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Abstract

This paper describes the functionality and software architecture of a

generic problem-solving environment (PSE) for collaborative computa-

tional science and engineering. A PSE is designed to provide transparent

access to heterogeneous distributed computing resources, and is intended

to enhance research productivity by making it easier to construct, run,

and analyze the results of computer simulations. Although implementa-

tion details are not discussed in depth, the rôle of software technologies

such as CORBA, Java, and XML is outlined. An XML-based component

model is presented. The main features of a Visual Component Composi-

tion Environment for software development, and an Intelligent Resource

Management System for scheduling components, are described. Some

prototype implementations of PSE sub-systems are also presented.

1 Introduction

A problem-solving environment (PSE) is a complete, integrated computing en-
vironment for composing, compiling, and running applications in a speci�c area.
A PSE may also incorporate many features of an expert system and can assist
users in formulating problems, running the problem on an appropriate platform,
and viewing and analyzing results. In addition, a PSEmay have access to virtual
libraries, knowledge repositories, sophisticated execution control systems, and
visualization environments. The uses of PSEs include modeling and simulation,
decision support, design optimization, and industrial process management.

�
walker@msr.epm.ornl.gov
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The main motivation for developing PSEs is that they provide software tools
and expert assistance to the computational scientist in a user-friendly environ-
ment, allowing more rapid prototyping of ideas and higher research productivity.
By relieving the scientist of the burdens associated with the inessential and of-
ten arcane details of speci�c hardware and software systems, the PSE leaves the
scientist free to concentrate on the science.

This paper describes the general functionality and software architecture of
a generic distributed PSE. The use of CORBA, Java, XML, and other software
technologies is discussed, but this paper's emphasis is on describing the over-
all functionality of the PSE and on how the di�erent sub-systems of the PSE
interact, rather than on implementation details. Therefore, some issues of im-
portance in the design of PSEs are not addressed in this paper. These include
security and authentication, fault tolerance, and quality control and validation
of software components.

The two major sub-systems of the PSE are the Visual Component Com-
position Environment (VCCE) and the Intelligent Resource Management Sub-
system (IRMS). These are described in Sections 2 and 3, respectively. In Section
4 other aspects of PSEs are discussed, such as the role of \intelligence" and mo-
bile agents. Related research into PSEs is presented in Section 6. Prototype
implementations are described in Section 5. A summary is given in Section 7.

2 The Visual Component Composition Environ-

ment

The Visual Component Composition Environment (VCCE) of the PSE is used
primarily to construct applications from software components. In this context,
an application is merely seen as a high-level component. The VCCE is used
to construct components in the form of a data
ow graph. Once a complete
application has been constructed, it is passed to the Intelligent Resource Man-
agement System (IRMS) to be scheduled on the distributed computing systems
available on the network.

2.1 Components and Their Properties

In general, a component is a procedural or functional abstraction de�ned by its
input and output interfaces and its semantics. Components have the following
properties:

1. Components may be Java Beans or CORBA objects. They may be se-
quential codes written in Java, Fortran, or C; they may be parallel codes
that make use of message passing libraries such as MPI; or they may ex-
ploit array-based parallelism through language extensions such as HPJava
[8]. Legacy codes, in Fortran for instance, can be wrapped as components.

2. Components themselves may be hierarchical (i.e., constructed from other
components) and be of arbitrary granularity. Thus, a component may
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perform a simple task, such as �nding the average of a set of input values,
or it may be a complete application for solving a complex problem.

3. Each component is represented by a well-de�ned model speci�ed in XML,
as described in Section 2.5.

4. A component may have individual, group, or world access permissions to
specify who may use it.

5. Information is passed from one component to another via uni-directional
typed channels. A channel connects an outport of one component to an in-

port of another component. A component may have zero or more inports.
The set of data objects referenced by the channels connected to a compo-
nent's inport(s) together de�ne its input interface. Similarly, a component
may have zero or more outports, and the set of data objects referenced
by the channels connected to a component's outport(s) together de�ne its
output interface.

6. A set of constraints may be associated with each component, indicating
on what platforms it is licensed to run, and whether it requires generic
software, such as MPI or the BLAS, to be bound in later in order to run.

7. A performance model is optionally associated with each component. Ide-
ally, this gives the runtime of the component as a function of its input and
machine, communication, and network parameters.

8. Information on a component's purpose, the algorithms it uses, and other
pertinent explanatory data is optionally associated with a component.

There are several ways in which a piece of executable code may become
associated with a component. The binding of an executable with a component
generally takes place after the VCCE has been used to construct the application.
Thus, a component may be available only as an executable speci�c to a certain
type of hardware, and in this case the binding process is trivial. Alternatively,
the component may be available as source code, in which case the PSE must
arrange for it to be compiled for a target architecture. Finally, if neither the
source nor the executable code is available, the Software Information Service
is used within the IRMS to locate an implementation of the component. This
latter case is useful when using commonly available software, such as the BLAS.
For example, if it was necessary to perform a matrix-matrix multiplication, it
might be better to allow the PSE to �nd the BLAS routine to do this on some
platform, rather than the composer of the application making the decision within
the VCCE. This topic is discussed further in Section 3.

There are four common types of component. The main task of compute

components is to do computational work, such as performing a matrix multipli-
cation or a fast Fourier transform. Template components require one or more
components to be inserted into them in order to become fully functional. Tem-
plate components can be used to embody commonly-used algorithmic design
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patterns. This allows a developer to experiment with di�erent numerical meth-
ods or model physics. Thus, in a partial di�erential equation solver, a template
might require a pre-conditioner to be inserted. Template components can also
be used to introduce control constructs such as loops and conditionals into a
higher-level component. For example, in a simple for loop, the initial and �nal
values of the loop control variable, and its increment, must be speci�ed, together
with a component that represents the body of the loop. For an if-then-else

construct, a Boolean expression and a component for each branch of the con-
ditional must be given. A template component can be viewed as a compute
component in which one or more of the inputs is a component. Data manage-

ment components are used to read and convert between the di�erent types of
data format that are held in �les and internet data repositories. The intention
of this type of component is to be able to (1) sample data from various archives,
especially if there is a large quantity of data to be handled; (2) convert between
di�erent data formats;(3) support specialized transports between components if
large quantities of data need to be migrated across a network; and (4) undertake
data normalization, and perhaps also generate SQL or similar queries to read
data from structured databases. The fourth type of common component is the
user interface component, which allows a user to control an application through
a graphical user interface and plays a key role in computational steering.

