Parallel Architecture for Sliced Bread Project

Geoffrey Fox

July 5,1994

Phone 3154432163

Email: gcf@npac.syr.edu

1: Introduction

This memo analyses a general parallel architecture for the sliced bread project which appears to scale quite well in the region of 1 to 16 processors of interest in the near future. The basic architecture is described in figure 1 while figure 3 shows how this can be realized as an upgrade to a “bare-bones” system shown in figure 2. We follow with some system notes before the detailed discussion in section 2.

1)The Main memory MM would be as in conventional single processor architecture except only one copy of the frame buffer without z buffer need be stored. The memories M1 to Mt hold in distributed fashion the “other” frame buffer. In some initial architectures as in figure 2, the memories MM and M1 are housed in same memory bank.

2)The hosts H1 to Hh do all the work except tiling the frame buffer and other functions such as audio performed by specialized processors. The major graphics function performed by hosts is that of geometry. This could be handled by a suitable special purpose processor. Note that software productivity for this system is likely to be greatly improved if some suitable microprocessor is used for one of the hosts. As these are quite expensive, it would be appropriate to use h-1 special purpose systems and one more general microprocessor to handle the general game code. In general the host systems can be heterogeneous.

3)The tiling processors have functionality as described for ARC system and we analyze case with z-buffer. One expects a homogeneous set of tiling processors although upgrade strategy could imply that initial tiling processor and/or memory system is different from the remainder. This is illustrated in figures 2 and 3.

4)The total memory summing M1 and Mt, the tiling processor memories must hold

One full Frame Buffer with z buffer

1 to 1.5 times memory needed to handle full geometry

Some amount for texture maps which is discussed separately and depends on performance optimization and extent of the re-use of textures between different polygons.

2: Example Scenarios

Basic Configuration: 4000 polygons and 320 by 200 resolution.

1)h=1 and t=1. M1 is about 2.2E5(geometry) plus 3.84E5(one copy frame buffer) plus somewhere in region 1.0E5 to 5.0E5 for texture map (all numbers are in bytes). This gives a memory size of 0.7 to 1.1 megabytes for M1.

2)h=1 and t=2 i.e. two ARC tiling processors in the basic design. We get an extra overhead of 0.1 to 0.2 megabytes if M1 and M2are distinct and so each tiling processor would need approximately 0.4 to 0.6 megabytes of memory.

Deluxe Version: 16000 polygons (12000 visible) and 640 by 400 resolution.

The depth complexity remains the same(4) as in basic configuration and so the polygons have same number of pixels as in basic configuration. Here the choice of h=3 and t=8 seems appropriate to give enough processing power where each host has geometry capabilities cited for microprocessor in Turner’s memos. Note his analysis shows inconsistency between ARC geometry and microprocessor geometry capabilities where official ARC numbers where shown to be inconsistent with Turner’s analysis. For this reason, I am not fully confident that I understand how many polygons can be geometrically processed by a given machine. I assume that a single host processor can do 4000-6000 polygon geometry calculations as well as any other things needed to be done. This scenario has 4 times the pixels and 4 times the polygons of the basic example. The requirements depend on number of processors (t=8 and h=3 here) as well as “fudge factors” L(t) and f2(t) represents parallel processing overheads discussed later. L(t) is load imbalance in pixel processing in tilers whereas f2(t) represents geometry imbalance in number of polygons. We estimate that L(t) and f2(t) are at most 1.5 in applications of interest.

Each tiling processor needs memory: 2.2E5*f2(t)*(4/t)+3.84E5*(4/t)+5.0E5*L(t)*(4/t). This is geometry plus frame buffer plus texture map. This corresponds to about 0.7 megabytes of memory for each 8 tiling processors.

The memory bandwidth and processing needs for each tiling processor is 4*L(t)/t=0.75 times that needed in basic configuration.

