Languages, Compilers and Run-time Libraries for HPDC

Goal: Application Development for Networked Systems

Targets

Homogeneous networks

greater latency/load variation than MPPs

Wide-area Systems

Simple development for distributed task-parallel applications

Ease of development

Performance

Portability

Nature of the Problem:

High and variable latencies

Need for load balancing

Need to schedule networks as well as computers

Ways in which compilers, languages, libraries might be able to help

Implications of Available Technologies

Data-parallel languages

HPF and compiler techniques that can support it

HPC++

Task-parallelism

Threads

MPI

Language-level support in HPF

Object oriented languages

Java and C++

Techniques for latency tolerance and management

Prefetching, threading to increase latency tolerance

Program restructuring (static and dynamic)

Load balancing

Compiler/runtime support for load balancing, including attempts to analyze computation/communication costs 

Language-base

specification within the language of the load factors

Automatic

decomposition specified but load matching done by compiler and system

static and dynamic load analysis

Object oriented languages

Java and C++

Libraries

Distributed data structures

e.g., DAGH

primarily data parallel

Quad trees?

data parallel

HPC++ templates

Fixed pipelines

Latency-tolerant libraries 

(NWchem that supports execution on multiple MPPs, and other attempts at latency-tolerant libraries)

Functional libraries

Linear Algebra (ScaLAPACK)

Future directions

Extensions of existing technologies

New directions

Application composition environments

Compilation from scripting languages (visual or otherwise)

