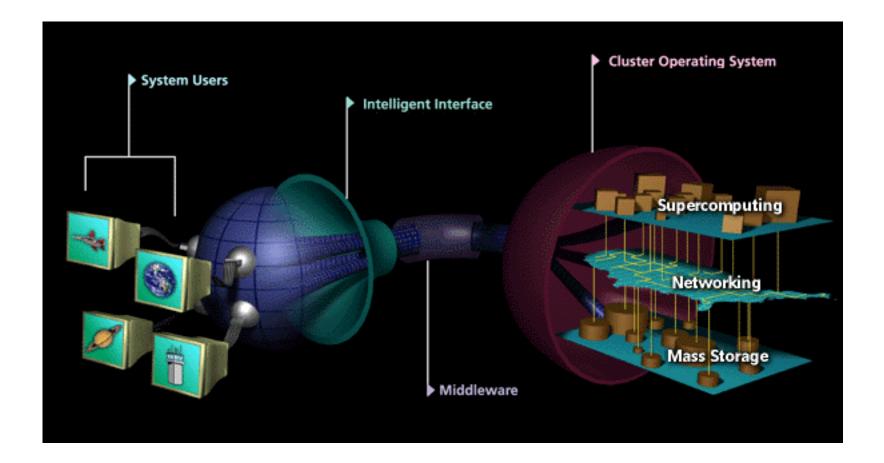


Institute for Computer Applications in Science and Engineering

DARPA Applications Requirements for Systems Environments Meeting November 10-11, 1997 Falls Church VA Airframe Simulation Manuel D. Salas


electronic version available from goldfish.icase.e
as anonymous ftp, file name: darpa.pdf

- Cutting aircraft accident rate by a factor of 5 in 10 years, and a factor of 10 in 20 years.
- Tripling the all-weather aviation system throughput in 10 years.
- \star A 3-fold cut in aircraft emissions in 10 years, and a 5-fold cut in 20 years.
- \bigstar Reducing aircraft noise in half within 10 years, and by a factor of 4 in 20 years.
- Trimming cost of air travel by 25% in the next decade, and by 50% in the decade after that.
- \bigstar Halving aircraft development cycle with *next-generation* design tools.
- Boosting U.S. aviation production to 10K aircraft/year in 10 years and to 20K/year in 20 years
- Cutting travel time to Far East & Europe in half in 20 years, while keeping cost fixed
- Cutting the cost of putting a pound in low Earth orbit to \$1000 in 10 years.
- Further cutting launch costs to "\$100's/ pound" by 2020.

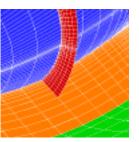
Information Power Grid

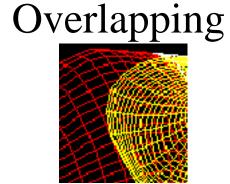
- Seamless, user transparent access to all information/computing resources and data
- Management of distributed heterogeneous systems
- Dynamically reconfigurable; resources added or deleted from the operational configuration
- Extensible and scalable system capable of incorporating additional resource as budget allows.
- Testbed capability servicing and enabling critical computer science and information systems research.

IPG Program Timeline: Overview

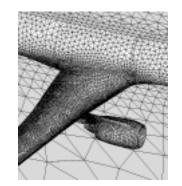
	1997	1998	1999	2000	2001
User Visible Software					
Prototype Applications	•IDS		•AOS		•EOSDIS
Algorithmic Scalability	•100 Proc.		•1000 Proc.		•10000 Proc.
Intelligent Interface					
Data Exploitation	•Q	uery CFD	& WT data	•Quer	y all NASA data
System Management					
Compute Nodes		•Homog			•Heterogeneous
		Metac	enter		Metacenter
Storage Nodes	•Glo	bal File S	ystem		
Networks		•IPv6		•ATM Q	oS
Prototype Hardware Systems					
Power Generators		•100 GF			•1000 GF?
Scalability Testbeds	•Whitney 25	•Whitne	ey 500		•Whitney 5000
Storage Systems		•1PB, 10	TB, 4TB/day		
Networks		•Fiber	Ch. •HiPPI 64	00	