2.2 Features of the VCCE

The central feature of the VCCE is a visual tool known as the Component
Composition Tool (CCT) that enables a user to build and edit applications by
plugging together components, by inserting components into pre-de�ned tem-
plates, or by replacing components in higher-level hierarchical components. A
higher-level component may be constructed from multiple existing components
by connecting an outport of one component to the inport of another compo-
nent. The CCT allows an outport to be connected to an inport only if the two
ports are compatible in the number and type of data objects associated with
each port. The manipulation of components takes place on a scratch pad (or
canvas), with existing components being dragged onto the scratch pad from a
web-accessible Component Repository (CR), where they are then linked. Once
a new hierarchical component has been built in this way, it may then be added
to an appropriate CR for future use and for sharing with other application
developers.

The VCCE includes a tool for building inports and outports from a compo-
nent's input and output interfaces. Although a component's interfaces cannot
be changed, inports and outports can be constructed out of the data objects
comprising the input and output interfaces, respectively. Each component has
a set of default inports and outports de�ned by the author of the component.
For example, suppose the input to a component consists of two 
oating point
numbers, a and b, and an integer, j. These could be con�gured into a single
inport (a; b; j), or as two inports ((a; b) and (j), or (a) and (b; j), or (b) and
(a; j)), or as three inports (a), (b), and (j). It is also permitted to have a data
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object associated with two or more inports. Thus, in the previous example,
the inports could be con�gured as (a; b) and (b; j). In general, this results in a
non-deterministic program with a race condition on b.

The VCCE also includes a text editor for creating a new component from
scratch in some programming language. The Wrapper Tool can then be used to
convert the new code into a CORBA-compliant component that can be placed in
an CR, if required. The Wrapper Tool also can be used to convert legacy codes
into components. A complete legacy application may be wrapped as a single
component, or it may be divided and wrapped as a series of smaller components,
provided the internal structure of the application is known.

The Annotation Tool allows a developer of a component to annotate it with
information that may be of use to other users and parts of the PSE. This
information might include an explanation of what the component does and of
its input and output interfaces, together with a URL giving the web address
of more detailed information. Other annotations include constraints on the
component's use and information about its performance.

The Component Analysis Tool (CAT) of the VCCE can be used to display
the hierarchical structure of a component. A component can be expanded to
show the data
ow graph of the components comprising it. Alternatively, if it is
not composed of lower-level components, the source code is displayed. This may
be annotated to show the signi�cance of important variables, data structures,
and lines of code. A URL may be associated with each component giving the
web address of documentation about the component explaining, for example, its
purpose, the algorithms used, the meaning of the input and output arguments,
etc. This documentation may also include links to sources of information related
to the component external of the PSE.

The Expert Assistant (EA) helps users to locate and use components based
on a decision tree and/or rule-based approaches. The EA is also responsible for
matching user requirements to component types, based on component interfaces
speci�ed in XML (as discussed in Section 2.5). Therefore, the EA can be used
to search component repositories that are registered for a particular PSE. The
EA is a core part of the user interface. It encodes rules that are domain speci�c,
and can help a novice user evaluate components that may be most useful for his
or her particular problem. These domain speci�c rules can either be associated
with a component for use within the EA, or they may be developed in-house by
an organization using the PSE.

The Input Wizard checks that the input provided to an application does not
violate any physical or algorithmic constraints.

Figure 1 shows the software architecture of the VCCE part of a PSE.

2.3 Computational Steering

In a common type of computational steering, a user interacts with a running ap-
plication by changing the input to one or more components. Typically, the user
would assess the current status of some data within an application by viewing it
through a visualization interface, and then in
uence this visual representation
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Figure 1: The software architecture of the VCCE

by changing some component input value(s). The impact of this change would
then be evident in the visualization, and perhaps lead the user to make further
changes. An example would be the visualization of a 
ow, in which the user
seeks to achieve some design goal by moving a boundary. Parker et al. [22] have
discussed approaches to computational steering in the context of the SCIRun
PSE and also review a number of other visual steering systems.

Computational steering can be provided for within the VCCE by inserting
a loop that contains a user interface component into the task graph. This
component receives data from one or more components, presents the data to the
user, and relays any changes the user may make to the appropriate components.
Computational steering is often used in situations in which data are presented
to the user from within a loop, for example, a time-stepping loop. Another use
occurs when the user wishes to pause the application at some point in order to
set a value based on the application results at that point.

These two types of computational steering can be provided for by having
each component identi�ed (through the component model described in Section
2.5) as either steerable or non-steerable. Steerable components may, or may not,
be initiated upon entry in the paused state. If a steerable component is in the
paused state, then input from a user interface component is required to make
it continue. The user interface component steering the application can be used
to switch a steerable component between the paused and non-paused states.

Figure 2 shows a portion of a task graph that is used for computational
steering. The steerable component requires two inputs, a and b. Input a may
come from either the user interface component doing the steering or from some
preceding component in the task graph. A steerable component will always
accept input preferentially from the user interface component, if any is available;
otherwise, it will accept input from the preceding component. The output c from
the steerable component loops back into the user interface component, as well
as being passed on to another component for consumption.
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Figure 2: A portion of a task graph used for computational steering.

