

31

THE TABLE OF CONTENTS

11. Introduction

2. Description of TANGO system
5
2.1 System Requirements
5
2.2 System Architecture
6
2.3 The definition of a session and the communication protocol in TANGO
8
3. Control Application as Session Management Tool in TANGO
16
3.1 The place of Control Application in TANGO
17
3.2 Functions of Control Application
17
3.3 The graphical and functional design of Control Application
19
3.3.1 The first Control Application
19
3.3.1.1 Applet model
20
3.3.1.2 Session Management
22
3.3.1.3 Graphical design
24
3.3.2 The second Control Application
26
3.3.2.1 The improved Session Management mechanism
26
3.3.2.2 The improved graphical design
31
3.4 Customizability of Control Application
34
4. Related Work
38
5. Comparison of all presented mechanisms
45
6. Bibliography
53

V

1. Introduction

Web Technologies as an enable of the distributed systems

In recent years one could observe an enormous growth in networks and technologies related to them. The Internet especially contributed to this area, introducing the means for global computer communication. Computers using networks may now form one gigantic virtual machine used to access information stored around the world. Many different methods of information exchange have been used for years, including electronic mail, gopher and file transport, to mention a few. However, it is World Wide Web technology that introduced a real revolution in the computer world, not only in technology, but also in the human dimension. The Web’s popularity stems from its rich information content, easy and intuitive interface and good availability. The hypertext concept it uses allows it to present information that consists of various types of data (text, images, links to other documents). Because of its attractive contents and intuitive method, the World Wide Web has gained wide acceptance. Over time it has proven its stability and robustness. Due to its popularity, new technologies are being developed very rapidly, providing users with new capabilities such as viewing and processing new kinds of data, e.g. sound and video.

Because of its popularity the Web started to be perceived as a common platform not only for information storage and exchange, but also for general computing. Common users wanted to migrate with their software into this new, attractive network environment, which provides means for effective information sharing and transportation. It was tempting to build software entirely based on this platform, enabling truly collaborative work. However, until recently, the Web could not provide effective tools to satisfy these demands.

Despite its acceptance in the modern computer world, the Web was little more than a convenient method of displaying information. Building collaborative frameworks was not possible, because there was no mean to provide a user with an interactive way of processing information available on the Web. The only method of introducing some interactivity was the CGI (Common Gate Interface) mechanism. This technology, however, was insufficient for the growing demands of users. At this stage of WWW development it was impossible to create tools for cooperative work based on this technology. This situation changed when new technologies like Java and Plug-Ins were introduced.

In 1995 Sun Microsystems introduced Java. Java is an object-oriented, platform-independent, general-purpose programming environment. Apart from its other features, it introduces the concept of applets, programs that can be included in an HTML page, much like an image can be included. When one uses a Java-compatible browser to view a page that contains a Java applet, the applet code is transferred to the client’s system and executed by the browser. Java gained enormous popularity among WWW users and together with its lightweight script partner JavaScript is now broadly used to bring interactivity into the Web environment.

JavaScript is a compact, object-based scripting language for developing client-side Internet applications. A Web browser interprets JavaScript statements embedded directly in an HTML page. In a client application for a browser, JavaScript statements embedded in an HTML page can recognize and respond to user events such as mouse clicks, form input, and page navigation. JavaScript is based on a simple object-oriented paradigm. An object is a construct with properties that are JavaScript variables and with functions that are known as the object's methods. The functions are executed when a script is downloaded to a client’s machine.

The next important Web technology is the Plug-In technology. Plug-Ins are software components that can be integrated with the browser to enhance its capabilities, e.g., to handle new data types, enable new connections, or allow interactivity with the user. Plug-Ins allow the delivery of multimedia content through Internet sites. Now users of Netscape can view not just still images, but also video, audio, and animation.
[image: image6.png]NPAC

3 T ANGO

Show Mailbox | | ||USER |tomek . 11’05”;

133
prrpe—— Active users

B 3 user Host

Talking Heads narek trurlnpac.syr.er |
Meditonp il E23 avala. npac. syr. e1
Wi teoard zegnep trurlbis.mpac. sy:
Boring | roman02 merkury. npac. syr
Test Len Lem. npac. syx. edu
von tona camss. npac. syr. el
Wenseazch 11| eoms nixphak npac.syr |/
Speing —_— 5

OPEN LOCAL APPLICATTON

OPEN REMOTE APPLICATION
— Active applications
—— pplication type
GRANT MASTER. G

HopEisld

CLOSE APPLTGATION s
HER
SHOV TANGO CONSOLE
TURN YOICE OFF
BT THE SYSTEM

Active sessians

Tvpe Master Other participants
Buena Vista tons

chat. marek romen0?, zeynep, toms, bartw, war
chat tonek.

Cross Product war versa

HopEisld tonek.

Spring tonek.

Webiisdon war versa

Shared HDML Browser versa war

[image: image7.png]pe: CONTROL APPLICATION

Collaoratory Toots 1 options | Help |

Sat Jun 14 14:36:03

Generic Collaboratory Tools Virtial University Tools | Games | Demos 1 | Demos 2 |

| = |

tnihiteboard tona toma, sandnan. npac.)
marsk trurl.npac.syr

toma

itehoard narek
30 Vieible Hman marek

[image: image8.png]-«——Typical Clients ———,

MultiMedia

MultiMedia

~» Message Rb

-~ SW/Data Distrib.

HITP

Server \

All Clients

And finally there is Netscape LiveConnect [9], one of the latest Netscape technologies, which is a bridge among the above technologies. Thanks to LiveConnect, Java applets can communicate with JavaScript objects and Plug-Ins embedded in an HTML page. This allows a Web developer to combine the features of

three different technologies and to build very powerful Internet applications. LiveConnect communication scheme is shown in Figure 1.
The reason for describing these technologies is that they enabled development of interactive applications working in the World Wide Web environment. Since these technologies have been introduced, there have been more and more efforts to create distributed systems based on the Web environment. The majority of those efforts concentrate on development of single-purpose distributed or collaboratory systems themselves. In each case the development of the final systems is a complicated and difficult task. It often requires rewriting big parts of the code which already exists, but which works in single-user mode. The projects address the problem of controlling the behavior of a system and of managing the applications that create the system. There are many different approaches to the design of such mechanisms, hereafter called Session Management mechanisms, strongly depending on the purpose of the system. In this document a detailed description of a Session Management mechanism developed for TANGO system will be presented. TANGO is a Java/Web-based collaboratory system developed at the Northeast Parallel Architectures Center (NPAC) at Syracuse University. This system has already proved its usefulness in many practical cases. The author of this document has been deeply involved in the design and the implementation of this system. As far as distributed systems based on the Web environment are concerned, the Session Management mechanism designed for TANGO system illustrates very well the concept and a possible design of the control policy.

The next two chapters of this document present the TANGO system. In the first chapter the general architecture of the system is discussed. The second chapter describes an application, called Control Application, which is used as a Session Management tool in TANGO system.

The next chapter shows several other examples of the distributed systems implemented in the Web environment and the mechanisms of controlling those systems.

Finally, the assessment of all discussed mechanisms is presented.
2. Description of TANGO system

TANGO [2] is an integration platform which enables implementation of Web-based collaborative environments. The system provides the means of fast integration of Web and non-Web applications into one multi-user collaborative environment. In this chapter the design goals and the final architecture of the system are discussed.

2.1 System Requirements

The main idea behind the development of the TANGO collaborative framework comes from three simple observations:

· the majority of the code of existing applications may be reused while building their collaborative versions,

· the majority of applications working in collaborative mode may be implemented using a similar and actually simple message exchange mechanism,
· very useful distributed collaborative systems can be built by integration of slightly modified standalone applications together with some user and session management mechanisms.
The design goals were based upon these observations. We decided that our system should:

· enable the developer to integrate both standalone and Web-based applications providing them with uniform interface to communicate with their instances on different machines;

· allow a user to execute and to control all applications from the Internet browser environment, providing easy and intuitive interface to the collaborative environment;

· provide means for session control (starting and ending sessions, tracing participants activities);

· enable integration of existing applications written in any programming language, assuming socket communication as the only necessary communication mechanism;

· provide the possibility to download certain applications across the network through the use of Java applet technology, allowing part of the system to be distributed across the Internet;
2.2 System Architecture

[image: image1.png]cAHH sa cAHTH sa
LD LD

ARt sA AR sa
AH AH

HTTP cs || bB
CA - Control Application
A -Java Applet
SA - Standalone Application
LD -Local Demon

CS - Central Server
HTTP - HTTP Server

DB -Database

N - Netscape Navigator

 Figure 2. Global architecture of TANGO system

The global architecture of the system is presented in Figure 2. The system consists of the following components:

Local Daemons (Daemons)

Their main tasks are maintaining two-way communication between user applications, applets and the central server and launching local applications. The Daemon is implemented as a Plug-In in Netscape browser.

Central Server

Central server is the main communication element. All local daemons communicate with the central server. This server maintains the system state data (participants, applications, sessions, etc.). Its main task is routing of messages among applications participating in each session. This makes the Server a crucial element in the Session Management mechanism – the correct functioning of this mechanism strongly depends on the performance of the Server. However, in this document, I will not describe the mechanism of keeping the state of sessions consistent, nor will I describe the routing technique, but rather I will focus on managing the sessions from the client point of view. This involves a set of all possible tools that a client application can use to generate an action changing a session state.

Local Applications

In TANGO environment all user applications which run as standalone programs are called Local Applications. A local application may be written in any programming language. All local applications communicate with the local daemon by the use of sockets. The daemon is responsible for starting these applications and routing messages to and from applications.

Java Applets

Java applets are also user applications but written in the Java language, downloaded through the network from an HTTP server, and executed in a Netscape environment. Communication between Java applets and the central server is also maintained by the local daemons. Java applets communicate with a local daemon by calling its methods.

Control Application

Control Application is a specialized application which acts as the Session Management tool in TANGO and as the Graphical User Interface to the system. The detailed description of Control Application is presented in the next chapter.

2.3 The definition of a session and the communication protocol in TANGO

A session is a group of application instances currently working together in a collaborative mode. All applications belonging to the same session exchange information and share behavior. How a particular application operates in the collaborative mode depends on the characteristics of this application type. The model of TANGO sessions is presented in Figure. 3. We can see that user on host #1 (numbered from left) is currently participating in two sessions of the same application type: one with the user from host #5 and one with users from hosts #2 and #4.

Each application belongs to a session, even if it is not currently used for collaboration. In such case the session consists of only this one application. This situation is also shown in Figure 3, where the user from host #3 is the only participant in a session.

In all sessions there is one distinguished user which is considered to be a master. The master of the session has special privileges of controlling the application behavior and/or controlling access of other users to this session. The privileges depend on the application type. The other participants of a session are called slaves of the session because they can only observe the actions generated by the master.

Figure 3. TANGO session model

An exception to the master-slave mode of collaboration is applications that work in a complete partner mode. That means all participants have the same rights to use such an application. In this case the master-slave mechanism is simply transparent for the application.

The state of sessions may be changed. To generate and to control these changes there is a mechanism implemented in TANGO, which we call the Session Management mechanism. This mechanism involves:

· changing the state of a session by generating an action, hereafter called Session Management action;

· displaying the accurate and consistent information about all established sessions on the Graphical User Interface panel (discussed in the next chapter) on all machines using the system.

The Session Management actions are:

The first five actions are “the core” Session Management actions. They deal with establishing/closing a session and connecting/disconnecting a participant to/from a session.

1. Creating a session

A session is created when a participant launches a local application. In the beginning, the session contains only this one application instance. The participant automatically becomes the master of this session. Other participants may then join this session.

2. Joining an existing session

Joining an existing session means launching a new application and connecting it to a session.

3. Launching an application remotely

The master of a session can connect one or more of the TANGO users to the session by launching an application of the appropriate type on the remote host (s).

4. Leaving a session

When a participant leaves a session, there are three possible cases which need consideration:

· the participant is not the master of the session - in this case leaving the session means only removing a given application instance from the session,

· the participant is the current master of the session but didn’t create the session - in this case the local application ends but the session doesn’t end. The master mode is automatically transferred to the creator of the session.

· the participant is the current master and the creator of the session - in this case the session ends. All participants are removed from the session, the application ends, and session is deleted.
5. Closing an application remotely

The master of a session can disconnect one of the TANGO users from the session by closing an application of the appropriate type on the remote host.

The following two can be regarded as “floor control” actions among Session Management actions. It means they allow to change the owner of the master mode - “the floor”.

6. Requesting the master mode

A participant of a session may request the master mode from the current master of the session. This request must be approved by the master. If it is approved then the previous master automatically becomes a slave in this session. If the request is not approved then the state of the session does not change.

7. Granting the master mode

The master of a session may transfer this mode to another user. There is no acceptance procedure in this case. After the completion of this operation the previous master automatically becomes a slave in the session. The state of the session is always changed.

Communication protocol

To enable the management of those and other actions in TANGO system, a special communication protocol was designed. The objective of this protocol is to enable exchange of messages between the applications. A message is a primary unit of communication in TANGO system. There is a following procedure of sending a message:

1. An application communicates with the Local Daemon by the use of method invocation and passes it the message that is to be sent.

2. The Daemon encapsulates the message in a table of bytes and forwards it to the Central Server (TCP/IP connection).

The Central Server forwards the message to the addressee, i.e. to another Local Daemon, or to a group of Local Daemons, depending on a message. A daemon which receives a message from the Central Server translates the byte table into a Java object and passes this message to an application by invoking a method. Then the application interprets the message.

The communication protocol consists of several messages. Generally they can be divided into two groups:

· Application messages - exchanged among collaborating applications. These messages are not interpreted by the server. The server forwards application messages to all other participants of the session.

· Control messages - these are messages sent by Control Application after generating a Session Management action. They change the state of the server (establishing of new sessions, adding participants, etc.) and, thus, the state of a session. Below is a detailed description of this type of messages.

Control messages
If an addressee of a message is the server then the message is not forwarded to another TANGO user. The contents of these messages are extracted and interpreted to perform message-dependent server actions, which may change the state of a session. MACROBUTTON HtmlDirect </P>

If the addressee of a message is a Control Application then the message is forwarded directly to one Local Daemon, which, afterwards, forwards this message to the local Control Application.

All the TANGO control messages are described in Table 1. The arguments meaning is:

· AT
Application Type (unique for each application type)

· SID
Session Identification Number (each session has a unique number)

· AID
Application Identification Number (each application has a unique number)

· UID
User Identification Number (each new user is assigned a unique number)
Message addressee
Message type
Message arguments
Description
Related Session Management Action

Server
JOIN
AT, SID
this command is used to create a new session – then the parameter SID=0

or to join the session of applications of type AT - then the parameter SID>0
Creating a session / Joining an existing session – issued by the user who wants to create or join a session. Server replies with COMMAND message

Control app.
JASK
AT, SID, UID
request for joining a session sent to master of the session MACROBUTTON HtmlDirect </P>

Joining an existing session

Server
JANS
AT, SID, UID, yes | no
answer for JASK sent by the master of the session MACROBUTTON HtmlDirect </P>

Joining an existing session

Control app. MACROBUTTON HtmlDirect </P>

COMMAND
AT, parameters, AID, SID
this command is sent to the daemon to launch the application
Creating a session / Joining an existing session

Server
FINISH
AID
command sent from the daemon after an application terminates MACROBUTTON HtmlDirect </P>

Leaving a session / Closing an application remotely

Server
RJOIN
AT, SID. Remote UID
message used to launch an application on a remote host
Launching an application remotely

Control app.
RASK
AT, SID, local UID
message to acknowledge a user on a remote host if he/she wants an application to be launched
Launching an application remotely

Server
RANS
AT, local UID, remote UID, SID, yes | no
answer for RASK MACROBUTTON HtmlDirect </P>

Launching an application remotely

Control app.
SUPD
add | remove | master | login | logout, SID, AT, UID, username
update information from the server
Displaying update information on the screen

Server
MASTER
SID
request for the master MACROBUTTON HtmlDirect </P>

Requesting the master mode

Control app.
MASK
SID, UID
question for the previous master MACROBUTTON HtmlDirect </P>
to grant the master mode to another user
Requesting the master mode

Server
MANS
SID, UID, yes | no
answer from previous master
Requesting the master mode / Granting the master mode

Server
LOGIN
username
login to the system MACROBUTTON HtmlDirect </P>

Not a Session Man. Action

Control app.
LOGACC
username, UID
login confirmation MACROBUTTON HtmlDirect </P>

Not a Session Man. Action

Server
LOGOUT
UID
logout from the system
Not a Session Man. Action

Table 1. TANGO Control messages

The Session Management actions are generated by a user. In TANGO there is a specialized application that allows a user to generate these actions and to view the current state of sessions.

In the next chapter, the design and functionality of this application is discussed.

3. Control Application as Session Management Tool in TANGO

Control Application [1] is a specialized application which serves as a Graphical User Interface to the TANGO system. Control Application is also a Session Management tool providing the necessary functionality to control the behavior of other applications integrated with the system (called TANGO applications). In particular, Control Application lets a user do the following actions: log in and out of the system, launch/close TANGO applications remotely or locally, join existing sessions, and switch between master-slave modes. Control Application stores and displays information about all users already logged into the system, all session already established, and all TANGO applications already launched locally. This application also displays the current time of the day together with the current date of the year and provides access to an internal TANGO Mail system.

Control Application for TANGO system is a source of different information (e.g. a user name, a local host name or the names of all users already logged in) for other TANGO applications. An application can fetch that information using means provided by a special protocol of communication [4] between Control Application and local TANGO applications. This protocol is based upon a client-server model of request-answer communication. CA is “the server” and other TANGO applications are “the clients”. This means that if an application requires a specific set of data which CA possesses (e.g. all active users in the system) it sends a request to CA and then receives the answer with these data.

3.1 The place of Control Application in TANGO

[image: image2.wmf] Tango

 Central Server

 HTTP

 Server

 Server side

 Client side

Netscape Frame

Tango Local Demon

Netscape Frame

Control Application

Control Application

applet

Figure.4 The place of Control Application in TANGO system

Control Application in TANGO system is placed on the client side. Control Application is a set of Java applets downloaded through the Internet from an HTTP server to each TANGO user’s host. The applets run under the Netscape browser. One of these applets maintains communication with the TANGO Local Daemon (a Plug-In), which itself communicates with the TANGO Central Server by the use of sockets. It is impossible that Control Application establishes a communication link directly with the Server because of the security constraints in the Netscape Browser. These constraints prevent a Java applet from opening a local socket. This has to be done by the Plug-In. The Local Daemon deals with routing of the TANGO messages coming from and going to the TANGO Central Server. The communication between two Netscape browser frames, the Control Application frame and the Local Daemon frame, is established using Netscape LiveConnect technology.
3.2 Functions of Control Application

The main purpose of Control Application is to provide a user with a graphical interface to the TANGO system. This interface contains tools to control the behavior of other TANGO applications and to manage TANGO sessions. In general, functions of Control Application can be divided into two groups. One group of functions provides general system tools which refer to the whole TANGO system, and the second one provides Session Management tools which refer to an application of a particular type, e.g. a Whiteboard application.

System tools allow a user to:
1. log into the system

2. log out of the system

3. mail a message to another TANGO user

Session Management tools allow a user to (numbers are related to the Session Management actions described in the previous chapter) :
1. create a session by launching an application locally

2. join an existing session

3. launch an application remotely

4. close a local application

5. close a remote application

6. become a master of a session

7. grant master mode to another TANGO user

Control Application displays the following lists (each contains a different type of information):

· TYPES
- list of available TANGO application types

· USERS
- list of all users logged into the TANGO system, contains:

· User name

· Host name

· SESSIONS

- list of all sessions established in TANGO, contains:
· Information about the type

· The name of the master of a session

· The other participants (slaves) names
3.3 The graphical and functional design of Control Application

Our approach to the design of Control Application evolved as the project progressed. In general, two major approaches can be distinguished. They will be discussed in this section.

3.3.1 The first Control Application

The first Control Application consists of several Java applets, which will be called Control Application applets. All these applets are inserted into one HTML page and can communicate among themselves.

There were several reasons for the way the first design of Control Application was done. The most important ones were:

· time constraints – it had to be designed and implemented within two months

· requirements from the funding agency – initially Control Application was to be used as a graphical interface for a military Command and Control Center. The agency that funded this project required that there was a capability to insert parts of this interface into separate Netscape frames. That’s why a decision was made that Control Application would be composed of separate Java applets communicating with each other.

· lack of experience with programming in Java, JavaScript and LiveConnect – this resulted in some waste of time on certain experiments during the implementation phase and finally caused the graphical design to be much less taken care of, and, thus, much less attractive for the user. The focus had to be put on the functionality not on the look and feel of Control Application.

In the first Control Application there is one applet, called MAIN APPLET, which is designed to be an interface to the TANGO communication backbone for all other Control Application applets. If a TANGO message is coming from the TANGO Central Server or TANGO local application, the Local Daemon invokes a special method, which is implemented by MAIN APPLET, and which interprets incoming messages.

3.3.1.1 Applet model

The first Control Application consists of eight applets:

· MAIN APPLET - as mentioned above this is a central applet that maintains communication with the Local Daemon and controls all actions within CA. It also displays the user name on the screen.

· MAIL APPLET - an applet that provides a user with the capability to read mail and send mail to other TANGO users. The TANGO internal Mail system doesn't have anything in common with standard UNIX email protocol. It is implemented with the use of messages from TANGO protocol. The mail messages are wrapped into the TANGO EVENT messages.

· TIME APPLET - an applet that displays the current time of day on the screen.

· DATE APPLET - an applet that displays the current date of the year on the screen.

· TOOLS APPLET - an applet that lets a user generate any desired Session Management action. It displays a list of available application types and a set of action buttons.

· USRLIST APPLET - an applet that stores and displays a list of information about all users already logged into TANGO system.

· APPLIST APPLET - an applet that stores and displays a list of information about all local TANGO applications.

· SESSLIST APPLET - an applet that stores and displays a list of information about all TANGO sessions already established.

The Java applets can communicate with each other if and only if they are located on one Web page. That requirement is fulfilled in the case of Control Applications applets.

[image: image3.wmf]MAIN APPLET

MAIL APPLET

TIME APPLET

DATE APPLET

TOOLS APPLET

USRLIST APPLET

APPLIST APPLET

SESSLIST APPLET

MainAppletConnect

Java interface

AppletConnect

Java interface

AppletConnect

Java interface

AppletConnect

Java interface

AppletConnect

Java interface

AppletConnect

Java interface

AppletConnect

Java interface

AppletConnect

Java interface

Figure 5. Communication between Control Application applets
The communication scheme between Control Application applets (presented in Figure.5) is based upon Java interfaces. They provide access methods to applets. There are two types of interfaces:

· interface MainAppletConnect - used when an applet wants to pass data to MAIN APPLET

· interface AppletConnect - used when MAIN APPLET wants to pass data to another Control Application applet

The communication between TANGO Local Daemon and other TANGO applications is established with use of Netscape LiveConnect technology.

3.3.1.2 Session Management

As mentioned in the section 2.3, a mechanism of managing sessions involves two things:

· generating the Session Management actions, which change the state of a session

· displaying the information about the changes in the state of sessions.

The Session Management actions

In the TOOLS applet there is a designated Tools Panel, which contains several buttons. These buttons can generate Session Management actions. There are six buttons:

1. OPEN LOCAL APPLICATION
action: launch an application locally

2. OPEN REMOTE APPLICATION
action: launch an application remotely

3. JOIN SESSION
action: join to an existing session

4. BECOME MASTER
action: become a master of a session

5. GRANT MASTER
action: grant master mode to another user

6. CLOSE APPLICATION
action: close a local application

There is no button for an action number 5 from the section 2.3, namely “Closing an application remotely”. This action was not implemented in the first version of Control Application.

If the user wants to use the above tools certain information must be chosen from the following lists:

· TYPES
- list of available TANGO application types

· USERS
- list of all users logged into the TANGO system

· SESSIONS
- list of all sessions already established in the TANGO system

· APPLICATIONS

- list of all applications already launched locally
The information that has to be selected is presented in Table 2. This table also shows messages that are sent to the TANGO Server for each of the above six actions.

Information to be chosen
Button pressed
Constraints
Message sent

· a type of application from TYPES
OPEN LOCAL APPLICATION
No constraints
JOIN

· a session from SESSIONS

· a user from USERS
OPEN REMOTE APPLICATION
The user must be the master of the session
RJOIN

· a session from SESSIONS
JOIN SESSION
No constraints
JOIN

· a session from SESSIONS
BECOME MASTER
The user must be a slave of the session
MASK

· a session from SESSIONS

· a user from USERS
GRANT MASTER
The user must be the master of the session
MANS

· an application from APPLICATIONS
CLOSE APPLICATION
No constraints
FINISH

Table 2. Session Management actions in the first Control Application

Displaying the information about the sessions – SESSION List

When a message “UPDATE” comes from the Local Daemon, i.e. from the Central Server, it means that the state of a certain session has changed and one of the lists must be updated. Thanks to the update information, which is sent to all TANGO users, the state of all sessions is kept consistent in every Control Application in TANGO system. The displayed information about the sessions: the type, the master, the participants is the same on all collaborating machines.

3.3.1.3 Graphical design

Control Application is opened in a separate window and each TANGO application has its own Netscape browser window too. All the windows can be moved within the screen but can’t be resized because each such attempt leads to some problems due to the fact that an applet tries to connect to Local Daemon once again. That’s why this option is switched off.

A screenshot of the first Control Application is presented in Figure 6. Control Application window is divided into two frames. One frame, which occupies most of the space, contains Control Application applets inserted into HTML tables. The second frame contains TANGO Local Daemon, i.e. Netscape Plug-In.

Figure 6. The first Control Application

3.3.2 The second Control Application

The experiments with the first version of Control Application showed that most of the users were confused by its Graphical User Interface, e.g. by the amount of buttons they had to click on to generate some actions. We understood that some significant improvements in functionality and in graphical look of Control Application were needed to attract more users to the system. Our improvement goals for the second Control Application were following:

1. Improvement in functionality - make it more intelligent so that it could guide a user when managing sessions. This related directly to an issue of improving the Session Management mechanism.

2. Improvement in the feel and look of the Graphical User Interface – make it visually attractive for potential users by:

· making it more user-friendly

· changing applications names (text) into graphical icons

· adding visually attractive images into the background

3.3.2.1 The improved Session Management mechanism

A Session Management mechanism in the second Control Application is based upon the same assumptions as in the first Control Application:

· the state of a session can be changed by using the Session Management tools – this part of the mechanism was improved and will be discussed in this section

· update information will be displayed every time an “UPDATE” message arrives – this part has not been changed and is implemented in exactly the same way as in the first Control Application.

Using the Session Management tools

The Session Management mechanism in the second Control Application can be regarded as an “intelligent” one. It guides a user through all steps necessary to change the state of a session.

The Tools Buttons (located in the Tools Buttons Panel, see the next section) have the similar functionality to the buttons from the first Control Application:

1. JOIN SESSION
action: join to an existing session

2. REMOTE OPEN
action: launch an application remotely

3. CLOSE LOCAL APPLICATION
action: close a local application

4. CLOSE REMOTE APPLICATION
action: close a remote application

5. BECOME MASTER
action: become a master of a session

6. GRANT MASTER
action: grant master mode to another user

The “OPEN LOCAL APPLICATION” button has been removed. This functionality has been replaced by Applications Icons (see the next section). Instead the “CLOSE REMOTE APPLICATION” button has been added – this tool has been implemented in the second Control Application.

The Tools Buttons are initially disabled. Some of them are enabled after a user chooses a session from the Session List Panel (see the next section). The choice of buttons that are enabled depends on the way the user participates in the chosen session. Enabling a button means that a user can generate a related Session Management action. We introduce the notion: the Owner of a session – it relates to a user that created the session by launching the first application. So we have three modes: the owner, the master and the slave and some combinations of these modes can enable some buttons. This is presented in Table.3 below.

Modes
Buttons enabled

the master + the owner
REMOTE OPEN

CLOSE LOCAL APPLICATION

CLOSE REMOTE APPLICATION

GRANT MASTER

the master + not the owner
REMOTE OPEN

CLOSE LOCAL APPLICATION

GRANT MASTER

the slave + either the owner or not
CLOSE LOCAL APPLICATION

BECOME MASTER

Currently not a participant of the chosen session
JOIN SESSION

Table 3. Modes of operation in the second Control Application

We will look at all the Session Management actions, one by one, and describe how they have been implemented.

1. Creating a session

A user can launch a new application, i.e. start a new session, by clicking on one of the Application Icons located in one of the Application Folders (see the next section). The Application Folders allow grouping applications in sets of applications with similar functionality, e.g. Conferencing Applications, Virtual University Tools or Games.

The above will cause a message JOIN with the parameter SID=0 to be sent to the Server.

2. Joining an existing session

A user has to choose a session that he/she does not participate in. That enables (according to the Table.3) the button JOIN SESSION, which the user has to click on.

The above will cause a message JOIN with the parameter SID>0 to be sent to the Server.
3. Launching an application remotely

A user has to choose a session of which he/she is the master. That enables (according to the Table.3) the button REMOTE OPEN, which the user has to click on. A small window will pop up. This window contains a list of all logged users that are not in this session. The user has to choose a subset of this list.

The above will cause messages RJOIN (as many as there are users in the subset) to be sent to the Server.

It is therefore possible to launch multiple instances of applications with one button click.

 4. Leaving a session

User has to choose a session that he/she participates in. That enables (according to the Table.3) the button CLOSE LOCAL APPLICATION, which the user has to click on.

The above will cause a message FINISH to be sent to the Server.
5. Closing an application remotely

A user has to choose a session of which he/she is the master and the owner. That enables (according to the Table.3) the button CLOSE REMOTE APPLICATION, which the user has to click on. A small window will pop up. This window contains a list of logged users that are the participants of this session. The user has to choose a subset of this list.

The above will cause messages EVENT (as many as there are users in the subset) to be sent to the chosen users and each of these users will send a message FINISH to the Server.

It is therefore possible to close multiple instances of applications with one button click.
6. Requesting the master mode

User has to choose a session that he/she is a slave in. That enables (according to the Table.3) the button BECOME MASTER, which the user has to click on.

The above will cause a message MASK to be sent to the Server.
7. Granting the master mode

User has to choose a session that he/she is a master in. That enables (according to the Table.3) the button GRANT MASTER, which the user has to click on.

The above will cause a message MANS to be sent to the Server.

As we can see, the above Session Management mechanism guides a user, e.g. by popping up a window of the participants of a session, and makes the generating of user actions simpler and more intuitive. Yet, we have found out that a lot of less advanced users are still confused when they see the Session list, User list and Tools buttons. They don’t know what to do and it takes some time to get accustomed to this Graphical Interface. This is, at least in part, caused by the fact that TANGO is a new and unusual system. But there are still a lot of things to improve to let everybody operate it without confusion. In the next versions of Control Application we will try to address this issue.

In spite of the differences between the Session Management mechanisms in the 1st and 2nd versions of Control Application, these versions are compatible with each other. This means that one user can work with the first Control Application and another one can use the second Control Application. This compatibility on the application level is enabled thanks to the compatibility on the level of the communication protocol – both versions use the same TANGO protocol messages.

3.3.2.2 The improved graphical design

We needed some more powerful Java components to improve the graphical feel and look of Control Application. It had to be a software package providing interesting graphical widgets. We decided to use Symantec Visual Café environment to deal with the above issues.

The second Control Application is a single Java applet. Its graphical structure is quite complicated and consists of several panel components. The structure is shown below.

Figure 7. Panel structure in the second Control Application

The panels are either implemented as or make use of the Symantec components, especially:

· Symantec TabPanel
A Java Panel extension which provides for a tabbed dialog

effect. It will automatically manage swapping panels when a tab is shown/activated.

Main Panel, Collaboration Tools Panel, Mail Box Panel, Application Folders Panel are implemented as TabPanels.

· Symantec ScrollingPanel
A Java Panel extension allowing to scroll the content of it.

Folders of Applications Icons are implemented as Scrolling Panels.

· Symantec ImageButton
A Java Button extension allowing to insert an image into a

button.

Application Icons are implemented as Image Buttons.

· Symantec MultiList

A Java List extension allowing to divide a list into separate

rows and columns, and to change the size of the columns (draggable).

Session List Panel and User List Panel are implemented as MultiLists.

The switching between those panels is easy and intuitive – you just click on a tag in a TagPanel representing the folder you want to switch to.

The screenshot of the second Control Application is presented in Figure 8 on the next page.

Figure 8. The second Control Application

The graphical design of the second Control Application was much better than the previous one. It let the application look more attractive for a user, however, this design still lacked the approach of making it extremely easy for a naïve, first-time user. That’s how Graphical User Interfaces are designed nowadays – the main objective is to make it as much user-friendly as possible. To achieve it one must spend much time preparing truly artistic graphical components, which results in devoting many resources (financial, human, and time) to this particular task. We couldn’t afford to do that at the time we designed the second Control Application. But we hope that the experience gained during both designs and new Java packages providing very impressive graphical effects (like Sun-Netscape Java Foundation Classes) will let us improve the design the next time.

3.4 Customizability of Control Application
It should be possible to adapt the functionality of the Session Management mechanism and the graphical components of Control Application to the needs of a particular user or a group of users. The first and the second Control Application don’t address this issue at all. The structure of the application is defined and no changes are possible unless a part of or the whole code is to be re-written.

Customized Control Applications for TANGOsim system

Such a situation occurred once when 4 customized versions of Control Application for the needs of TANGOsim system had to be prepared. TANGOsim [3] is a discrete event simulator for the military Command and Control Center purposes. A multithreaded simulation engine implementing virtual time can be driven by either a scripting language or interactively controlled by a user via Simulation Controller. The engine and the controller are implemented as a Java application and a Java applet, respectively. The simulation engine can create messages for any application compatible with TANGO system and to realize scenarios in which the course of action depends on user input. The system is presented in Figure 9.

The events from the Event Driven Simulation Engine are sent, through the TANGO backbone, to four customized instances of Control Application:

1. C2 Commander

2. C2 Radar Officer

3. C2 Weather Officer

4. Simulation Engine Controller

Figure 9. TANGOsim architecture

In case of the first three applications, the Session Management mechanism is almost fully eliminated. These applications are only able to join a session and to leave a session. It is not possible to generate any other Session Management actions when using these applications. Instead of Session Management tools, they contain some predefined visualization tools, like 2D GIS, 3D GIS, Multimedia Mail etc, which also work in the collaborative mode and are driven by the events from the simulator.

The fourth application – Simulation Engine Controller – has a different task. It has to display the current state of the simulation and to enable a Simulation Controller person to start, pause and resume the simulation. That’s why some of the Session Management tools are retained in this application, namely: the ability to display the update information about sessions state changes and the ability to create/leave a session and to open an application remotely. The rest of the functionality has been removed.

To implement the above four versions some part of the original Control Application code had to be re-written. This resulted in a big amount of time spent for the implementation, and proved that we need the flexibility to change the graphical and the functional contents of Control Application.

The next generation of TANGO system – TANGO 2

This issue is addressed in the design of a new TANGO 2 system [10], based upon the architecture of TANGO, but with several modifications and improvements. The most important for the concept of the customizability are the following changes:

1. Room paradigm – we introduce the concept of room paradigm in TANGO2 system. A room is an abstract entity which separates sets of users. Room specifies list of public and private applications. Public applications open for each user entering the room. Private applications are launched manually by users present in the room. Everybody can create a room and can customize Control Application for this particular room. It means a Control Application is room-dependent.

2. Applications customizability - Compatible applications may be gathered in one session even if they are of different types (e.g. two different chat implementations). This modifies the concept of a session presented in the section 2.3. This also points out that not only Control Application is customizable but so is any other TANGO 2 application.

3. Lock mechanism – this mechanism will replace master/slave floor control mechanism from TANGO. The lock approach is more generic and allows realizing any possible scheme, with, or without the master mode. The locks are stored in the TANGO 2 Server.

We designed and implemented a very powerful API, which can be used for the design of an user/room-dependent Control Application. This API will provide methods for incorporating subsets of Session Management tools into different Control Applications, e.g. one application may be able to display update information about sessions whereas the other one may skip this option. We plan to design several graphical components, independent to each other, which could be assembled to create a Session Management application.

To make different applications collaborate together we defined a notion of Application Subtype. Two applications with the same application group and different application subtypes are assumed to be instances of the same application and are allowed to be in the same session.

The lock mechanism assumes that an application can request a lock on its session, which lets this application send the collaboratory data to other applications in the session. After this operation the lock may be released or grabbed by another application in the session.

These three elements will be an enable of the customizability feature in the new TANGO 2 system. It’s hard to say if this flexibility will be good enough before the system is fully implemented and tested. However, it’s definitely a great improvement when compared to the first version of TANGO system.

4. Related Work

In this chapter several other collaboratory systems and features of the Session Management mechanisms implemented in these systems will be presented. Four collaboratory systems written in Java will be described.

The Java Collaborator Toolset

The Java Collaborator Toolset (JCT) [5] of Old Dominion University uses applets as collaboratory modules. To provide event and data sharing, the AWT of the JDK is replaced by a custom collaboratory toolkit. Obvious advantage of such a system is simplicity of application porting. However, we consider this approach to be too restrictive: JCT is shared X written in Java. The overall system architecture is presented in Figure. 10 - all events from one application are distributed across the network to every running instance of this application.

[image: image4.wmf]OK

CANCEL

ok button pushed

event

distributor

1

2

3

4

5

CANCEL

ok button pushed

OK

CANCEL

ok button pushed

OK

CANCEL

ok button pushed

OK

Figure 10. The basic architecture of JCT system

The term session in JCT is close to the one from TANGO system – it is defined as a group of applications exchanging information, i.e. working in a collaborative mode. However, there is no support for multiple sessions of the same application type. As far as one type of application is concerned, only one session of this type can be created in the system. Besides, the Session Management tools are much less powerful than TANGO’s. There is a specialized application, called Collaborator Manager, which has the same task as TANGO Control Application – to manage the sessions. A set of possible actions only consists of:

· Joining/Leaving a session by starting/closing an application

· Displaying information about opened sessions and their participants

· Floor Control actions – a user can request, release a floor which is similar to master/slave mechanism in TANGO. When an application has the floor then it can send collaboratory data, i.e. AWT events. One user can possess many floors at the same time (one for a session of a particular type).

The JCT Collaborator Manager is not customizable.

Habanero

The next system is NCSA Habanero [6]. Habanero system is built in a client/server architecture. The server stores the session states and distributes events among clients. A client application provides a user with a Graphical User Interface to visualize session, participants and available applications. When compared to TANGO, the main difference is that Habanero collaboratory modules are Java applications, not applets, so this system does not support software downloadability and, hence, is not really a Web-based collaboratory. This approach has advantages: Habanero architecture is not dependent on ill-defined and ever changing behavior of Web browsers and does not suffer from performance limitations imposed by the browsers.

As far as the Session Management is concerned, we can distinguish following features of the mechanism:

· Habanero session is defined as a meeting where a user can go to and join other participants. A user can initiate a meeting. Within a meeting any number of different types of applications can be opened and they will work in a collaborative mode.

· joining and creating a session requires defining the host, the port and the name of the session earlier. There is no automatic sending of update information about currently established sessions, however, it is done in case of information about participants in a session.

· launching an application of a certain type within a session causes remote opening of applications of the type for all the participants in a session.

· there is a floor control mechanism similar to the lock mechanism in TANGO 2 system. Locks are controlled by the Habanero server.

· an interesting feature of the system is the capability to save a session definition or a session state and to reconstruct it later.

As we can see, Habanero session model resembles TANGO 2 room paradigm – a session may encapsulate many types of applications and multiple participants. However, on the contrary to TANGO mechanism, there is no capability of selective remote opening of applications, i.e. for some subset of the current session / meeting participants.
CALTECH Infospheres system

Another example of a distributed system is WWW distributed system developed at CALTECH (California Institute of Technology) [7]. The system is built with use of the Java language and supports peer-to-peer (no floor control) communication among processes spread across a network.

 MACROBUTTON HtmlResImg [image: image5.png]Jom’s
secrerary
dappler

Man?s
calendar
dappler

Center Director |

Involes and .
Sends Addfess Dircctory

He's
calendar
dappler

Daw's

Initiator
dappler

calendar
dappler

Links together dapplets in a session

The authors introduce the notion of “dapplet” to distinguish a process used in a collaborative distributed application from processes used in traditional distributed systems. Dapplets are composed together to form distributed sessions. A session is a temporary network of dapplets that carries out a task such as arranging a meeting time for a group of people. Sessions doesn’t need to be static; after the initiation, they may grow and shrink as required by users.

Figure 11. CALTECH Infospheres system: Initiator uses the invoker's address directory to set up a session between existing dapplets.

Let’s consider an example of a center director setting up an executive committee meeting with members from different sites. Prior to the session, each committee member has installed a calendar dapplet. A calendar dapplet is a process: it operates in a single address space, it communicates with files by standard I/O operations, and it communicates with other processes through ports. Associated with each dapplet is an Internet address (i.e., IP address and port id).

In this distributed system a session is defined as a network of dapplets. A session consists of many different types of dapplets. For instance, a calendar application may have calendar user processes and secretary processes. Programs corresponding to each process type are installed on the appropriate machines; for the session in Figure 11, the calendar user dapplets and secretary dapplets are processes running on their respective users' desktop computers.

Associated with each session is an initial process --- an initiator dapplet --- that is responsible for linking dapplets together. In our example, the center director invokes an initiator dapplet, and passes it a directory of addresses (e.g., Internet IP addresses and ports) of component dapplets that are to be linked together into a session, as illustrated in Figure 11.

A dapplet, on receiving a request to participate in a session, may accept the request and link itself up, or it may reject the request (because the requesting dapplet was not on its access control list, or because it is already participating in a session, and another concurrent session would cause interference). When a session terminates, component dapplets unlink themselves from each other.

As we can see, the idea of session used in this system differs from the TANGO one in the following aspects:

· applications (dapplets) can exist without being linked to any session

· creating a session means establishing a temporary network of dapplets of any type

· a dapplet can participate in many different sessions.

Due to a loose integration between a dapplet and a session, this scheme of communication is very generic and flexible. We currently study this project to investigate how to use these ideas to improve TANGO implementation
InVerse

The last Java-based system that will be presented is InVerse system developed in IBM [8]. InVerse provides a common infrastructure for deploying a variety of collaborative applications over the Internet. It supports disseminating a variety of real-time application data, such as audio, video, text and motion. The InVerse communications infrastructure receives data from applications and disseminates it over the network to the InVerse server and/or to appropriate destination client hosts. The infrastructure is extremely flexible so that it may adapt itself to the available network bandwidth, observed network latency, availability of IP multicast routing, and installed security firewalls around user hosts.

A user can define a set of receivers for a particular piece of data coming from his/her application. This set is encapsulated in a Group object. Group may represent any one of the following options:

· Individual: a single user

· Proximity: all users to whom the sender is “visible”.

· Private Group: a distribution list created locally and only visible to the creator.

· Public Group: a system-wide user group managed by the server.

· Broadcast: all registered users.

As we can see, the term Group is similar to the notion of a session. However, the InVerse Group offers a capability to divide users into subgroups, for example a Private Group of users, which may be an interesting security option. Another security feature of InVerse system is Data Security. The system allows applications to establish secure communication sessions. Data may be encrypted before sending. The InVerse system provides means for encryption by exposing a PacketFilter interface. The interface might be used to encrypt and decrypt all data packets. It may also modify all incoming packets before they are processed by applications.

Besides the definition of a Group type, which is necessary for transmitting data, the sender has to indicate whether the data should be sent reliably or unreliably. The InVerse communications layer is responsible for determining how to transport the data to the destination to ensure the reliable or unreliable type of transport.

The InVerse infrastructure contains a Graphical User Interface that serves as the Session Management tool in the system. It allows a user to perform the following actions:

· locate other registered users by sending a query to the server – there is no automatic sending of update information from the server

· get the information about the public sessions by sending a query to the server

· join public groups

· create private groups

There is no flexible floor control mechanism, however, creating a private group ensures that information is sent one-way. The customizability of the Session Management tools is not supported.

5. Comparison of all presented mechanisms

In this section the features of all mechanisms presented in this document will be compared with regard to the definition of session and possible Session Management actions.

As we can see from the document, there are two different ways of defining session:

1. Single-type session
a session consists of applications of one type, running on

different hosts and exchanging collaboratory data over the network.

Systems: TANGO, JCT, InVerse

2. Multi-type session
a session consists of applications of many different types,

running on different hosts and exchanging collaboratory data over the network. An application of a certain type collaborates only with applications of the same type. That means there are several virtual connections within one session, one virtual connection for each type of application.

Systems: Habanero, Caltech, TANGO 2

From another point of view, sessions can be divided into two other groups:

1. Single session allowed for an application type.

System: JCT

2. Multiple sessions allowed for an application type.

Systems: TANGO, TANGO 2, Habanero, Caltech, InVerse

In spite of that, we can observe some combinations of the following features, e.g. CALTECH system defines session as a group of objects of any type, which can exchange any type of data, and besides, one object can participate in any number of sessions, in particular it may be not connected to any session at a time.

Operations that can be executed to change the state of a session we call Session Management actions. We distinguished seven possible actions:

1. Creating a session

2. Joining / Leaving a session

3. Opening / Closing of an application remotely

4. Floor Control mechanism

5. Sending the update information about the state of sessions to the users

6. Customizability of Session Management tools

7. Saving the state / the definition of a session.

In each system the implementation of tools that can generate these actions may vary. The following table will gather the features of all the systems presented in this document.

System
Characteristics of the Session Management actions

1. TANGO
1. - Single-type sessions

- Multiple sessions per application type allowed

 - Launch an application to create a session

2. - Select a session and send a message to the Server to join the session.

- Close an application to leave a session

3. Opening / closing of an application remotely possible for any subset of users currently logged on.

4. Master / slave model. The user who creates a session is automatically the master. The master mode may be transferred to another user. This model may be skipped if applications work in a peer-to-peer mode, e.g. Chat. Then a session has a “fake” master but any participant can send data.

5. Update information is sent by the server to all users and is displayed in the Control Application window.

6. Not customizable unless the code is partially re-written

7. Not available

2. TANGO 2
1. - Multi-type sessions (subsets of application types)

- Room paradigm encapsulates sessions for each room

- Multiple sessions per application type allowed

 - Launch an application to create a session

2. – Select a session and send a message to the Server to join the session.

- Close an application to leave a session

3. Opening / closing of an application remotely possible for any subset of users currently logged on.

4. Based on lock mechanism. An application in a session may request a lock, become a master, and release the lock afterwards. If there is no need for the master / slave model the applications work in fully peer-to-peer mode.