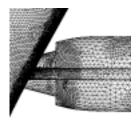
Flight Simulation Challenges

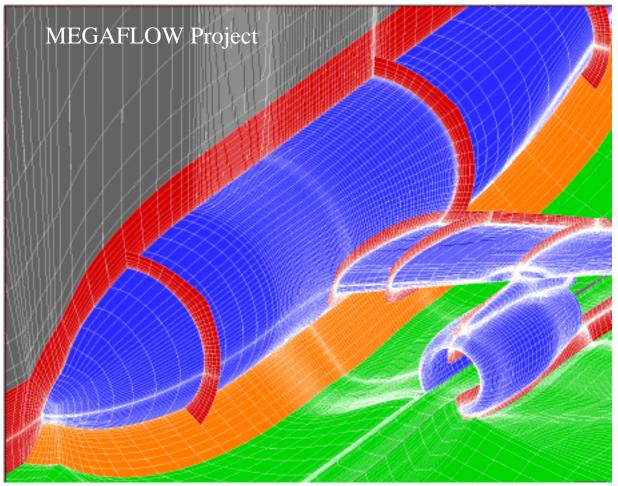

- Surface Modelling & Grid Generation
- Simulation of Complex Physics: Transition & Turbulence
- Shortening execution time
- Data visualization and knowledge extraction
- Optimization
- Multidisciplinary Interactions