2.4 Collaborative Use of PSEs

The ability to use a PSE collaboratively is important for applications in research
and education. The VCCE provides a collaborative software development en-
vironment since components created and placed in the Component Repository
by one user can be used by other users. Another collaborative aspect of a PSE
is that it provides multiple users with consistent representations of data from
simulations and/or databases, often through a visualization interface. Within
the VCCE, a PSE can be used collaboratively by \cloning" user interface com-
ponents. This permits each user to view, or interact with, the data through
their own clone of the master user interface component. Thus, all user interface
components are clonable or non-clonable, and the clones may, or may not, in-
herit from the master the ability to steer a component in the task graph. The
cloning facility is mediated through a web page associated with the master user
interface. In a typical collaborative application, the master user would initiate
an application in the paused state (see Section 2.3) and then wait for other users
to access the web page through which they generate their user interface clones.
Users may join the collaborative application at any time that the master user
interface is active.

2.5 The Component Model

XML (eXtensible Markup Language) is a subset of the document formatting
language SGML (Standard General Markup Language), aimed at developing
documents for the Web, and devised by the W3C. One objective of XML is to
enable stored data intended for human use to also be manipulated by a machine,
such as a search engine. XML de�nes standard tags used to express the struc-
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ture of a document, in terms of a Document Type De�nition (DTD). Hence, a
DTD must be de�ned for every document that uses tags within a particular con-
text, and the validity of a document is con�rmed with reference to a particular
DTD. Various DTDs have been de�ned for particular application domains, such
as the BioInformatic Sequence Markup Language (BSML), Weather Observa-
tion Markup Language (OML), the Extensible Log Format (XLF) for logging
information generated by Web servers, amongst others. The approach closest
to the work described here is Open Software Description (OSD) from Microsoft
and Marimba Technologies for de�ning component models that can facilitate
the automatic updating of components. Using OSD, \push-based" applications
can automatically trigger the download of particular software components as
new versions are developed. Hence, a component within a data 
ow may be
automatically downloaded and installed when a new or enhanced version of the
component is created. XML does not de�ne the semantics associated with a
given tag, only the positioning of a tag with respect to other tags. However, one
must associate and de�ne semantic actions when parsing an XML document
that cause particular actions to take place when particular tags are encoun-
tered. These actions can range from displaying the content of a document in a
particular way, to running programs that are triggered as a result of reaching a
particular tag.

Each component in the PSE architecture presented in this paper is rep-
resented by a well-de�ned component model speci�ed in XML. XML is used
because of its wide usage in component-based software development and sup-
port for it in browsers, such as Internet Explorer and Netscape. All components
with interfaces in XML can be automatically catalogued as web pages and can
be queried by a number of commercially available search engines. The query
mechanism is particularly useful when PSEs share components or when the user
wishes to evaluate other components that may be used as alternatives. XML
has also become a useful integration mechanism with Java Beans, and numerous
commercial tools are readily available to support this integration. These reasons
suggest that XML is the most appropriate way of creating component interfaces
within a PSE. The use of XML also enables the generation of context-sensitive
help and leads to the development of self-cataloguing components.

XML tags are used to de�ne a standard component model within the PSE
that will be deployed within all subsystems. Components are stored in the
Component Repository using this format, and any binary data associated with a
component must also be tagged appropriately. The XML interface to a CORBA
object or a Java Bean, for instance, does not make a distinction between an em-
bedded component object or an object that is native to CORBA-IDL or Java-
IDL. Therefore, a wrapped component can be a Java Bean, a COM object, C
or C++ library calls, wrapped Fortran code called from C, calls to DLLs or
shared-objects, and other run-time linking methods. In each case, the XML in-
terface is used to de�ne interface information, for accessing particular attributes
and methods, for registering listeners, and for handling exceptions and events.
Further, specialized support for expressing constraints on the run-time environ-
ment is also provided, along with mechanisms to express hierarchy and directory
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structures if components are stored within a structured �le system.
Our XML based component model contains the following tags:

1. Context and header tags. These are used to identify a component and the
types of PSEs that a component may be usefully employed in. The com-
ponent name must be unique, with an alternative alphanumeric identi�er;
however, any number of PSEs may be speci�ed. These details are grouped
under the preface tag, hence:

<!ELEMENT preface (name pse-type+)>

<!ELEMENT name (name-list+)>

<!ATTLIST name alt %PCDATA

id %PCDATA>

<!ELEMENT pse-type %PCDATA>

...

The hierarchy tag is used to identify parent and components, and works
in a similar way to the Java package de�nition. A component can have
one parent and multiple children.

2. Port tags. These are used to identify the number of input and output
ports and their types. An input port can accept multiple data types and
can be speci�ed in a number of ways by the user. The DTD for the ports
part of the component model can be speci�ed as:

<!ELEMENT ports (inportnum outportnum

inporttype+ outporttype+)>

<!ELEMENT inportnum INTEGER>

<!ELEMENT outputnum INTEGER> ...

Input/output to/from a component can also come from/go to other types
of sources, such as �les or network streams. In this case, the inport and
outport ports need to de�ne an href tag rather than a speci�c data type.
We standardise our href de�nition to account for various scenarios where
it may be employed, such as:

<ports>

<inport id=1 type=stream>

<parameter value=regression value=NIL/>

<href name=http://www.cs.cf.ac.uk/PSE/ value=test.txt>

</inport>

</ports>

When reading data from a �le, the href tag is changed to:

<ports>

<inport id=1 type=stream>
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<parameter value=regression value=NIL/>

<href name=file:/home/pse/test.txt value=NIL>

</inport>

</ports>

This gives a user much more 
exibility in de�ning data sources and using
components in a distributed environment. The general type:

<parameter type=X value=Y>

or

<parameter source=X target=Y>

are applicable within any tag, and are used to specify (name,value) pairs
that occur frequently in interface de�nitions. The user may also de�ne
more complex input types, such as a matrix, stream, or an array in a
similar way.

