudioProvider; it provides audio data from local file; it is not available in applet version

· AudioDecoder – abstract class that represents functionality of audio compression decoder; it has the information necessary to recognize the format and calculate size of input and output buffers

· ADPCMDecoder – subclass of AudioDecoder; it can recognize and decompress ADPCM compressed audio

· DecoderFactory – class that manages creation of objects of AudioDecoder’s subclasses; it participates in audio format recognition scheme

· AudioIOStream – class that serves as an input stream for standard AudioPlayer class; it is a subclass of standard InputStream class; existence of this class is necessitated by the fact that standard Java audio player can only read data from the subclass of InputStream class

· Synchronizer – this abstract class provides synchronization between video and audio streams and video rate control

· AVSynchronizer – this class synchronizes video and audio streams; it is a subclass of Synchronizer class; it gets time data from AudioIOStream class

· Controller – provides instantiation, control and user interface for other classes; it a subclass of Frame standard class

Description of standard classes:

· InputStream – abstract class representing functionality of a stream from which other classes can read data; subclasses of this class are FileInputStream, ByteArrayInputStream etc

· AudioPlayer – this is Java only class that provides audio playing capability for applications and applets. There exist other possibilities of playing audio, but they can be used only in applets

Overall architecture and functionality

Flow of information inside decoder

[image: image11.wmf]Audio

Provider

ADPCM

Decoder

Audio

Stream

Audio

Player

Video

Provider

H.263

Decoder

Video

Player

Synchronizer

ADPCM

PCM

PCM

PCM

H.263

RGB

synchr.

data

synchr.

data

Figure 11 Flow of data in Java H.263/ADPCM decoder

There are two separate streams of data, one for video data, second for audio data. These streams are synchronized at the end by Synchronizer class object.

Synchronization between video and audio streams

Java does not offer default support for synchronization like ActiveMovie does. So proprietary synchronization scheme had to be developed. This scheme relies on object of the Synchronizer class. This class provides in fact two mechanisms: audio-video synchronization and video frame rate control. There are two subclasses of Synchronizer: AVSynchronizer and VSynchronizer.

AVSynchronizer provides synchronization and rate control. It relies on data provided by AudioIOStream. When given audio sample is read by AudioPlayer, information about this fact is send to AVSynchronizer object. It calculates sample’s due time and informs video player that given audio samples is being played so appropriate video frame should be displayed.

VSynchronizer class is used when there is no associated audio stream. In such case, there is no AudioIOStream object that could provide timing information. VSynchronizer does not depend on audio stream for synchronization, it uses Java system clock instead. However, certain provisions have to be made to allow operation like pause and run. If decoder is paused, then either clock should also be stopped or due times of frames have to be recomputed to compensate for time between pause and consecutive run command. VSynchonizer implementation effectively stops synchronization clock and in this way avoids necessity of recalculating time stamps.

Quality management

There is no quality management scheme in Java H.263 / ADPCM decoder.

Random access

Java decoder offers very limited random access functionality. Only allowed operations are: pause (stops decoder), play (starts decoder from beginning or from place of last pause) and rewind (restarts decoder from the beginning of the stream).

Audio type recognition

After simple decoder proved to be fast enough, next stage of project was to allow of playing not only of ADPCM files but also GSM and other audio compression formats. This stage is not yet completed but a mechanism that permits audio format recognition is already implemented. It consists of four agents: controller, decoder factory, decoder and provider. Their responsibilities are following:

· Controller – creates decoder factory and provider; manages entire process

· Decoder Factory – creates decoders; can recognize type of decoder; can iterate through decoders’ types

· Provider – provides data from data source; communicates directly with decoder provided by factory

· Decoder – recognizes audio format; provides data about format (header length, buffers sizes)

Interaction diagram of type negotiating is presented below.