The host processing needs are 4*L(t)/h=2 times those of basic configuration. It appeared that we could accommodate this with h=3 and the required 6000 effective polygons per geometry processor. Of course other hosts needs such as audio and general game processing will scale with the factor 4 of complexity increase. This is a factor of 1.3. Some host functions will not scale with scene complexity (say those that are player related) and here we get effective scaling of 0.3 per processor. The exact value of h is not clear (partly because choice of processor unclear) but architecture scales in interesting regime of h=1 to 8.

Note demands on bus connecting host(s),tiling processors, and main memory depend on scene complexity (number of pixels and polygons) but not on the number of hosts and tilers except through the fudge factor f2(t). Our estimate is

Host geometry to tiling memories M1 to M8: 6.5E6*4*f2(t)= 39E6 Megabytes/second.

Tiling processors to Main memory transfer of distributed frame buffer: 7.7E6*4=31E6 Megabytes/second

Note we assume essentially zero texture map needs as assume texture map cached in tiling processors and reused from frame to frame changing on a time frame longer than seconds whereas key loads change 30 frames per second.

Total Bus bandwidth for geometry and tiling is 80 Megabytes/second

3: General Architectures Considered

We consider two approaches each with the general structure of figure 1 i.e. a general shared memory with distributed tiling memories to increase the memory bandwidth in this memory intensive function. The two cases are both discussed by Whitted in his book chapter when Molnar’s thesis is discussed. We have refined discussion to problem at hand.

Architecture I: Block Cyclic Distributed Frame Buffer: Here we divide the frame buffer equally between each of tiling processors which has to be done to preserve load balance and data-locality required for use of cache and arithmetic pipeline on tiling processors. This is discussed further in sections describing correction factors f2(t) and L(t) below. We can illustrate with an example of t=8 and a 640 by 400 frame buffer. We divide frame buffer into say 80 by 50 sub-frames which correspond to mapping onto a 64 virtual processor 8 by 8 array. We then assign these sub-frames cyclically to each of the t=8 real processors. This approach has worked successfully in parallel algorithms for many problems including matrices and irregular finite element solvers. The processor arrangement would look like

0 1 2 3 0 1 2 3

4 5 6 7 4 5 6 7

0 1 2 3 0 1 2 3

4 5 6 7 4 5 6 7

0 1 2 3 0 1 2 3

4 5 6 7 4 5 6 7

0 1 2 3 0 1 2 3

4 5 6 7 4 5 6 7

The 64 numbers above represent the processor assigned to particular 80 by 50 subframe. There are many variants of this general approach which could also be looked into. The particular discussion here is meant to be illustrative.

Architecture II: Replicated Frame Buffer: This is architecture discussed in our first March 30 memo and is Molnar’s “Sort Last” algorithm. Parameters of today’s hardware where memory bandwidth is more at a premium than processor power, seem to favor architecture I.

4: Some General Remarks

Definitions

HZ=30				(Frame Rate

NP=64000			(Number of Pixels in basic 320 by 200 configuration

RGBA=4			(Number of bytes for rgba storage per pixel

ZB=2				(Number of bytes used for z-buffer storage per byte

DC=4				(Canonical depth complexity

Z				(Z*NP=64000Z is actual number of pixels; Z=4 used in deluxe 					configuration

D				(D*DC is actual depth complexity. D=1 in our examples

(B=4000			(Number of polygons(triangles) in basic scenario

(V=3000			(Number of visible polygons in basic scenario

(*(V=3000((Number of visible polygons in actual scenario

(*(B=4000((Number of polygons in actual scenario: (=4 in deluxe 						configuration

				(Note that number of pixels in a typical polygon is 							NP.Z.D.DC./((.(V) which is 64000.4/3000 = 84 in both examples.

T				(Ratio of Texture pixels to frame buffer pixels.(see below)

Texture Map Remarks

Need multiresolution storage so that we can fetch the “right” texture map without too many pixels. What is the right number of texture map pixels?

Turner’s memo of May 4, 1994 (picture page 2) suggests a ratio of perhaps 1:1 of texture map pixels to polygon pixels.