3. Steerability tabs. A component can be tagged to indicate that it can be
steered via the user interface. In order to achieve this, the input/output
to/from a component must be obtainable from a user interface. Hence,
with a steerable component, the inports and outports of a component
must have a specialized tag to identify this. Hence, for a conventional
component without steerability, the ports de�nition is:

<ports>

<inport id=1 type=stream>

<parameter type=velocity value=10.2 />

</inport>

For a steerable component, the following de�nition would be used:

<ports>

<steerable>

<inport id=1 type=stream

<parameter type=velocity value=10.2 />

</inport>

</steerable>

This will automatically produce an additional input port over which in-
teractive inputs can be sent to the component, with the input being of the
same type as in the non-steerable version of the component.
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4. Execution tags. A component may have execution-speci�c details associ-
ated with it, such as whether it contains MPI code, if it contains internal
parallelism, etc. If only a binary version of a component is available, then
this must also be speci�ed by the user. Such component-speci�c details
may be enclosed in any number of type tags.

The execution tag is divided into a software part and a platform part.
The former is used to identify the internal properties of the component,
while the latter is used to identify a suitable execution platform or a
performance model.

5. Help tags. A user can specify an external �le containing help for a particu-
lar component. The help tag contains a context option that enables the
association of a particular �le with a particular option to enable display
of a pre-speci�ed help �le at particular points in application construction.
The contexts are prede�ned, and all component interfaces must use these.
Alternatively, the user may leave the context �eld empty, suggesting that
the same �le is used every time help is requested for a particular compo-
nent. If no help �le is speci�ed, the XML de�nition of the component is
used to display component properties to a user. Help �les can be kept
locally, or they can be remote references speci�ed by a URL. One or more
help �les may be invoked within a particular context, some of which may
be local.

6. Con�guration tags. As with the help tag, a user can specify a configuration
tag, which enables a component to load prede�ned values from a �le, from
a network address, or using parameter,value. This enables a component
to be pre-con�gured within a given context (e.g., to perform a given action
when a component is created or destroyed). The configuration tag is
particularly useful when the same component needs to be used in di�erent
applications, enabling a user to share parts of a hierarchy, while de�ning
local variations within a given context.

7. Performance model. Each component has an associated performance model,
which can be speci�ed in a �le using a similar approach to component
con�guration de�ned above. A performance model is enclosed in the
performance tag and may range from being a numerical cost of running
the component on a given architecture, to being a parameterized model
that can account for the range and types of data it deals with, to more
complex models that are speci�ed analytically.

8. Event model. Each component supports an event listener. Hence, if a
source component can generate an event of type XEvent, then any listener
(target) must implement an Xlistener interface. Listeners can either be
separate components that perform a well de�ned action, such as handling
exceptions, or can be more general and support methods that are invoked
when the given event occurs. We use an event tag to bind an event to a
method identi�er on a particular component:
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<event target="ComponA" type="output"

name="overflow" filter="filter">

<component id=XX> ... </component>

</event>

The target identi�es the component to be initiated when an event of
a given type occurs on component with identity id, as de�ned in the
preface tag of a component. The name tag is used to distinguish di�erent
events of the same type, and the filter tag is a place-holder for JDK1.2
property change and vetoable property change events support. Also, the
�lter attribute is used to indicate a speci�c method in the listener interface.
This method must be used to receive the event for a particular method to
be invoked.

Event handling may either be performed internally within a component,
where an event listener needs to be implemented for each component that
is placed in the PSE. This is a useful addition to a component model for
handling exceptions and makes each component self-contained. Alterna-
tively, for legacy codes wrapped as components, separate event listeners
may be implemented as components and may be shared between compo-
nents within the same PSE. Components that contain internal structure,
and support hierarchy, must be able to register their events at the highest
level in the hierarchy, if separate event listeners are to be implemented.
An simple example of an event listener is as follows:

<preface>

<name alt=DA id=DA02>Data Extractor</name>

<pse-type>Generic</pse-type>

<hierarchy id=parent>Tools.Data.Data_Extractor</hierarchy>

<hierarchy id=child></hierarchy>

</preface>

<event type="initialise" name="start" filter="">

<script>

<call-method target="DA01" name="bayesian">

</script>

</event>

The script tags are used to specify the method to invoke in another
component, when the given event occurs.

9. Additional tags. These tags are not part of the component model and can
be speci�ed by the user in a block at the end of each section by using:

<add> ... </add>

Variable tags will not be supported in the �rst version.
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All applications that employ our PSE must adhere to this component model.
A user may specify the component model using tags or have it encoded using a
Component Model editor. The editor works in a similar manner to an HTML
editor, where a user is presented with a menu based choice of available tags.
Alternatively, a user of the component editor may de�ne their own tags. Tags
do not appear in the editor and are automatically inserted into the description
once the user has entered the required text and wants to generate a component
interface.

The Component Model in XML forms the interface between the VCCE and
other parts of the PSE, as illustrated in Fig. 3. Therefore, the XML represen-
tation is pervasive throughout the PSE and links the VCCE to the Intelligent
Resource Management System (IRMS) described in Section 3. Various repre-
sentations can be obtained from the XML description in Scheme, Python, Perl,
CORBA-IDL, or others, for connection to other systems that may be attached
to the PSE. Similarly, XML is used to store components in the repository, and
various query approaches may be employed within the VCCE to obtain compo-
nents with given characteristics or components at a particular hierarchy.

XML

Representation

 VCCE
XML

Component
Repository

Scheme 
 Output

Python 
Output

 To
Resource
ManagerWeb Pages

CORBA-IDL
   Output

Figure 3: The XML-based component model.

The use of tags enables component de�nitions to be exchanged as web docu-
ments, with the structure available at either a single site or at particular certi�ed
sites. Hence, changes to the DTD can be made without requiring changes to
component de�nitions held by application developers, and will be propagated
the next time a component interface is used.