[image: image12.wmf]Controller

Audio Provider

Audio Decoder

Decoder Factory

reset factory

get decoder

set decoder

get header length

put header

get decoder

set decoder

get header length

put header

get sample size

start

Figure 12 Interaction diagram of audio type negotiation

Scenario for above diagram is as follows. First, controller object resets decoder factory thus informing it that type negotiation is about to begin. Then, controller requests an audio decoder from initialized decoder factory. When it receives requested decoder, it gives it to the audio provider object. Audio provider asks given decoder how many data it needs to recognize audio format of current stream. After receiving this information, provider reads specified amount of data from the stream and passes them to the audio decoder. In the scenario above, it was assumed that decoder did not recognize audio format, so the next iteration of type recognition was started. The controller requested another decoder from decoder factory. All operations have been repeated and current decoder did recognize audio format. Then, second stage of type negotiation can begin. The provider asks the decoder about amount of data that decoder wants at a time and about size of resulting decompressed audio. These data are necessary to pre-allocate memory buffers. Type recognition procedure ends when provider reports to controller that it is ready to proceed and controller issues the ‘start’ command.

It is possible that none of decoders available from decoder factory will recognize given audio format. In such case, controller will report failure to the user.

Summary of decoder capabilities

Java based H.263 decoder can decode an H.263 stream and associated ADPCM stream from local file or from URL. It can handle only sequences of QCIF resolution. It provides limited random access functioanl

Encoders

As explained before, there are basically two kinds of encoders: real-time encoders and offline encoders. The first type is mostly used for videoconferencing (when video and audio have to be encoded and send in real time), second type can be used in video-on-demand systems, where content can be encoded offline, what removes real-time requirement.

Telenor H.263 encoder

Introduction

Like Telenor H.263 decoder described earlier, this encoder was developed at Telenor Research, Norway as a part of the same project. Similarly to Telenor decoder, it is not an Internet application and it is described here only for comparison with other codecs.

Architecture

Architecture of Telenor encoder is very similar to architecture of Telenor decoder described earlier. It has very simple, monolithic architecture consisting of one big module.

[image: image13.wmf]File

H.263

Encoder

File

Figure 13 Architecture of Telenor H.263 encoder

Functionality

The Telenor encoder supports all five CIF formats and all available negotiable options. However, it can only encode data coming from local file to local file. Like Telenor decoder it has no associated audio format.

NPAC BuenaVista h.261/H.263 and adpcm encoders

Introduction

H.263 and ADPCM encoders are parts of BuenaVista Video Tool and Audio Tool respectively.

Architecture of the H.263 encoder

[image: image14.wmf]Camera

Encoder

RTP

Packager

Figure 14 Architecture of BuenaVista video encoder

As we can see on Figure 14 part of Video Tool dealing with video compression has relatively simple architecture. This is thanks to a fact that, unlike video decoding part, it has to handle only one video stream (coming from installed camera). As there is only one stream, it is not necessary to use multiplexer or demultiplexer, and what’s more only one encoder is used at a time (user still can change video encoder but he cannot use more that one at a time). So this part of Video Tool consists of only three components: camera (necessary for video capture), encoder (encoding captured video stream) and RTP packager (packages compressed stream into RTP packets).

Architecture of the ADPCM encoder

[image: image15.wmf]Microphone

Encoder

RTP

Packager

Figure 15 Architecture of BuenaVista audio encoder

Figure 15 shows that like in Video Tool, part of Audio Tool dealing with encoding has a simple architecture. It consists of analogous parts: microphone (captures audio), encoder (encodes captured audio) and RTP packager (packages compressed audio into RTP packets).

Functionality

BuenaVista Video Tool can encode captured video stream using H.263, H.261 or YUV9 compression algorithms. It does not use any of H.263 negotiable options and use only QCIF size video. Video Tool features the dynamic rate control mechanism. Initially encoding rate is set at a very low value and then CPU usage is monitored. If it turns out that CPU utilization is not very high, Video Tool increases encoding frame rate. However, after this initial adjustment, Video Tool does not monitors CPU any more, what can potentially lead to problems.

The Audio Tool can decompress following audio formats: GSM, Intel/DVI ADPCM and PCM. It complexity varies on SGI and Win32 systems, as it has to implement half-duplex switching on machines that do not support full-duplex mode.

NPAC ActiveMovie H.263 and adpcm encoder

Introduction

This encoder was developed as a part of MPEG-1 to H.263 / ADPCM converter. The converter is a standard tool for creating low-bitrate contents for NPAC VoD system. The encoder is based on Telenor H.263 encoder. It is implemented in ActiveMovie environment.

[image: image16.wmf]File

Source

MPEG

Decoder

H.263

Encoder

ADPCM

Encoder

File

Renderer

File

Renderer

Figure 16 MPEG to H.263/ADPCM converter

As Figure 16 shows, converter consists of MPEG decoder which decodes MPEG-1 stream and of H.263 and ADPCM encoders that encode audio and video resulting from MPEG decompression. In this paper we will not discuss architecture of MPEG decoder as it is not a low-bitrate format.

Architecture of H.263 encoder

The standard ActiveMovie MPEG-1 decoder cannot decode the video stream to a YUV411 format that H.263 encoder can understand. Moreover, size of frame used in MPEG compression is different than any of CIF formats defined in H.263 recommendation. Consequently, it is necessary to implement additional modules that will handle conversion from RGB24 format to YUV411 format and resizing of frames to any of sizes acceptable by H.263 encoder.

[image: image17.wmf]CTransformFilter

CTransformOutputPin

CTransformInputPin

CBaseFilter

CRenderedInputPin

CDumpInputPin

CFrameClipper

CRGB2YUV

1

1

CH263Encoder

1

1

CDumpFilter

1

1

1

1

1

1

1

1

Figure 17 Object model of the ActiveMovie H.263 encoder

The following classes have been implemented:

· CFrameClipper – resizes received frame to one of CIF sizes (lines are clipped or duplicated depending on input and output sizes); supports IClipper interface

· CRGB2YUV – converts RGB24 frames to YUV411 format understood by H.263 encoder

· CH263Encoder – compresses received YUV frame to H.263 frame; calculates statistics (number of frames and average bitrate); implements IH263Encoder and IH263Stream interfaces that allow to set properties of H.263 stream (negotiable options, inserting of INTRA frames) and to retrieve calculated statistics

· CDump – it is a special kind of a renderer, instead if displaying received data, it writes them to a file

Standard ActiveMovie classes were described in section “Architecture of the H.263 decoder”.

Architecture of ADPCM encoder

MPEG-1 decoder provide PCM audio stream on its input. The ActiveMovie ADPCM encoder understands this format, so there is no need for any additional operations like in the case of video encoding. Therefore, architecture of ADPCM encoder is much simpler.

[image: image18.wmf]CTransformFilter

CTransformInputPin

CTransformOutputPin

CNPACAudioCoder

CDumpFilter

Figure 18 Object model of the ActiveMovie ADPCM encoder

Description of implemented classes:

· CNPACAudioCoder – compresses received audio data (PCM) to ADPCM format

· CDump – see previous section

Standard ActiveMovie classes were described in section “Architecture of the H.263 decoder”.

Overall architecture and functionality

Flow of information inside H.263 / ADPCM encoder

[image: image19.wmf]RGB to YUV

Converter

Frame

Clipper

H.263

Encoder

File

Renderer

ADPCM

Encoder

File

Renderer

RGB24

RGB24

YUV

H.263

ADPCM

PCM

Figure 19 Flow of data in H.263/ADPCM encoder

In encoder it is not necessary to synchronize audio and video stream, so ActiveMovie encoder does not implement any mechanism. The audio and video data, that are to be encoded, arrive from MPEG-1 decoder in two separate streams and they are encoded by two separate encoders. They are also written to two separate files.

As the VoD encoder, ActiveMovie encoder is not under real-time constraints so it does not have any frame rate control. This permits us to create streams with higher frame rate than in case of real-time encoder.

Summary of encoder capabilities

The current version of the H.263 encoder can encode RGB24 video to H.263 stream and, in the same time, it can encode PCM audio to ADPCM format. Encoder can use three out of four negotiable options, namely Unrestricted Motion Vector, Arithmetic Coding and Advanced Prediction modes, which allows better compression of video streams. The encoder can also insert INTRA frames into processed stream and generate file that provides information about location of inserted frames. This option is designed for creating video streams that permit ActiveMovie decoder to perform random access.

The ActiveMovie decoder can generate video streams with frame rate ranging from 0.25 to 30 frames per second and supports all five resolutions defined in H.263 Recommendation.

Summary

Architectures

We have reviewed four different decoders that cover whole range of possible applications: Telenor decoder is a demonstration decoder, not really useful in Internet environment, as it requires file download. ActiveMovie decoder is an example of VoD decoder. It provides random access and quality management schemes. BuenaVista decoder is a typical videoconference decoder, it is tightly integrated into videoconferencing system and it has to deal with issues like multiple streams management. Finally, Java decoder is a multi-platform VoD codec, as it can run on many platforms. It is lightweight in comparison to ActiveMovie decoder, as it features simple error recovery and no quality management.