The definition of T assumes some caching in the tiling processors so that texture map data for a given polygon is fetched once and once only. it does not assume any reuse of texture map data between different polygons within cache on a given tiling processor.

Total memory needed for texture map is: T*D*Z*64000*RGBA bytes.

This is reduced if several polygons share same texture map—this is not true if we are doing a terrain rendering problem where texture is map.

This estimate is increased if one needs to store texture at several different resolutions. This implies at simplest an increase in storage of a factor (1+.252+.254+...)=4/3.

The bandwidth needed to read in texture data is:

“Fraction of Polygons Accepted” *HZ*NP*DC*RGBA*(*D*T

This polygon accepted fraction is probably greater than 50% where 50% of pixels are accepted.

The above estimate does not include the factor of 4 (or thereabouts) implied if 4 texture pixels need to be interpolated for each polygon. Here we use caching assumption to allow reuse of texture pixels within a polygon. We presume that the “accept/reject” status of a pixel is “local” i.e. nearby pixels tend to be either accepted or rejected together.

Adjustment factor f1(t)

f1(t) is a correction factor for a simple estimate for fraction of z values accepted i.e. for how many polygons are in front of existing pixel in frame buffer. f1(t) is actually a function of (P the density of polygons on the frame buffer. In the preferred distributed frame buffer architecture, then this density is identical in parallel and sequential architectures. In the alternate replicated frame buffer architecture, the polygon density is reduced by factor of t, the number of tiling processors.

The memory bandwidth needed for accessing (read and write) frame buffer) is :

HZ.NP.Z.(D.DC/t).f1(t).[ZB+0.5*(2*RGBA+ZB)]

(P is DC.D for distributed and DC.D/t for replicated buffer case. Although this is sloppy we continue to write f1(t) even though it is a function of other variables besides t.

The largest value of f1(t) is 12/7 which occurs when for each polygon you read old value of rgba but new pixel is always in front.

The smallest value of f1(t) is when old rgba is not read and acceptance is 50%. Then one finds that f1(t) is 5/7.

Adjustment factor f2(t)

We previously noted that efficiency of distributed frame buffer is a “battle” between load balance and locality. This has to be considered at level of polygons and at level of pixels. These affect primarily the host(geometry) and tiling processors respectively. f2(t) describes the load imbalance issues in the polygons. Choosing a large virtual array (8 by 8 in above example of section 3) will reduce f2(t) and increase L(t). Both numbers are 1 (the best value) in sequential limit and get bigger than one due to “parallel algorithm overhead”. We do not discuss violations of “pixel locality” as we have chosen quite big subframes so that number of pixels in polygons is still quite large. As subframes decrease in size one finds more polygons (measured by f2(t)) but also fewer pixels per polygon. Thus pixel processing time is naively unchanged; in reality this is not true as few pixels per polygon leads to more start up and poorer arithmetic pipeline use in tiling processors.

The block cyclic distribution divides frame buffer into B blocks. Always B must be (t. In the example B=64 and t=8. f2(t) depends on B and nature of decomposition For instance it differs on a given problem for block cyclic and related block scattered distributions. In block scattered the numbers 0...t-1 are assigned randomly to B subframes.

Originally we have (*(V visible polygons. Define f2(t) so that necessary division and clipping of polygons to subframes increases this estimate by a factor f2(t).

In the B=64 80 by 50 subframe example, one finds naively for 100 pixel polygons that 30% of the polygons cross subframe boundaries and need to be divided—in simplest case each divided triangle leads to 3 new triangles. This scenario leads to an estimate that f2(t) is about 1.6.

Adjustment factor L(t)

L(t) measures the load imbalance in work done by different tiling processors. It cannot be estimated accurately as depends on nature of scene. It is conceivable that all the polygons are in a single subframe and so only 1 of t tilers has any work. This is not likely and a great waste of limited number of pixels in your display! We choose block cyclic/scattered to generally distribute each processor over frame buffer so anything but very localized anomalies will be countered..