Component interconnectivity is also speci�ed in XML, in the form of a di-
rected graph. Component dependencies are enclosed in dependency tags and
include constructs, such as parent-of, child-of and sibling-of, enabling dis-
tant relationships to be constructed from recursive applications of these three
basic types. Such dependencies can also be embedded within a JAR �le, for
instance, where multiple components may be stored in a single �le for transfer
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over a network. The use of the component model also requires that each com-
ponent has a unique identi�er across the PSE workspace and is registered with
a component repository. This is particularly signi�cant when handling events,
as event types will need to be based on component identities and their partic-
ular position in the data 
ow. The component models mentioned here have
been in
uenced by IBM's BeanML [28] and Microsoft's OSD [20] XML based
frameworks.

3 The Intelligent Resource Management System

Once a complete application has been speci�ed using the VCCE the resulting
task graph, annotated with information about the components' performance
and constraints on execution, is passed to the Intelligent Resource Management
System (IRMS) to be scheduled for execution. The structure of the IRMS is
shown in Fig. 4 and will now be described.

3.1 The Scheduler

The Scheduler is the most important part of the IRMS. It must analyze the task
graph to determine an appropriate level of granularity, to resolve components
(ie, create or locate an executable corresponding to each component), and to
associate each component with a hardware resource or with a local resource
manager. After this, the task graph is said to be executable, and it is then
passed to the Execution Controller.

The Scheduler must devise a schedule according to certain goals embodied in
a scheduling policy and in accordance with a set of constraints. It makes use of
a number of information resources to devise an executable schedule. Scheduling
involves the coupled activities of determining an appropriate level of granularity
for scheduling the task graph obtained from the VCCE and deciding on which
resources to run the components of the task graph.

Currently, a fairly simple Scheduler is envisioned that takes a top down
approach, starting at the highest level of granularity. The task graph received
from the VCCE is initially regarded as having a single node that represents
the whole application. This node is then expanded (i.e., replaced by its sub-
components), and an improved schedule is sought. If no such schedule can be
found then the initial task graph and its associated schedule is accepted, and
output to the Execution Controller. Otherwise, we expand again and repeat
until we either generate a task graph that is worse then the previous one, or
until we cannot expand any more. The metric used to decide if one task graph
is better than its predecessor is important, and di�erent metrics correspond to
di�erent scheduling policies. For example, the metric that always views TG(i) as
better than TG(i+1) (provided the former obeys all the constraints) corresponds
to a policy that attempts to always schedule at the highest granularity possible,
regardless of cost or performance. The metric that regards TG(i) as better than
TG(i+1) if it has a smaller expected time to completion will result in a schedule
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that attempts to minimize execution time. The expected time to completion is
derived from the performance model associated with a component.

In the simple scheme described above, \expansion" means expanding each
node of the current task graph, but they could be expanded one at a time
(starting with the most resource hungry) to see which is best. The scheduling
scheme is represented in Fig. 5.

Yes

Yes

NoNo

TG(i) be 
to give TG(i+1)

Can 
granularity

i = 1

Refine

Schedule TG(i)

STOP

refined

Schedule
TG(i+1)

Is
TG(i+1)

better than
TG(i)

START

Accept TG(i)

i = i + 1

Figure 5: Scheduling a task graph. The input task graph TG(1) is the complete
application received from the VCCE.

3.2 Constraints

A component is said to be compatible with a piece of hardware if all its sub-
components can be executed on that hardware. Clearly, the Scheduler must
always expand components that are not compatible.

The Scheduler can run a component on a particular piece of hardware only
if it can �nd an executable for that component/hardware combination. If no
executable is explicitly associated with a component, and if the location of the
source code is known, then the Scheduler will use the Compile and Install Service
to create an executable for the hardware platform of interest.

Resources are owned and operated by di�erent individuals or organizations
and exist in di�erent administrative domains. Therefore, resource usage may
have di�erent security restrictions or be subject to particular policy constraints,
restricting the scheduling of computational tasks to these devices (or groups of
devices). Licensing constraints are a pertinent example of these restrictions,

16



whereby mathematical or scienti�c software is restricted to a single machine or
particular groups of machines.

3.3 Information Resources

If neither an executable nor the source code is available for a component, then
the Software Information Service is used to attempt to �nd a suitable executable
for the component.

The Hardware Information Service (HIS) provides the Scheduler with in-
formation about the hardware resources available and the network connecting
them. At any given time, the HIS attempts to maintain an accurate picture
of the capabilities, load, and accessibility of the resources within its local do-
main. Required information can include con�guration details about resources
such as CPU speed, disk and memory space, number of nodes in a parallel com-
puter, or the number and type of network interfaces available; instantaneous
performance information, such as point-to-point network latency, available net-
work bandwidth, and CPU load; and application-speci�c information, such as
memory requirements.

Performance information about components from previous runs is stored in
the Performance History Database (PHD). This information can then be used
by the Scheduler in conjunction with, or in place of, the component performance
models to make scheduling decisions. Once a suÆciently large PHD has been
built up, intelligent methods based on genetic and neural network algorithms
(for example) can be used to estimate performance.

3.4 The Execution Controller

Components can be run on hardware under the direct control of the Execution
Controller, or they may be passed to local resource managers that will handle
their execution. The simplest case is where the entire application is handled
by a single local resource manager, such as CODINE [10] or GRAM [16]. Co-
ordinating applications whose sub-components are handled by multiple local
resource managers, and also directly by the Execution Controller, may present
signi�cant diÆculties.

4 Other Aspects of PSEs

4.1 Electronic Notebooks and Living Documents

Electronic notebooks are useful add-ons to PSEs. They provide a mechanism
whereby the computational experiments conducted using a PSE can be recorded
and annotated, thereby constituting a record of what has been done. Electronic
notebooks are intended to be the digital equivalent of the lab books kept by
experimental scientists. An advantage of an electronic notebook is that it allows
experiments to be replayed, and serves as a safeguard against error and fraud.
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An electronic notebook can also be used to demonstrate adherence to principles
of best practice.

A living document is the digital equivalent of a paper, thesis, or book,
whereby the computational experiments conducted in a piece of research can
be re-run, or run again with di�erent input parameters. For example, suppose
a �gure in a living document was produced using a certain set of parameters.
A reader of the document might want to �nd out what the �gure would look
like for di�erent input parameters. Living documents represent the next phase
in the electronic publication of research results, and it is expected that each
PSE will have a set of living documents associated with it whose computational
results were produced using the PSE.

Clearly, the concepts of a electronic notebook and a living document are
quite similar, and the two could be merged, though it may be better to keep
them distinct as they correspond to di�erent phases of the scienti�c process.

4.2 Intelligence in PSEs

There are several ways in which a PSE can take advantage of \intelligence." The
�rst is in the location and use of the components needed to solve a particular
problem. This can range from a simple search interface to expert assistance
in the form of a decision tree or rule-based system that guides the user in
the selection of components. A second example of an intelligent method is
the use of an input wizard that checks the consistency of the input data to
an application, and looks for values out of expected acceptable ranges. This
can be of particular importance when the input data is large and has complex
interrelations. The third way in which intelligence can be used is in scheduling
by the Intelligent Resource Management System (see Section 3). A database of
previous performance history is built up to store the performance of components
for di�erent hardware platforms and inputs. This may then be used to help
schedule components using genetic algorithms and neural networks.

4.3 Generic and Speci�c Aspects of PSEs

A clear distinction can be made between those parts of a PSE that are generic,
and hence can be used in constructing PSEs in other application domains, and
those that are speci�c to just one application domain. The following parts of a
PSE are speci�c:

� The components in the Component Repository (mostly speci�c, although
some may have broad applicability).

� Expert assistance (speci�c to an application domain).

� Input wizards.

� The performance history database.
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Apart from these application-speci�c aspects of a PSE, most of the rest of
the PSE infrastructure is generic and can be used across multiple application
domains.

4.4 The Role of Mobile Agents in PSEs

Mobile agents can be used in PSEs in the areas of resource discovery, resource
monitoring, and software propagation. When applied to resource discovery,
they can be used to support the Software and Hardware Information Services
to maintain an up-to-date picture of the resources available to the PSE and to
seek out new resources. Thus, for example, mobile agents can be dispatched by
the Hardware Information Service (HIS) to �nd computational resources whose
access and usage policies permit them to be used by a PSE. Similarly, mobile
agents dispatched by the Software Information Service can seek out generic
components, such as the BLAS, and knowledge repositories on remote machines
so they can be used subsequently in applications. Resource discovery using
mobile agents can be performed continuously, and proceeds independently of
the users of the PSE.

The computing and network resources used by a PSE must be monitored
so that the IRMS can eÆciently schedule applications. This could be done
statically by having each resource send performance information (such as ma-
chine load or the bandwidth of a network link) to the HIS periodically or upon
demand. Alternatively, this information could be gathered by mobile agents,
thereby avoiding the need to keep a static agent or daemon continuously running
on each remote resource.

The Compilation and Installation Service can use mobile agents to propagate
software. If the source code is available for a component in the CR, then an
agent can take this and attempt to compile and install the component on the
machines known to the PSE through the HIS. The resulting executable can then
be used in applications built within the VCCE. Again, this activity can take
place continuously, independent of the users of the PSE.

4.5 Wrapping Legacy Codes as CORBA Objects

Legacy codes are pre-existing codes that possess the following features: 1) they
are domain-speci�c; 2)they are not reusable; 3) they are still useful; and 4) they
are large, complex monoliths. Wrapping legacy codes as CORBA objects is
a method of encapsulation that provides clients with well-known interfaces for
accessing these objects. The principal advantage is that behind the interface, the
client need not know the exact implementation. Wrapping can be accomplished
at multiple levels: around data, individual modules, subsystems, or the entire
system. After being wrapped as CORBA objects, these legacy codes can be
reused as components in a heterogeneous distributed computing environment.
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5 Prototype Implementations

5.1 A Prototype Expert Assistant

A prototype Expert Assistant (EA) has been implemented using the Java Expert
System Shell (JESS) which gives the ability to \plug-in" domain speci�c rules
into the EA. To enable such a system to work, the prototype EA provides
support for rule consistency checking (i.e., what happens if a new rule is added
and how does it interfere with rules which already exist) and rule upgrade over
a period of time (i.e., if rules are no longer required, and do not get recalled
during PSE use, these rules can automatically \expire", so that the size of the
rule base is manageable).

5.2 A Simple Mathematical Equation Builder

A small prototype with a speci�c set of functions has been built to demonstrate
some of problems and possible solutions in the design and implementation of a
VCCE. The prototype has just two components in the component repository: a
display component and an operator component. Using these components it is
possible to build simple arithmetic equations of arbitrary length.

An instance of the display component has just one function (i.e. is to display
a value) and the component can be either a source or a destination component
within an equation. An instance of the operator component takes two input
values, performs one of the four simple arithmetic operations on the inputs and
calculates an output value.

The prototype illustrates three initial problems that arise in attempting to
provide a dynamic environment in which the scientist can work. The �rst is
to provide a mechanism by which the environment can discover the properties,
methods, inports and outports that a component provides at design time. The
second is to provide a mechanism that can be used to dynamically create links
between components. The third is to provide dynamic method invocation on
particular components within the environment.

The solutions to date, using the Java programming language, provide the
ability for the system to discover a component's properties at design time and
display them via a simple \Object Inspector." Thus, for a display component
the value that is set for the component is shown as an editable string, and
for an operator component the two input values are shown as editable strings,
and the operator as a selection from a \drop-down list." The system can also
dynamically create links between two components and use these links to call
\set methods" to update the properties of a given component instance.