Flight Simulation Challenges Surface Modelling & Grid Generation

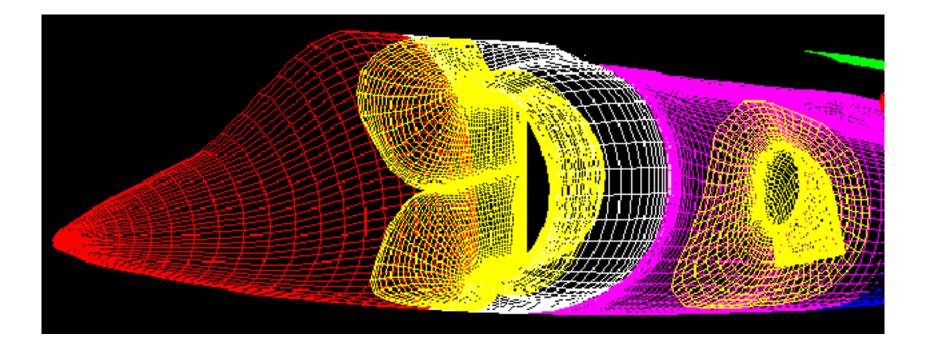

• Structured Grids


Multi-block

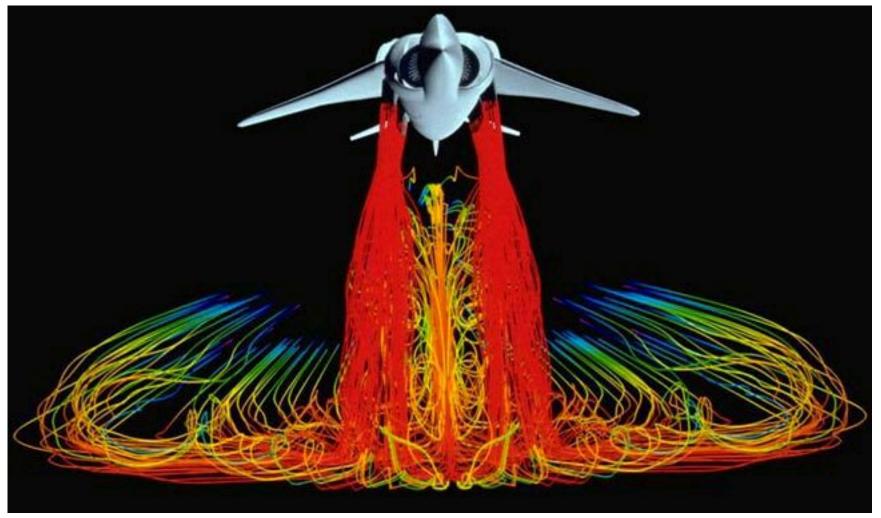


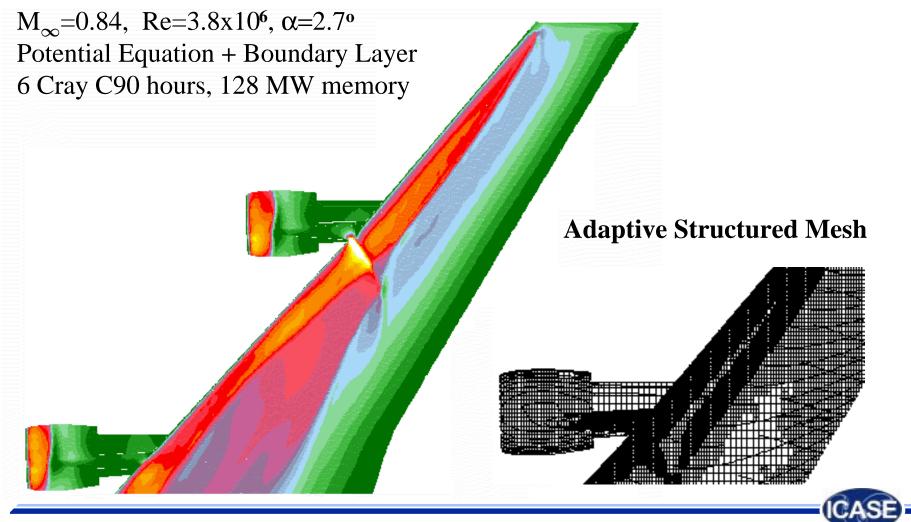
Adaptive

Adaptive


DLR-F6 Configuration Navier-Stokes Grid with 52 blocks, 3.3M points

http://www.bs.dlr.de/sm/ea/Proj_MEGAFLOW/proj_megaflow_e.html


Overset Surface Grid for Harrier Aircraft Calculation by M.H. Smith, K. Chawla, and W. Van Dalsem, NASA Ames


Harrier Calculation

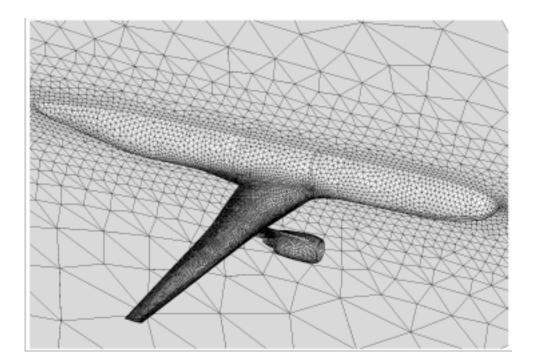
using overset grids

Boeing 747-200 Wing Calculation by F. Johnson, Boeing Co.

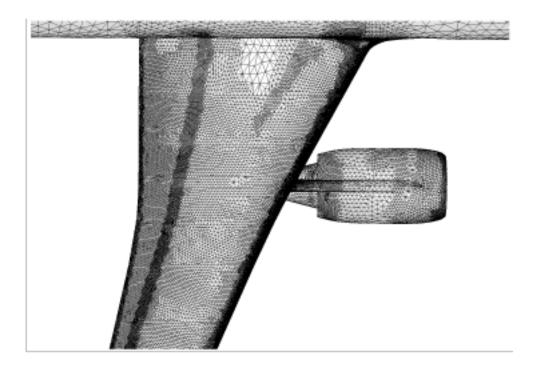
CFD Structured Grid Process Time

Based on C-17 flap down computation with 30M points. NASA Ames' AST High Lift Program.

process	time in days		
CAD to surface definition	45	16%	
Surface definition to surface grid	90	32%	
Surface grid to volume grid	65	24%	
Boundary interfaces for multiblock	25	9%	
One computation	30	11%	
Study computation	_21	8%	
Total	276		