We can see how application of decoder (and application specific requirements) influences its architecture. VoD decoders have complex audio-video synchronization mechanisms and they usually have a quality management scheme allowing the graceful adaptation in the case when load is too heavy. On the other hand, VoD systems usually deliver video content from one video server at a time and they do not have to synchronize multiple inputs. Even if user is watching more than one video clip, it is unlikely than they have to be synchronized in any way, so there is no need for multiple stream management.

As a quality of video delivered by videoconferencing system is significantly lower than in VoD system, the videoconference decoders do not need precise synchronization of audio and video streams so they usually forgo synchronization mechanism for simpler and more effective architecture. However, they have to recognize data received from many sources and manage them in a meaningful way, what increases complexity.

We can also see how implementation environment affects architecture. It was mentioned that complexity of versions of BuenaVista varies depending on platform. It is also visible on the example of ActiveMovie and Java decoders, where Java application had to implement entire synchronization mechanism from scratch and its quality management mechanism will have to be implemented as well. Support that ActiveMovie offers greatly decreased amount of effort necessary to implement quality management scheme and simplified architecture of decoder. However, this support comes at a price, developed software is impossible to port to any other platform as long as there is no ActiveMovie runtime present on that machine.

The Java decoder is the only of presented codecs that have true multi-platform capability. It was implemented without any native methods, so it can be run on any platform supporting Java.

performance

Performance of described codecs was measured on Windows NT system (with service pack 3 installed) running on Pentium processor with 133 MHz clock and 64 MB of memory. The testing computer was equipped with GraphixStar 700 graphic adapter, capable of displaying 16.7 millions of colors (24 bit color depth). Microsoft Java Virtual Machine was used for running Java decoder.

[image: image20.wmf]0

10

20

30

40

50

60

Telenor

ActiveMovie

BuenaVista

Java

fps

Figure 20 Comparison of performance of decoders

Figure 20 presents results of benchmarking of four described decoders. Time necessary to decode an H.263 sequence depends on complexity of that sequence, so all decoders have been tested using two different sequences: less complex (light) and more complex (dark). It is clearly visible that Telenor decoder is the fastest of all four decoders. ActiveMovie and BuenaVista decoders are very similar in terms of performance, while Java decoder is the slowest one. What is interesting, is that there is very small difference between performance of C/C++ based and Java based decoders.

The Telenor decoder is a fastest one, thanks to the fact that it is also the simplest one. It does not offer any functionality beyond decompression of H.263 stream. Other C/C++ decoders implement additional functionality what introduces significant overhead and, in effect, slows them down. Java decoder is actually simpler than ActiveMovie and BuenaVista decoders, its worse performance is caused by the fact that Java is an interpreted language, so there has to be additional layer of software present, which of course decreases decoder performance.

There is an interesting effect concerning the videoconferencing decoder. Video transmitted by videoconferencing system, usually shows so called “talking heads”, as camera is pointed at speaker’s face. Such video sequences are rather simple, so the average sequence is easier to decode than average VoD video clip.

[image: image21.wmf]0

0.5

1

1.5

2

2.5

Telenor

ActiveMovie

BuenaVista

fps

Figure 21 Comparison of performance of encoders

Results of benchmarking of encoders are shown on Figure 21. The complexity of the processed sequence influences time of compression in the same manner as for decompression, so encoder were also tested using two different sequences. This time the fastest codec is the BuenaVista encoder, but it does not have such a big advantage as Telenor decoder on previous picture. The ActiveMovie encoder is the slowest one, but as explained before, encoding for VoD systems is not under real-time constraints.

Performance of encoders is much worse than performance of decoders (they are on average 20 times slower). This is caused by a fact that compression algorithms are more computationally expensive than decompression algorithms. This problem affects videoconferencing systems more than VoD systems. It is evident that performance of encoder is very crucial for performance of videoconferencing system (it, in fact, determines frame rate at which systems operates), while in the case of VoD it does not affect system in the similar degree. The factor that determines performance of VoD system is either available bandwidth or performance of decoder.

The computer used for benchmarking is by no means a high-end PC. In fact, it rather falls into category of today’s average personal computers. This means that codecs and applications described above can be run on most of systems connected to the Internet (as far as performance is considered). Let’s take a look at achieved frame rates. All decoders are capable of decoding at least 15 frames per second of video at resolution of 176 per 144 pixels. At this rate, we often hit a limit of available bandwidth, so it means that performance of video decoders is no longer the most important problem.

Conclusions

Low bitrate compression formats certainly have a great potential in the Internet. They can be used in a variety of applications, in which the most notable examples are videoconferencing systems and video-on-demand systems. Such systems are currently under extensive research and they will certainly be more and more popular.

 There are several factors that in the future will affect the development of low bitrate codecs. New formats are being researched (H.263+ and H.263++ formats are discussed), new emerging environment will offer more support for multimedia applications, thus facilitating their creation. An example of such environment can be Java Media Framework, which beta version was released in November 1997. Also new hardware (processors) and software platforms (operating systems, Java virtual machines) will ensure better performance. As an effect, significance of VoD and videoconferencing systems will grow, as they will be able to provide better quality.

References

[1] ITU-T Recommendation H.263 “Video Coding for Low Bitrate Communication”, July 1995, http://www.fou.telenor.no/brukere/DVC/h263_wht/

[2] Telenor “H.263 Advanced Negotiable Options”, December 1995, http://www.fou.telenor.no/brukere/DVC/h263_options.html

[3] Woodward, Jason “Speech Coding” http://www‑mobile.ecs.soton.ac.uk/speech_codecs/

[4] Microsoft ActiveMovie SDK documentation, October 1996

[5] James Gosling et al. “The Java Language Specification”, August 1996 http://java.sun.com/docs/books/jls/html/index.html

[6] Stevens, Richard W. “Unix Network Programming” Prentice Hall, 1990

[7] Stachowiak, Tomasz “Multiplatform desktop videoconferencing system for the Internet” – Master’s Thesis, December 1997

[8] Uniform Modeling Language Documentation version 1.1, September 1997 http://www.rational.com/uml/documentation.html
[9] The Java Developers Kit 1.0.2 Documentation http://java.sun.com/products/jdk/1.0.2/index.html
[10] Rogerson, Dale “Inside COM”, Microsoft Press, February 1997

Vita

NAME OF AUTHOR: Grzegorz Lewandowski

PLACE OF BIRTH: Szczecin, Poland

DATE OF BIRTH: August 13, 1973

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

Franco-Polish School of New Information and Communication Technologies, Poznan, Poland

Technical University of Szczecin, Poland

DEGREES AWARDED:

AWARDS AND HONORS:

PROFFESIONAL EXPERIENCE:

Research Assistant, Northeast Parallel Architectures Center, Syracuse University 1997

� Lets consider video sequence consisting of 10 frames per second with standard MPEG-1 resolution of 352 pixels per 240 pixels, in 256 colors (8 bits per pixel). Such sequence would have bitrate of 6.8 Mbps, while bandwidth achievable over the Internet is of order of tens of kilobits.

� 8 kHz 16 bit mono stream has a bitrate of 128 kbps, which exceeds average Internet bandwidth

� so we can only decompress ADPCM stream from its beginning; it is impossible to “jump in” to the middle of stream; it also makes ADPCM compression more error prone as loss of packets can influence the rest of audio stream

� information about associations between base classes was omitted from the diagram

42

_942003296.doc

Source Filter

H.263 Decoder

H.263

YUV to RGB Converter

Video Renderer

…

YUV

RGB24

Source Filter

ADPCM Decoder

Audio Renderer

ADPCM

PCM

synchronization data

_942159777.doc

File

H.263 Decoder

File or Display

H.263

_942162451.doc

Camera

Encoder

RTP Packager

_942220377.doc

File Source

MPEG Decoder

H.263 Encoder

ADPCM Encoder

File Renderer

File Renderer

_942231125.doc
[image: image1.wmf]0

10

20

30

40

50

60

Telenor

ActiveMovie

BuenaVista

Java

fps

�EMBED Excel.Sheet.8���

[image: image2.wmf]0

10

20

30

40

50

60

Telenor

ActiveMovie

BuenaVista

Java

fps

_942231049.xls

Chart1

			Telenor			Telenor

			ActiveMovie			ActiveMovie

			BuenaVista			BuenaVista

			Java			Java

fps

54.3

39.8

30.1

24

30.2

25.7

24.3

17.1

Sheet1

			