L(t) is maximum number of pixels assigned (implicitly via polygons) to any tiling processor divided by average number of pixels. This average is just NP.Z.D.DC/t.

L(t) is just multiplicative estimate of parallel inefficiency for tiler CPU use and memory bandwidth (processor i to its own memory Mi)

5: Analysis of Memory Size and Bandwidth Needs for Two Architectures

Distributed Frame Buffer Architecture

Note analysis below is inaccurate in discussion of role of f2(t) and L(t). It also does not properly distinguish f2(t) for total(host) and for individual tiling processors. This inaccuracy will be corrected.

Geometry Calculation Storage and Bandwidth

Host --> Ti --> Mi Transfer of Geometry: Maximum bandwidth of any processor is: 6.5E6 .(f2(t) L(t)/t bytes/second

Mi --> Ti Use of Geometry is: 6.5E6.(.f2(t).L(t)/t bytes/second

Memory needs for Mi is 2.2E5.(.f2(t).L(t)/t bytes

Texture Map

As indicated earlier we will fetch texture map as necessary from host to tiling processors using Mi as a software controlled cache. This is in addition to cache on Ti which is needed to hold full texture map for each polygon (or more accurately set of say 50 pixels processed together—if polygons large one must divide into subpolygons for tiling to ensure texture map will stay in cache for subpolygons). The basic texture map storage is in main memory MM and one uses bus to transfer to tiling processor when needed. This can be controlled by host but we ignore bus bandwidth and host processing needs assuming that Mi is large enough to hold all texture maps needed for a given frame. Then one only needs to transfer each frame the changes from previous frame. This should give a negligible load on bus and host CPU.

Mi --> Ti Fetching of texture map is:1.54E7.Z.T.D.L(t)/t bytes/second

Mi memory needs are: as in sequential case times L(t)/t

Tiling Polygons onto Frame Buffer

Ti --> Mi bandwidth needs are: 5.47E7.Z.D.L(t)/t bytes/second

Mi Memory needs are: 3.84E5.Z/t bytes per processor memory.

Bandwidth needs for concatenating distributed frame buffer into main memory are for Mi to Ti transfer: 7.7E6.Z/t bytes/second per processor.

Load on host to Ti to MM Bus

•	Geometry transfer from host to Ti : 6.5E6.(.F2(t) bytes/second

•	Distributed Frame Buffer to Main Memory: 7.7E6.Z bytes/second

Replicated Frame Buffer Architecture

Geometry Calculation

Host--> Ti --> Mi Transfer of Geometry: 6.5E6.(/t bytes/second

Mi --> Ti Use of Geometry: 6.5E6.(/t bytes/second

Mi Memory needs: 2.2E5.(/t bytes

Texture Map

Use same general caching strategy as in distributed frame buffer

Mi --> Ti bandwidth needs are: 1.54E7.Z.T.(D/t).f1(t) bytes/second

Memory needed is expected to be that in sequential case divided by t when texture maps are not shared between polygons(as in sequential case). As one increases the sharing, one reduces total texture map storage but increases necessary replication among the tiling processors. This is similar to distributed frame buffer case.

Tiling Polygons onto Frame Buffers

Ti --> Mi bandwidth needs are: 5.47E7.Z.(D/t).f1(t) bytes/second

Mi memory needs are: 3.84E5.Z bytes per processor

Bandwidth needs for merging replicated buffers

Memory bandwidth for Ti reading and writing Mi is: 2.11E7.Z.(1-1/t) bytes/second

The above estimate ends up with the final frame buffer properly merged but distributed i.e. each tiling memory Mi holds 1/t of final frame buffer. One can accumulate into one or more of individual Mi at extra cost of 1.54E7.Z bytes/second.

Load on Host and MM to Ti / Mi Bus

This would normally be handled by a “proper” network and architectures that support merge operation have been well studied. We just discuss bus option although this does not scale with t.

Geometry Transfer Needs: 6.5E6.(bytes/second

Merge operation Needs: 1.15E7.Z. (t-1) bytes/second

� PAGE �7�

�PAGE �7�

