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Abstract 

We present here our work aimed at developing a network based visual software engineering environment for parallel processing by the name of Visper. It is completely implemented in Java and supports the message-passing model. Java offers the basic platform independent services needed to integrate heterogeneous hardware into a seamless computational resource. Easy installation, participation and flexibility are seen as key properties when using the system. We believe the approach taken simplifies the development and testing of parallel programs by enabling modular, object oriented technique based on our extensions to the Java API. 
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Abstract

In this paper, we describe the implementation of a Java interface for WMPI, a Windows-based implementation of MPI that have been developed by our group. We show some details about the implementation and we present some experimental results that compare the performance of JWMPI, Java WPVM and the C programs counterparts.

In the second part of the paper we describe another tool that is oriented for Web-based computing and we present a solution to integrate WMPI with this tool, by making use of a Java bridge component and our Java bindings for WMPI. This solution allows the execution of meta-applications over a mixed configuration of platforms, execution models and programming languages. The overall system provides an integrated solution to solve the problem of heterogeneity and to unleash the potential of diverse computational resources and programming tools.
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Abstract

Networks of workstations are a dominant force in the distributed computing arena, due primarily to the excellent price/performance ratio of such systems when compared to traditionally massively parallel architectures. It is therefore critical to develop programming languages and environments that can help harness the raw computational power available on these systems. JavaNOW (Java on Networks of Workstations), a Java based framework for parallel programming on a networks of workstations, is one such project. It creates a virtual parallel machine similar to the PVM (Parallel Virtual Machine) model, and provides distributed associative shared memory similar to Linda memory model but with a richer set of primitive operations.

JavaNOW provides a simple yet powerful framework for performing computation on networks of workstations. In addition to the Linda memory model, it provides for shared objects, implicit multithreading, implicit synchronization, object dataflow, and collective communications similar to those defined in the Message Passing Interface (MPI).  JavaNOW is also a component of the Computational Neighborhood [THI99], a Java-enabled suite of services for desktop computational sharing.
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Abstract 

This paper discusses an approach that aims to provide legacy message passing libraries with Java-like portability in a heterogeneous, metacomputing environment. The results of such portability permits distributed computing components to be "soft-loaded," or "soft-installed" in a dynamic fashion, onto cooperating resources for concurrent, synchronized parallel execution. This capability provides researchers with the ability to tap into a much larger resource pool and to utilize highly tuned codes for achieving performance. Necessarily, the Java programming language is a significant component. The Java Native Interface (JNI) is used to wrap message-passing libraries written in other languages and the bytecode, which is generated for the front-end, may be analyzed in order to completely determine the needs of the code that it wraps. This characterization allows the pre-configuration of a remote environment so as to be able to support execution. The usefulness of the portability gained by our approach is illustrated through examples showing the soft-installation of a process using an MPI computational substrate and the soft-installation of a process, which requires a C-based communication library, based upon the efficient multi-cast communication package, CCTL. The examples show that significant gains in performance can be achieved while allowing message-passing execution to still exhibit high levels of portability.
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Abstract 

Recently, there has been a large amount of interest in parallel programming using Java. However, eforts exploring the use of Java for parallel programming have been hindered by lack of a standard Java parallel programming API. To alleviate this problem, many groups have initiated research designing Java implementations of the successful Message Passing Interface (MPI). Unfortunately, MPI bindings are currently only defined for C, Fortran, and C++; as a result, initial Java MPI implementations have been divergent. This paper represents an effort to establish a consensus on Java bindings for MPI, and thereby to greatly enhance the viability of parallel programming using Java.
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