C-17 Wind Tunnel Model

Unstructured Grid


D. Mavriplis, ICASE

Adaptive Unstructured Grid

D. Mavriplis, ICASE

Flight Simulation Challenges Simulation of Complex Physics

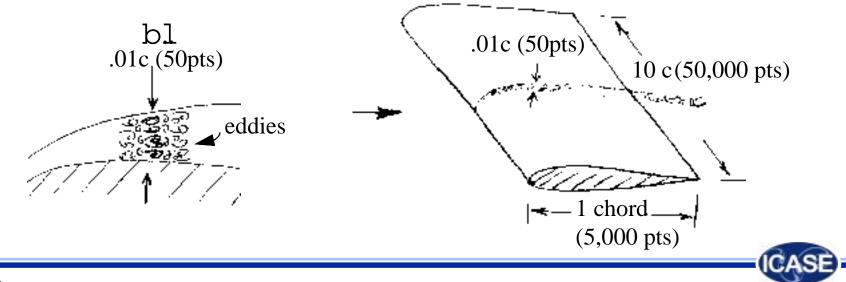
- Laminar to Turbulent Transition
- Turbulence Simulation

Turbulence Modelling

model all scales of turbulence

Large Eddy Simulation

resolve numerically only *large* eddies, model the smallest scales


Direct Numerical Simulation

resolve numerically all scales of turbulence

Estimate of CPU time to compute the boundary layer (bl) on a wing using LES

- assume eddie size resolved is 1/5 of bl thickness
- assume 10 mesh points needed to resolve 1 eddie
- use same mesh in all directions
- assume bl thickness 0.01c and wing aspect ratio of 10, then 12.5 x 10⁹ mesh points are needed to resolve the bl

Estimate of CPU time to compute the boundary layer (bl) on a wing using LES

- assume algorithm uses 5,000 flops/mesh point/iteration
- assume time step of order required for a wave to pass a mesh interval ($\Delta t \sim \Delta x$) and a total time required for waves to travel 3 chords, then 15,000 time steps are required
- assume teraflop performance, then CPU time is given by:

 $5,000 \ge 12.5 \ge 10^9 \ge 15,000/10^{12} = 260$ hours

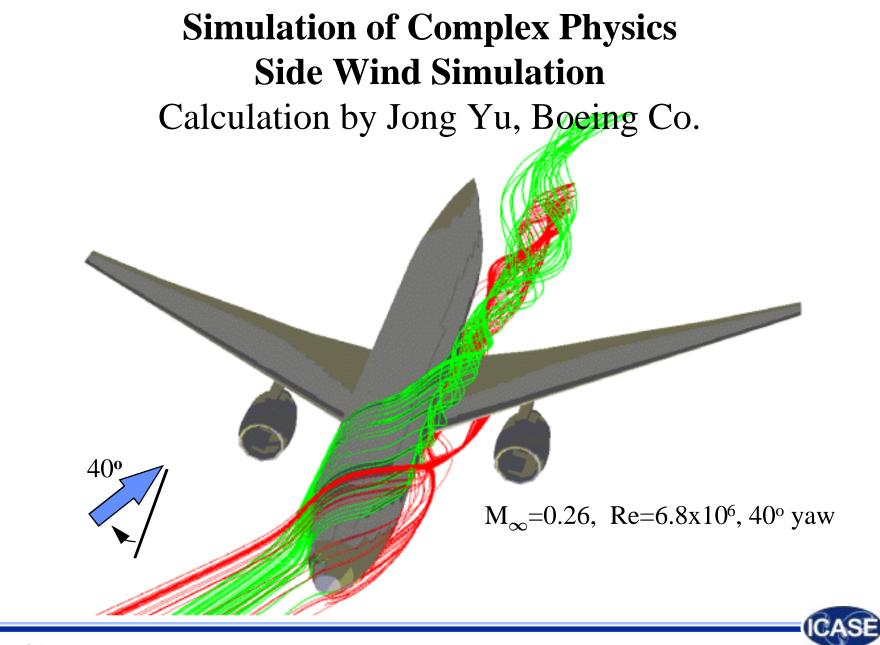
Flight Regimes

Flight Regimes

• take-off

low mach number, but compressible, large regions of separated flow, possibly unsteady, complex geometry