5.3 The Implementation of MDS-PSE

A legacy molecular dynamics simulation, written in C, has been wrapped as
a distributed application using CORBA. The simulation code is parallel and
uses MPI for interprocess communication. The wrapped verison of the code has
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been used as the basis for a prototype PSE for molecular dynamics simulations
(MDS-PSE). When a user submits input data using MDS-PSE simulation results
are returned to them. The user does not need to download the MDS-PSE
application, and does not need to know where the simulation application runs
or what programming language is used in the legacy code.

5.3.1 The MDS-PSE Architecture

Figure 6 illustrates the architecture of the MDS-PSE. Java IDL is used as the
fundamental infrastructure for de�ning component interfaces in MDS-PSE. Java
IDL is a CORBA compliant ORB shipped with JDK1.2. The Wrapper converts
the legacy code in the server node to a CORBA object. It is responsible for
communication with the legacy code through a shared �le and provides services
to the client. Since the operations performed in MDS-PSE are known at compile
time, the client invokes the Wrapper through an IDL stub on the client side and
an IDL skeleton on the server side. Using CORBA, the client can submit input
simulation data and wait for simulation results without knowing the location of
the wrapper and the exact implementation of the simulation.

ORB

IDL compiler

Shared File

Client node Server node

Client

IDL stub

ORB IDL Legacy code

Wrapper

IDL skeleton

Figure 6: The MDS-PSE architecture.

5.3.2 The Implementation of MDS-PSE

The operations provided by the client and the wrapper in MDS-PSE are de�ned
by the IDL de�nitions in Code Segment 1. The IDL interface hides the Client
from the implementation of the wrapper and the programming language used
to implement the application.

In Code Segment 1, the service provided by theWrapper is startSimulation(),
which has two input parameters. One parameter is the reference to the Client
object, which will be used to invoke the Client in order to display simulation
results to the user. The other parameter is the input simulation data received
from the user. The service provided by the Client is displaySimulation()

which has six input parameters. The operation is used by the Client to display
simulation results. It is the IDL de�nition that hides the exact implementation
of the simulation from the user.
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module Simulation

{

interface Client{

void displaySimulation(in unsigned long a,

in float f1,in float f2,

in float f3,in float f4,in float f5);

};

interface Wrapper{

void startSimulation(in Client obj, in string SimulationParameters);

};

};

Code Segment 1. Operations de�ned through ORB IDL in MDS-PSE.

� Client

The client provides a simple graphical user interface (GUI) to the user for input.
Using the GUI, a user can input simulation parameters such as the number of
processors to be used in each co-ordinate direction. After submitting simulation
data, the user can see the simulation results such as the temperature, pressure,
and energy associated with the current con�guration of particles.

After the user submits input simulation data to the MDS-PSE, the Client
initializes the Java IDL ORB and obtains the reference WrapperRef to the
Wrapper through the Java IDL Naming Service and requests a service provided
by the Wrapper (WrapperRef.startSimulation()), as shown in Code Segment
2.

class Client{

...

ORB orb = ORB.init(args, null);

org.omg.CORBA.Object objRef =orb.resolve_initial_references("NameService");

NamingContext ncRef = NamingContextHelper.narrow(objRef);

NameComponent nc = new NameComponent("Wrapper", "");

NameComponent path[] = {nc};

Wrapper WrapperRef =WrapperHelper.narrow(ncRef.resolve(path));

WrapperRef.startSimulation(ClientRef, simulationParameters);

...

}

Code Segment 2. The Client code used to request a service provided by

the Wrapper object.

There are many steps needed to output the simulation results. Each time
data are output on the server side, the Wrapper calls back to the Client and
invokes the Client to display the simulation results to the user. The Client
connects the Client object implementation reference (ClientRef) into the ORB
and waits for requests from the Wrapper. In such a situation, the Client becomes
an object and provides services (displaySimulation()) to the Wrapper, as
shown in Code Segment 3.

class Client{

...

ClientImplementation ClientRef = new ClientImplementation();
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orb.connect(ClientRef);

...

void displaySimulation(unsigned long a,

float f1, float f2,

float f3, float f4, float f5)

{

...

}

}

Code Segment 3. The Client code used to provide a service to the

Wrapper object.

� Wrapper

The Wrapper performs two sets of functions. First, it initializes the ORB,
identi�es itself in the ORB(Wrapper) through the Java IDL naming service,
connects its implementation (WrapperRef) to the ORB, waits for the Client
request, and then invokes the MDS legacy code, as shown in Code Segment 4.
The Wrapper uses the Java Native Interface (JNI) to communicate with a C
function (NativeC()) to invoke the MDS code.

class Wrapper{

ORB orb = ORB.init(args, null);

WrapperImplementation WrapperRef = new WrapperImplementation();

orb.connect(WrapperRef);

omg.CORBA.Object objRef = orb.resolve_initial_references("NameService");

NamingContext ncRef = NamingContextHelper.narrow(objRef);

NameComponent nc = new NameComponent("Wrapper","");

NameComponent path[] = {nc};

ncRef.rebind(path, invokeServerRef);

java.lang.Object sync = new java.lang.Object();

synchronized (sync) {

sync.wait();

}

...

void startSimulation( Client obj, String SimulationParameter)

{

NativeC(String SimulationParameter);

}

...

}

Code Segment 4. The Wrapper code used to invoke the MDS legacy code.

Second, the Wrapper reads the simulation results from a shared �le and
requests the Client

(obj.displaySimulation()) to display the results to the user, as shown in
Code Segment 5.

class Wrapper{

...

readData();

obj.displaySimulation( a,f1,f2,f3,f4,f5);

...

}
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Code Segment 5. The Wrapper code used to request a service from the

Client.

6 Related Work

The current concept of a PSE for computational science has its origins in an
April 1991 workshop funded by the U.S. National Science Foundation (NSF) [13,
14]. The workshop found that the availability of high performance computing
resources, coupled with advances in software tools and infrastructure, made the
creation of PSEs for computational science a practical goal, and that these PSEs
would greatly improve the productivity of scientists and engineers. This is even
more true today with the advent of web-based technologies, such as CORBA
and Java, for accessing remote computers and databases.

A second NSF-funded workshop on Scalable Scienti�c Software Libraries and
Problem-Solving Environments was held in September 1995 [23]. This workshop
assessed the status of PSE research and made a number of recommendations for
future development. One particular recommendation was the need to develop
PSE infrastructure and tools and to evaluate these in complete scienti�c PSEs.

Since the 1991 workshop, PSE research has been mainly directed at im-
plementing prototype PSEs and at developing the software infrastructure { or
\middleware" { for constructing PSEs. Initially, many of the prototype PSEs
that were developed focused on linear algebra computations [9] and the solution
of partial di�erential equations [19]. More recently prototype PSEs have been
developed speci�cally for science and engineering applications [11, 12, 17, 25].
Tools for building speci�c types of PSEs, such as PDELab [27] (a system for
building PSEs for solving PDEs), and PSEWare [5] (a toolkit for building PSEs
focused on symbolic computations) have been developed. More generic infras-
tructure for building PSEs is also under development. This infrastructure ranges
from fairly simple RPC-based tools for controlling remote execution [1, 24], to
more ambitious and sophisticated systems, such as Legion [18] and Globus [15],
for integrating geographically distributed computing and information resources.

The Virtual Distributed Computing Environment (VDCE) developed at
Syracuse University [26] is broadly similar to the PSE software architecture
described in Sections 2 and 3. However, components in the VDCE are not hi-
erarchical, which simpli�es the scheduling of components. Also, the transfer of
data between components in VDCE is not handled using CORBA, but instead
is the responsibility of a Data Manager that uses sockets. The Application-
Level Scheduler (AppLeS) [4] and the Network Weather Service [29] developed
at the University of California, San Diego [4] are similar to the IRMS and HIS
described in Section 3, since both make use of application performance models
and dynamically gathered resource information.

Visual programming based on the speci�cation of applications and algo-
rithms with directed graphs is the basis of the Heterogeneous Network Com-
puting Environment (HeNCE) [3] and the Computationally Oriented Display
Environment (CODE) [21]. Browne et al. have reviewed the use of visual pro-
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gramming in parallel computing and compared the approaches of HeNCE and
CODE [6]. Though a similar approach is used by the VCCE described in Section
2, HeNCE and CODE were designed for use at a �ner level of algorithm design;
thus, they require a greater degree of sophistication in their design. SCIRun
[22] is a PSE for parallel scienti�c computing that also uses directed graphs to
visually construct applications and has been designed to support visual steering
of large-scale applications.

7 Discussion and Summary

This paper has described the software architecture of a problem-solving envi-
ronment for collaborative computational science and engineering. The PSE is
designed to provide transparent access to heterogeneous distributed computing
resources and is intended to enhance research productivity by making it easier
to construct, run, and analyze the results of computer simulations. A PSE may
be used for tasks such as rapid prototyping, design optimization, and detailed
analysis.

Much of the PSE infrastructure described in this paper is generic and can
be used to build PSEs for a range of applications. Thus, a PSE for a partic-
ular application domain has a tiered structure, with the lowest tier consisting
of the generic PSE infrastructure. The middle tier contains the domain-speci�c
infrastructure (components, expert assistance, input wizards, performance his-
tory database) that is needed to create a PSE for an application domain. The
upper tier contains the models (high-level components and associated input and
output data) that will be used from within the PSE.

Three key aspects of a PSE are collaborative tools, visualization, and intel-
ligence. It is these features that distinguish a PSE as a powerful environment
for research and knowledge discovery, rather than being merely a sophisticated
interface.

Collaborative working is supported in several ways within a PSE. First,
the VCCE provides a collaborative software development environment through
the concept of a web-accessible Component Repository. Second, collaborative
data analysis and exploration is supported through the cloning of user interface
components. Third, electronic notebooks and living documents are a mechanism
for sharing the results of previous simulations, and provide a research record.

Visualization is becoming increasingly important in computational science
and engineering, both as a mechanism for runtime monitoring and steering of
applications, and for post-mortem data analysis and navigation. Therefore, it is
essential that a PSE tightly integrates visualization, computation, and analysis.
This can be done using the component-based software engineering approach
upon which the VCCE is based. Using the VCCE, computation and analysis
components can be linked to user interface components that display the data
visually. It is important to make the mode of visualization \resource aware."
Thus, if the visualization platform is a CAVE a fully immersive representation
of the data should be provided. If a semi-immersive 
at-panel display is used,
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the visualization should be appropriate for that platform. Finally, if a PC is
used as the visualization platform the data could be displayed using VRML, or
some other mechanism for depicting virtual reality on a PC.

\Intelligence" is important for ensuring the PSE is easy to use and eÆcient,
and is incorporated into the PSE in a number of ways. The Expert Assistant
provided in the VCCE helps users to locate and use components using deci-
sion tree and/or rule-based approaches. The Input Wizard checks that the
input provided to an application does not violate any physical or algorithmic
constraints. Lastly, the IRMS can use information from previous runs of an ap-
plication or component to make scheduling decisions. This approach can make
use of intelligent methods, such as genetic algorithms and neural networks.

PSEs have the potential to fundamentally change how computational re-
sources, instrumentation, and people interact in doing research. Although some
interesting PSEs are now beginning to emerge, research into PSEs of the type
described in this paper is still at an early stage in many areas. It is hoped
that PSE research will lead to the adoption of software standards that in turn
will provide the basis on which PSE infrastructure can be based. The Common
Component Architecture is one such standardization e�ort [2].
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