1) An open Java System for SPMD Programming 

Received ( 16th March 1999

Comments Returned to Authors ( 23rd October 1999 

Revised Paper returned ( 21st December 1999

Revised paper sent to referees for 2nd review – 15th Jan 2000 

Comments sent back to author ( 22nd Feb 2000

Revised Paper returned ( 18th March 2000

Paper ACCEPTED ( 19th March 2000
Contact Author

Nenad Stankovic 

FSJ Inc., Daiwa Naka­Meguro Bldg. 5­8F, 4­6­1 Naka­Meguro Meguro­ku, Tokyo 153­0061, Japan 

nenado@altavista.com

nstankov@ics.mq.edu.au

Abstract 

We present here our work aimed at developing a network based visual software engineering environment for parallel processing by the name of Visper. It is completely implemented in Java and supports the message-passing model. Java offers the basic platform independent services needed to integrate heterogeneous hardware into a seamless computational resource. Easy installation, participation and flexibility are seen as key properties when using the system. We believe the approach taken simplifies the development and testing of parallel programs by enabling modular, object oriented technique based on our extensions to the Java API. 

Keywords: MPI, PVM, message passing, performance, Java 

2) Heterogeneous Parallel Computing using Java and WMPI

Received  ( 21st March 1999

Comments Returned to Authors ( 23rd October 1999

Revised Paper Returned ( 7th January 2000

Paper ACCEPTED ( 15th Jan 2000

Contact Author

Luis M. Silva Paulo Martins João Gabriel Silva

Departamento Engenharia Informática

Universidade de Coimbra - POLO II

Vila Franca - 3030 Coimbra

PORTUGAL

Email: luis@dei.uc.pt

Abstract

In this paper, we describe the implementation of a Java interface for WMPI, a Windows-based implementation of MPI that have been developed by our group. We show some details about the implementation and we present some experimental results that compare the performance of JWMPI, Java WPVM and the C programs counterparts.

In the second part of the paper we describe another tool that is oriented for Web-based computing and we present a solution to integrate WMPI with this tool, by making use of a Java bridge component and our Java bindings for WMPI. This solution allows the execution of meta-applications over a mixed configuration of platforms, execution models and programming languages. The overall system provides an integrated solution to solve the problem of heterogeneity and to unleash the potential of diverse computational resources and programming tools.

3) Java on Networks of Workstations (JavaNOW):
A Parallel Computing Framework Inspired by Linda, Actors, and the Message Passing Interface (MPI)

Received  ( 24th August 1999

Comments Returned to Authors (  27th September 1999 – make major modifications and we will publish.

Revised Paper Returned  - 25th October 1999 – sent to referees again for final Yes/No.

Final comments sent to authors – make modifications and will publish – 15th Jan 2000

Final paper received ( 1st February 2000

Paper   ACCEPTED ( 17th Feb 2000

Contact Author

George K. Thiruvathukal
DePaul University
School of CTI
JHPC Research Laboratory 
Chicago, Illinois 60604
gkt@cti.depaul.edu
Abstract

Networks of workstations are a dominant force in the distributed computing arena, due primarily to the excellent price/performance ratio of such systems when compared to traditionally massively parallel architectures. It is therefore critical to develop programming languages and environments that can help harness the raw computational power available on these systems. JavaNOW (Java on Networks of Workstations), a Java based framework for parallel programming on a networks of workstations, is one such project. It creates a virtual parallel machine similar to the PVM (Parallel Virtual Machine) model, and provides distributed associative shared memory similar to Linda memory model but with a richer set of primitive operations.

JavaNOW provides a simple yet powerful framework for performing computation on networks of workstations. In addition to the Linda memory model, it provides for shared objects, implicit multithreading, implicit synchronization, object dataflow, and collective communications similar to those defined in the Message Passing Interface (MPI).  JavaNOW is also a component of the Computational Neighborhood [THI99], a Java-enabled suite of services for desktop computational sharing.

4) Aspects of Portability and Distributed Execution for JNI-Wrapped Message Passing Libraries 

Received  ( 29th October 1999

Comments Returned to Authors ( 15th Jan 2000 – publish if recommended changes are made.

Revised Paper Returned (  27th January 2000

Paper ACCEPTED ( 17th Feb 2000

Contact Author:

Vladimir S. Getov 

School of Computer Science 

University of Westminster, 

London, UK 

Abstract 

This paper discusses an approach that aims to provide legacy message passing libraries with Java-like portability in a heterogeneous, metacomputing environment. The results of such portability permits distributed computing components to be "soft-loaded," or "soft-installed" in a dynamic fashion, onto cooperating resources for concurrent, synchronized parallel execution. This capability provides researchers with the ability to tap into a much larger resource pool and to utilize highly tuned codes for achieving performance. Necessarily, the Java programming language is a significant component. The Java Native Interface (JNI) is used to wrap message-passing libraries written in other languages and the bytecode, which is generated for the front-end, may be analyzed in order to completely determine the needs of the code that it wraps. This characterization allows the pre-configuration of a remote environment so as to be able to support execution. The usefulness of the portability gained by our approach is illustrated through examples showing the soft-installation of a process using an MPI computational substrate and the soft-installation of a process, which requires a C-based communication library, based upon the efficient multi-cast communication package, CCTL. The examples show that significant gains in performance can be achieved while allowing message-passing execution to still exhibit high levels of portability.

Keywords: Java native interface, message passing libraries, mobility of 

native code, soft-installation, mixed-language programming
5) MPJ: MPI-like Message Passing for Java

Received ( 29th October 1999

Comments Returned to Authors - 1st February 2000 ( publish if recommended changes are made.

Revised Paper Returned ( 28th March 2000

Paper ACCEPTED ( 4th April 2000

Contact Author:

Bryan Carpenter
NPAC, Syracuse University, Syracuse, USA 

dbc@npac.syr.edu

Abstract 

Recently, there has been a large amount of interest in parallel programming using Java. However, eforts exploring the use of Java for parallel programming have been hindered by lack of a standard Java parallel programming API. To alleviate this problem, many groups have initiated research designing Java implementations of the successful Message Passing Interface (MPI). Unfortunately, MPI bindings are currently only defined for C, Fortran, and C++; as a result, initial Java MPI implementations have been divergent. This paper represents an effort to establish a consensus on Java bindings for MPI, and thereby to greatly enhance the viability of parallel programming using Java.

Keywords: Java Grande, parallel programming in Java, MPI, portability,

message passing API