• cruise


attached flow, steady, weak shocks, applied CFD today

• maneuver

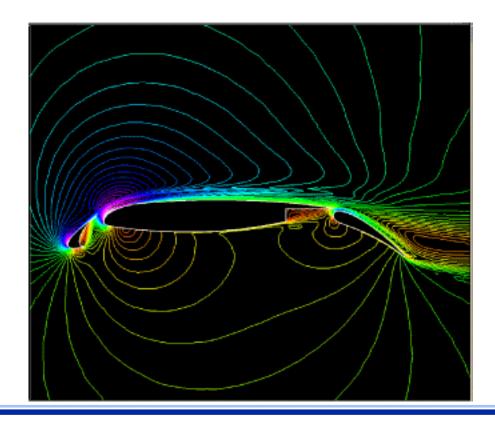
unsteady, separated flow, possible buffet (structure-flow interactions), complex geometry, full configuration

• landing

low mach number, but compressible, large regions of separated flow, possibly unsteady, complex geometry

Simulation of Complex Physics Side Wind Simulation

- calculation used 9.6 million points, 28 blocks
- 550 MW memory (in-core)
- 32 hours to compute on single Cray C90 cpu
- multigrid calculation used 300/400/400 fine/medium/course cycles
- code is multi-tasked for Cray, turn around time one or two days
- Small geometrical changes require 2 or 3 days for grid generation


Flight Simulation Challenges Shortening execution time

- Algorithm Improvements Preconditioning Multigrid
- Parallelization

Shortening Execution Time 3 Element Wing 2D Unstructured Grids, Navier-Stokes Calculation by Mavriplis, ICASE REGULAR EXPLICIT MULTIGRID 60K Mesh points DIRECTIONAL IMPLICIT MG 000 8 3 891 -12.00Sun Ultra 175MHz -14.002000 3000 1000 0 4000 CPU seconds

Shortening Execution Time 3 Element Wing Unstructured Grids, Navier-Stokes $M_{\infty}=0.2$, Re=1x10⁶, $\alpha=16^{\circ}$

Shortening Execution Time ONERA M6 Wing Test Case

Parallel Implicit Pseudotransient Newton-Krylov-Schwarz 3D Unstructured Grid Euler Eqs. (FUN3D Code) Parallelized with PETSc Calculation by David Keyes ODU/ICASE and associates

- Tetrahedral grid with 2.8 M vertices, 11M unknowns solved on Cray T3E-900 (450MHz) at NERSC
- 83% efficiency on 512 nodes relative to 128 nodes
- 32.1 Gflop/s on 512 (compared to 255 Gflop/s for dense LINPACK matrix (order 80K) on same 512 configuration)

#	# its.		speed	Mflop/s		overall
procs.		hours	up	per proc.	Gflop/s	effic
128	164	1.68	1	66.7	8.5	
256	166	0.90	1.87	64.8	16.6	93%
512	171	0.50	3.34	62.6	32.1	83%

Flight Simulation Challenges Data visualization and knowledge extraction

• Dataset Trends

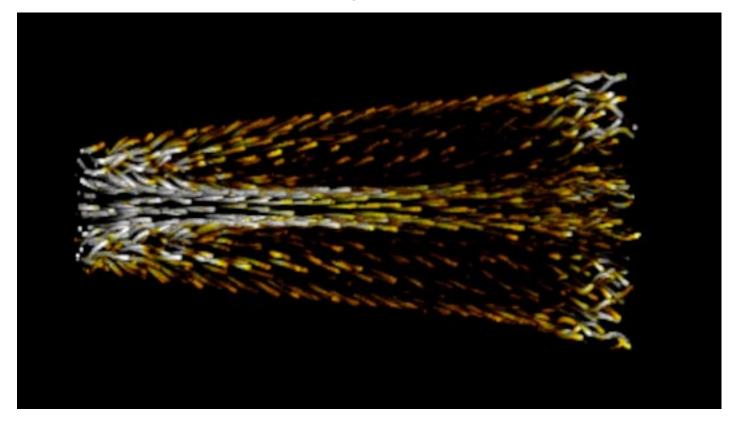
- Increasing size: 100's MB -> 100's GB / timestep
- Time-dependent: 1000's of timesteps
- Complex grids: 3D, unstructured, adaptive, multi-block, overset
- Multidisciplinary: fluids + structures + propulsion + thermodynamics