5. Update information is sent by the server to all users and may be displayed in the Control Application window.

6. Fully customizable

7. Not available

3. JCT
1. - Single-type sessions

- Single session per application type

 - Launch an application to create a session

2. - Select a session and send a notification to EventDistributor to connect to the session

- Close an application to leave a session

3. No remote opening / closing

4. Floor control implemented – a user can request a floor in order to be able to send collaboratory data.

5. Update information is to all users and is displayed in the Collaborator Manager window.

6. Not customizable unless the code is partially re-written

7. Not available

4. Habanero
1. - Multi-type sessions

- Multiple sessions per application type allowed

 - Define session name, server address and port to create a session

2. - Join session by specifying session name, server address and port

- Close all applications to leave a session

3. Opening a new application in a session will cause launching this application for all participants remotely and connecting them to the session. Not possible for a subset of session participants.

4. Floor control based on the lock mechanism in the server. Similar approach to TANGO 2 system.

5. No update information sent to users

6. Not customizable

7. Saving a session state or a session definition available

5. CALTECH Infosperes
1. - Multi-type sessions (different applications can exchange data)

- One application can participate in multiple sessions (or not participate at all)

- An initiator dapplet creates a session by sending participating dapplets port addresses to all participants

2. Initiator dapplet controls joining and leaving sessions by connecting and disconnecting dapplets.

3. Not available

4. No floor control, strictly peer-to-peer mechanism.

5. No update information sent to users

6. Not customizable

7. Not available

6. InVerse
1. - Single-type sessions

- Multiple sessions per application type allowed

- Register a group in the server and define reliable or unreliable way of transmitting data to create a session

2. Joining / Leaving sessions by sending a query to the Server.

3. Not available

4. Creating a private group ensures one-way communication. Changing of master mode not possible.

5. No automatic sending of update information. It can be sent to a user after receiving a request.

6. Not customizable

7. Not available

Table 4. Characteristics of the Session Management actions

Which approach is the best?

It is impossible to answer such question directly. Some speculations can be made on which model provides the most powerful tools to manage a system. In my opinion, this is TANGO 2 system.

Definitely the most generic and, therefore, the most flexible approach to session model is CALTECH system definition of session. This model doesn’t specify any constraints on how a session can look like in practice. However, the model from TANGO 2 system has similar flexibility except the capability to share data between two different applications (not the same application subtype).

Furthermore, the capabilities of TANGO 2 system in terms of possible System Management actions are the most powerful among those six systems. TANGO 2 supports almost every possible action that can be generated by a user except saving the state or the definition of a session. The floor control mechanism is very flexible and allows an application to define its own model of sharing data over the network. And finally, TANGO 2 API allows a developer to customize his/her own Session Management tools. It’s no longer necessary to download such a complicated Graphical User Interface as Control Application in TANGO. A set of available tools can be reduced, depending on who will use the application. An example of a distance learning session can illustrate how powerful option it can be. Suppose a teacher wants to be able control the behavior of all students by means of controlling their sessions and their applications. So the teacher can download a version of Session Management application similar to Control Application. Simultaneously the students can use an application with reduced subset of tools, e.g. which allows them only to log on/off the system. All the Session Management actions, like creating a session or remote opening of applications are done by the teacher. No information about the sessions or the users is displayed on the students’ monitors.

The TANGO 2 system is currently on the point of being implemented and tested. We hope that the capabilities of the system and the variety of options it offers will be attractive for any individual or a company that wants to create its own Web Collaboratory environment.

6. Bibliography

[1]
Tomasz Jurga, "Control Application for Java/WWW-based Collaboratory Environment of TANGO System", Internship Report, NPAC, Syracuse, January 1997.

[2]
 Lukasz Beca, Gang Cheng, Geoffrey C. Fox, Tomasz Jurga, Konrad Olszewski, Marek Podgorny, Piotr Sokolowski, Tomasz Stachowiak, Krzysztof Walczak, “TANGO - a Collaborative Environment for the World-Wide Web”, NPAC, http://trurl.npac.syr.edu/tango/papers/tangowp.html
[3]
Lukasz Beca, Gang Cheng, Geoffrey C. Fox, Tomasz Jurga, Konrad Olszewski, Marek Podgorny, Piotr Sokolowski, Krzysztof Walczak, “Web Technologies for Collaborative Visualization and Simulation”, NPAC, http://trurl.npac.syr.edu/tango/papers/tango_siam.html

[4]
"TANGO API for Developers", http://www.npac.syr.edu/tango/TANGOAPI.html

[5]
Java Collaborator Toolset, http://www.cs.odu.edu/~kvande/Projects/Collaborator/

[6]
NCSA Habanero Project, http://www.ncsa.uiuc.edu/SDG/Software/Habanero/

[7]
“A World-Wide Distributed System Using Java and the Internet”, Caltech Project, http://www.infospheres.caltech.edu/papers/chandy_etal/hpdc.html
[8]
Sandeep K. Singhal, Binh Q. Nguyen, Jimmy Nguyen, Richard Redpath, Michael Fraenkel, “InVerse: Designing an Interactive Universe Architecture for Scalability and Extensibility”, IBM T.J. Watson Research Center

[9]
“The LiveConnect / Plug-in Developer's Guide”, http://home.netscape.com/eng/mozilla/3.0/handbook/plugins/index.html

[10]
"TANGO 2 Documentation", http://trurl/krzysztof/tangodoc/

1. Calling Java methods from Plug-Ins

2. Calling native methods from applets

3. Calling Java methods from JavaScript

4. Calling JavaScript from applets

4

3

2

1

JavaScript

Java

Plug-ins

Figure 1. LiveConnect communication scheme

- represents

 a session

-- represent applications of different type

 thick rectangle represents a master of a

 session

- represents a host machine

TANGO backbone

Main Panel

After the user is registered in the server this Panel appears and Login Panel is switched off

CollaborationTools Panel

contains the Session Management tools

Help Panel

contains online help information

MailBox Panel

contains tools for sending and receiving TANGO mail messages

Configuration Panel

contains information about the configuration of the system and tools to changeit

Login Panel

Appears after the applet is downloaded. A user is prompted to enter his/her name

Application Folders Panel

Contains folders .representing groups of similar applications. Folders contain Applications Icons. Clicking on an icon creates a new session .

Tools Buttons Panel

contains buttons generating Session Management actions

Session List Panel

Contains the list of already established sessions and information about the type of a session, the master and other participants.

User List Panel

Contains the list of all TANGO users logged on and their hostnames

Control Application Applet

The root of the structure

Figure � STYLEREF 1 \s �0��� SEQ Figure * ARABIC \s 1 �1�

Master Thesis

Session Management in Web Collaboratory Systems

_940184019.doc

 Tango

 Central Server

 HTTP

 Server

 Server side

 Client side

Netscape Frame

Tango Local Demon

Netscape Frame

Control Application

Control Application

applet

_940184021.doc

AppletConnect

Java interface

AppletConnect

Java interface

AppletConnect

Java interface

AppletConnect

Java interface

AppletConnect

Java interface

AppletConnect

Java interface

AppletConnect

Java interface

MAIN APPLET

MainAppletConnect

Java interface

MAIL APPLET

TIME APPLET

DATE APPLET

TOOLS APPLET

SESSLIST APPLET

APPLIST APPLET

USRLIST APPLET