												Telenor			54.3			39.8

												ActiveMovie			30.1			24

												BuenaVista			30.2			25.7

												Java			24.3			17.1

Sheet1

			

fps

Sheet2

			

Sheet3

			

_942232753.doc
[image: image1.wmf]0

0.5

1

1.5

2

2.5

Telenor

ActiveMovie

BuenaVista

fps

�EMBED Excel.Sheet.8���

[image: image2.wmf]0

0.5

1

1.5

2

2.5

Telenor

ActiveMovie

BuenaVista

fps

_942232722.xls

Chart1

			Telenor			Telenor

			ActiveMovie			ActiveMovie

			BuenaVista			BuenaVista

fps

1.9

0.9

1.3

0.7

2

1.6

Sheet1

			

												Telenor			1.9			0.9

												ActiveMovie			1.3			0.7

												BuenaVista			2			1.6

Sheet1

			

fps

Sheet2

			

Sheet3

			

_942163520.doc

Microphone

Encoder

RTP Packager

_942161477.doc

RTP Analyzer

Decoder

Users Demultiplexer

Speaker

Audio Multiplexer

Decoder

Decoder

_942161991.doc

File

H.263 Encoder

File

_942160592.doc

RTP Analyzer

Decoder

Users Demultiplexer

Display

Display

Decoder

Decoder

Display

Display

_942006043.doc

Audio Provider

ADPCM Decoder

Audio Stream

Audio Player

Video Provider

H.263 Decoder

Video Player

Synchronizer

ADPCM

PCM

PCM

PCM

H.263

RGB

synchr. data

synchr. data

_942157793.doc

URLVideoProvider

FileVideoProvider

VideoProvider

1

1

H263Decoder

1

1

sends data to

1

1

AVSynchronizer

VSynchronizer

Synchronizer

1

1

Graphics

1

Frame

Controller

VideoPlayer

1

1

sends frames to

1

1

synchronizes with

1

1

1

1

1

controls

_942159132.doc

RGB to YUV Converter

Frame Clipper

H.263 Encoder

File Renderer

ADPCM Encoder

File Renderer

RGB24

RGB24

YUV

H.263

ADPCM

PCM

_942010584.doc

Controller

Audio Provider

Audio Decoder

Decoder Factory

reset factory

get decoder

set decoder

get header length

put header

get decoder

set decoder

get header length

put header

get sample size

start

_942004320.doc

H.263 Decoder

YUV to RGB Converter

Video Renderer

Audio Renderer

quality msg

quality msg

reference time

_941907690.doc

CTransformInputPin

CTransformFilter

CMediaPosition

CPullPin

CTransformOutputPin

CNPACAudioPullPin

CAudMediaPosition

CNPACAudio

1

1

1

1

1

1

_941915771.doc

CTransformFilter

CTransformOutputPin

CTransformInputPin

CBaseFilter

CRenderedInputPin

CDumpInputPin

CFrameClipper

CRGB2YUV

1

1

CH263Encoder

1

1

CDumpFilter

1

1

1

1

1

1

1

1

_941921152.doc

Filter Graph

Application

Filter Graph Manager

Source Filter

Transform Filter

Transform Filter

Renderer Filter

Filter Graph

Data Source

Data Destination

_941916217.doc

CTransformFilter

CTransformInputPin

CTransformOutputPin

CNPACAudioCoder

CDumpFilter

_941914135.doc

InputStream

FileAudioProvider

URLAudioProvider

1

1

ADPCMDecoder

AudioProvider

AudioIOStream

1

1

Controller

AudioPlayer

1

1

1

1

Synchronizer

1

1

sends synchronization data to

controls

sends data to

1

1

1

1

1

1

1

1

DecoderFactory

AudioDecoder

1

1

exchange data with

1..*

1

creates

1

1..*

_941903597.doc

CTransformFilter

CPullPin

CMediaPosition

CH263PullPin

CH263MediaPosition

1

1

CH263Decoder

1

1

1

CTransformOutputPin

1

1

CTransformInputPin

CYUV2RGB

1

1

1