• Visualization Challenges

- Managing large data
- Finding what's important
- Navigating in high-dimensional spaces (e.g., MDO)

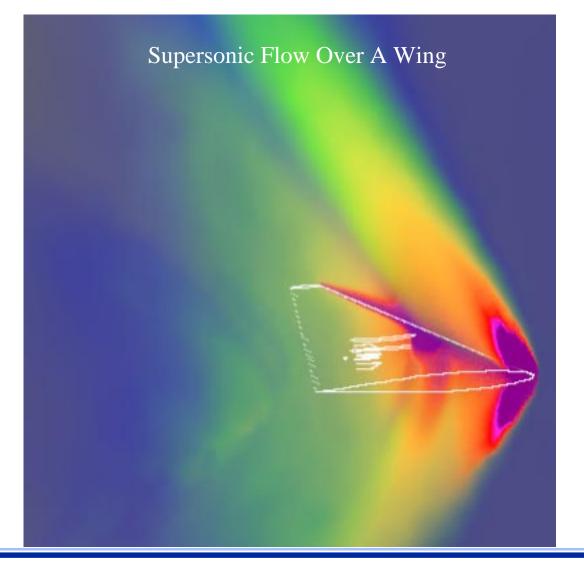
Data Visualization and Knowledge Extraction

Software Strategies


- Parallel visualization and rendering methods
- Decimation, compression, multi-resolution methods
- Automated feature identification and extraction
- Networking protocols: quality of service, performance guarantees

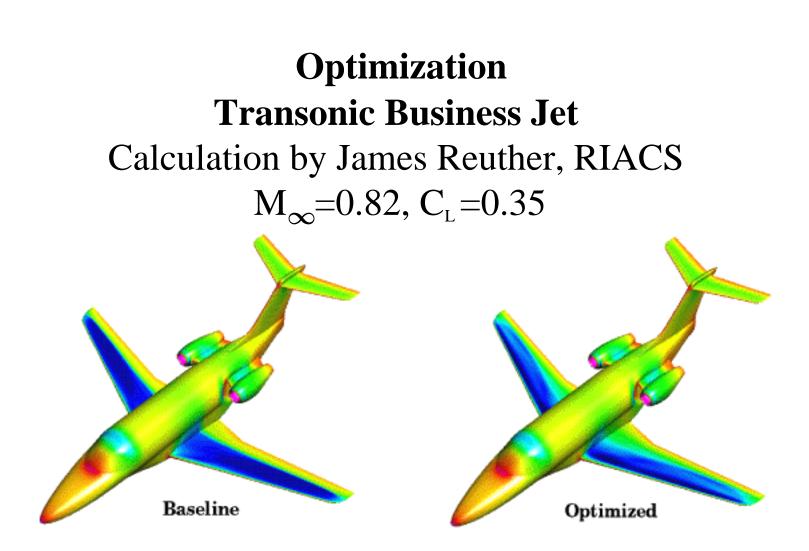
Hardware Strategies

- High-end visualization servers
- Higher resolution displays
- Immersion and VR
- Networks: higher bandwidth, lower latency, less congestion



Data Visualization and Knowledge Extraction Hot jet flow

Data Visualization and Knowledge Extraction



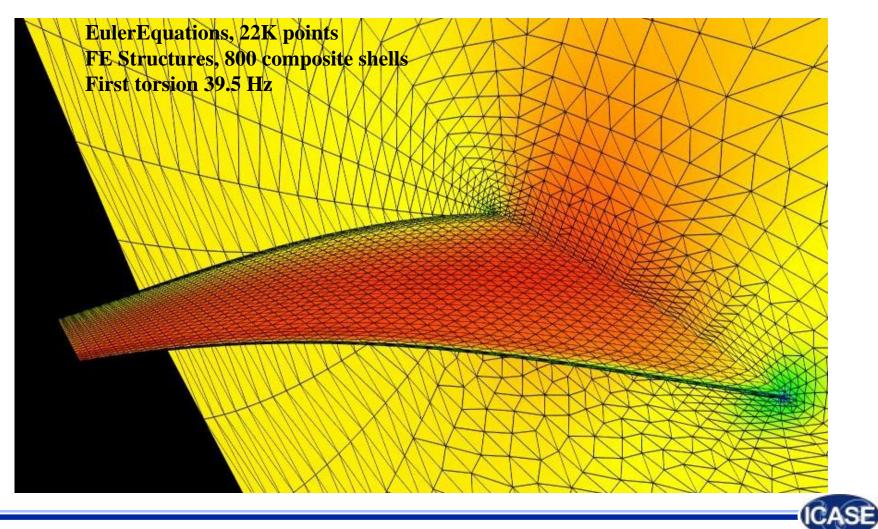
Flight Simulation Challenges Optimization

- Theory for Navier-Stokes is under development. Optimization for structural mechanics better understood.
- Could require repeated (100s or 1000s of runs) application of discipline codes
- Finding *global* minimum remains a research problem

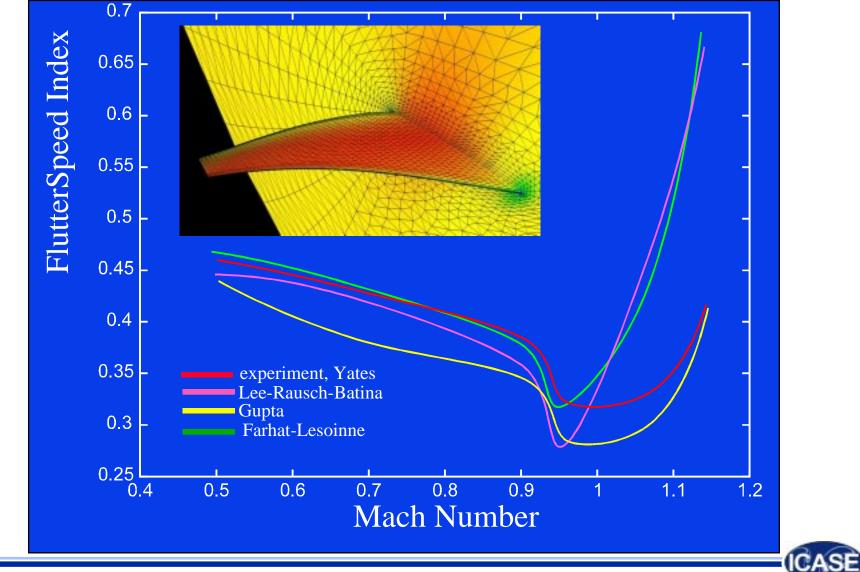
Optimization Transonic Business Jet

- Mesh uses Wing-Body-Nacelle-Pylon-Empennage-Geometry, 240 blocks, 5.8 Million cells
- Goal: redesign wing to improve aerodynamics at design point starting from a *generic* configuration
- 108 design variables at 5 wing stations and 55 geometric constraints
- "optimized" configuration attained 21.5% drag reduction in 5 design cycles

Optimization Transonic Business Jet Computational Statistics

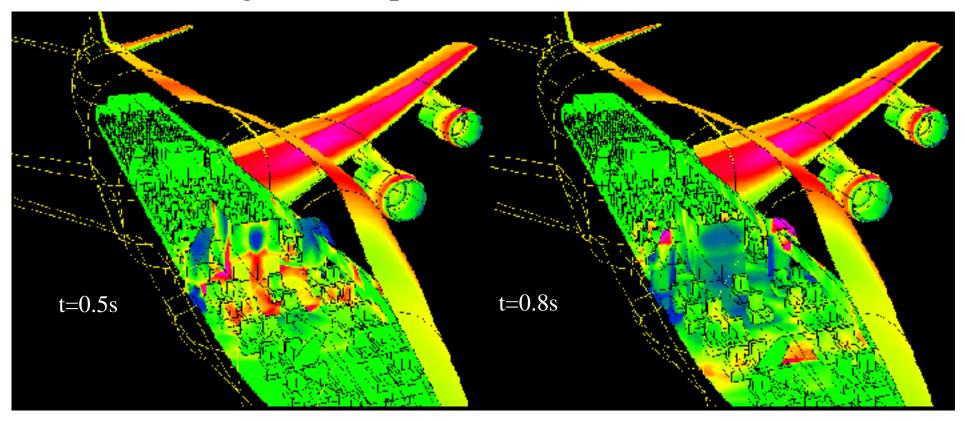

- Single Navier-Stokes analysis used 5.8M cells and 300 multigrid cycles on an IBM SP2 with 32 processors. Wall clock time 2 hours.
- 5 design cycles on IBM SP2 with 32 processors required 28 wall clock time hours.

<u>cpu (hours)</u>	#/design	# of designs	<u>time (hours)</u>
1 -1.5	3	5	21
.5-1.0	1	5	5
.3	1	5	_1.5
			28
	1 -1.5 .5-1.0	1 -1.5 3 .5-1.0 1	1 -1.5 3 5 .5-1.0 1 5


Flight Simulation Challenges Multidisciplinary Interactions

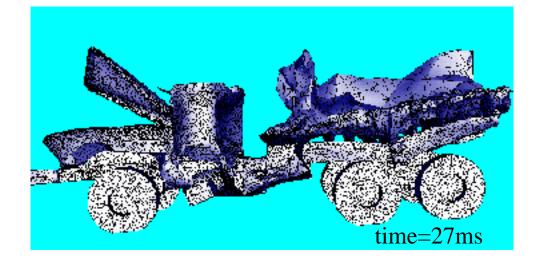
Aeroelastic Simulation of the AGARD 445.6 Wing Computation by Charbel Farhat, Univ. of Colorado

Aeroelastic Simulation of the AGARD 445.6 Wing



Aeroelastic Simulation of the AGARD 445.6 Wing

- Gupta, 45K points, $\Delta t=0.0000425$
- Lee-Rausch-Batina, 261K points, $\Delta t=0.0001$
- Farhat-Lesoinne, 22k points, ∆t=0.002
 Computation Statistics


IBM SP2 with 4 processors, simulation of 0.25 secs Basic Algorithm Modified Algorithm #time steps 1000 100 fluxes, (per t.s.) 1136.3, (1) 493.2, (5) cpu time secs 11752.6 2451.9

Simulated Explosion inside Boeing 747 Calculation by Rainald Lohner, GMU using Euler Eqs. and Unstructured Grids

Shock impact on a truck Coupled CFD & CSD Simulation Calculation by SAIC-GMU-GA

Research Opportunities in Computational Sciences

- Computational Tools Integration
- Interactive Navigation
- Experimental/Computational Integration

Computational Tools Integration

- Large number of tools exist for geom modeling,grid generation, adaptive refinement, partitioning, automatic differentiation, linear & non-linear solvers, I/O, visualization
- With few exceptions, these tools do not work together, mainly because of incompatible data structures
- A common data structure for all tools would not provide good performance

Interactive Navigation

- Large-scale computations, particularly in multidisciplinary design and optimization, can benefit form interactive visualization and steering: navigation
- However, frequency and data volume exchange must be such as to provide navigation without reducing high-performance execution

Experimental/Computational Integration

- Experimental and computational methods have disadvantages: experiments can be costly, some quantities cannot be measured directly, experiments limited by interference,...;computations limited by model accuracy, resolution, computational power,...
- Seamless, real-time, integration of experiments and computations, each supporting the other's weak area

