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Abstract

The 1990s are seeing the explosive growth of the Internet and Web-based information
sharing and dissemination systems. The Internet is also showing a potential of forming of
a supercomputing resource out of networked computers. Metacomputing on the Internet
often works in a machine-centric “pull” execution model. That is, a coordinator machine
maintains a pool of tasks and distributes the tasks to other participants on demand. This
paper proposes a novel mobile agent based “push” methodology from the perspective of
applications. In the method, users declare their compute-bound jobs as autonomous
agents. The computational agents will roam on the Internet to find servers to run. Since
the agents can be programmed to satisfy their goals, even if they move and lose contact
with their creators, they can survive intermittent or unreliable network connection. Dur-
ing their lifetime, the agents can also move themselves autonomously from one machine
to another for load balancing, enhancing data locality, and tolerating faults.

We present an agent-oriented programming and resource brokerage infrastructure,
TRAVELER, in support of wide area parallel applications. TRAVELER provides a mecha-
nism for clients to wrap their parallel applications as mobile agents. It allows clients to
dispatch their computational agents via a resource broker. The broker forms a parallel
virtual machine atop servers to execute the agents. TRAVELER relies on an integrated dis-
tributed shared array runtime system to support agent communications on clusters of
servers. We demonstrated the feasibility of the TRAVELER in parallel sorting and LU fac-
torization problems.

Keywords:  Mobile agents, global computing, metacomputing, parallel computing, push
technology, Traveler
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1 Introduction
The 1990s are seeing the explosive growth of Internet and Web-based information sharing and dissemina-
tion systems.  The Internet is also showing a potential of forming a giant computing resource out of net-
worked computers.  This potential was recently demonstrated in parallel applications like cracking messages
encoded by 56-bit DES algorithms in 1998 [9] and finding the first million digit prime in 1999 [29]. The
applications were mostly run in a brute force parallel search model.  That is, one machine maintains a pool
of parallel tasks and dispatches these tasks to other participants on demand. It is essentially a on-demand
“pull” execution model. There were Web-based metacomputing infrastructures, such as Charlotte of NYU
[2], Javelin of UCSB [8], and Bayanihan of MIT [30], which advanced the “pull” execution model by taking
advantage of the latest Web technologies. The infrastructures allow users to define tasks as Java applets and
post them in WWW homepages. Prospective servers shall access the homepages and download the task
applets for execution in their secure browsing environments. Relying on voluntary participants, the “pull”
execution model works well for applications that are of common interest to the Internet community. How-
ever, it cannot provide any guarantee of the service quality from the perspective of end users.  To harness the
computational power of the Internet for general applications, a well defined global computing infrastructure
is necessary to facilitate resource registrations and utilization.

The idea of harnessing computational power of networked computers is not new.  It has long been an
active area of research.  Job scheduling systems have covered a wide range of needs, from traditional batch
job queuing, to load sharing, and cycle stealing; see [18] for an excellent review of leading packages. There
were also parallel programming environments that provided task scheduling, load balancing, and even fault
tolerant services in support of parallel applications on clusters [3][26].  Internet-based global computing is a
natural extension of LAN-based cluster computing. Its objective is to seamlessly integrate networked com-
puters to form a computational grid so as to provide dependable, consistent, pervasive, and inexpensive ac-
cess to high-end computational capacities on the Internet [10]. Unlike cluster computing where users have
access, in a dedicated or multi-programmed mode, to all cluster-wide resources and are able to perform
privileged operations, global computing shall assume clients run their codes on virtually any machines
(servers) and prepare servers to execute programs from anonymous users. The Internet is characteristic of
unreliable connection and unpredictable traffic on link. Global computing infrastructures shall also provide
programs a reliable and adaptive execution environment on the Internet.

Anonymous accessibility raises many concerns in the construction of a wide area parallel computing in-
frastructure.  Of the foremost is security and interoperability.  Since machines in different administrative
domains do not necessarily trust one another, the infrastructure needs to protect servers against potentially
hostile actions of client codes under execution and the client codes against tampering attempts by the exe-
cuting server [7]. Although few solutions are able to protect computation integrity and privacy of the client
codes from servers, recent advent of secure languages like Java ensures the server security by restricting the
alien codes to be executed in a secure sandbox. Due to its maturing security framework and strong “write-
once-run-everywhere” commitment, Java has widely been recognized as one of the major programming
tools for global computing on the Internet. There is also increasing effort to advance Java for high perform-
ance computing; see [13] for the latest workshop devoted to this topic.

Java-based parallel global computing relies on an easy-to-use programming paradigm and a high per-
formance execution model that can adapt to the uncertainty of the Internet. In this paper, we propose a novel
mobile agent “push” methodology for high performance computing on the Internet. An agent is a special
object type that has autonomy. Mobile agents extend the model of Java applet-like mobile codes. Like an
applet, the code for an agent can migrate across a network. But a mobile agent can also carries its state when
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it migrates.  An applet tends to move from a server to a client on demand. The “push” method allows users
to dispatch their jobs as agents and enable the agents to roam on the Internet to find servers to run. It re-
serves the logic of task distribution in the “pull” execution model and provides a way of high performance
computing from the perspective of applications. Due to the autonomy and mobility of the agents, the “push”
methodology has the following characteristics.

• Survival of intermittent or unreliable Internet connections. Traditional distributed applications rely
on reliable network connections throughout their lifetime. If the connection goes down, the client
often have to re-start the application from the beginning.  Since an agent can be programmed to
satisfy one or more goals, even if the object moves and loses contact with its creator, the infra-
structure will allow clients to dispatch computational agents into the Internet and then go off-line.
The agent will re-establish the connection to its originator and present results back when it finishes
its assigned task. Survival of intermittent connections is especially desirable for long-lasting com-
pute-bound agents.

• Adaptive and fault tolerant execution model.  Traditional client/server applications need to specify
the roles of the client and the server very precisely, based on some predicted network traffic infor-
mation, at their design time. Due to the instability of the Internet, performance of the applications
often fluctuates unpredictably. The proposed infrastructure will allow computational agents to
move themselves autonomously from one machine to another to harness the idle CPU cycles, bal-
ance the workload of machines, and enhance data locality. Persistent state associated with a mobile
agent will also help recover computational tasks from their failures.

  We present an agent-oriented resource brokerage infrastructure, TRAVELER, in support of wider-area
parallel computing. The infrastructure allows clients to dispatch their computational agents to a broker. The
broker collects workload information of registered servers via its own agent. Based on the workload distri-
bution information, the broker forms a virtual machine over available servers to execute the computational
agent.  Due to the commonplace of SMP servers and the increasing popularity of SMP clusters, TRAVELER

features multithreaded agents for high performance computing on clusters of servers.  Agents are cloned on
each server and run in single-program-multiple-data (SPMD) paradigm. Agent communication is supported
by an integrated distributed shared array run-time support system.  This paper demonstrates the feasibility of
the TRAVELER in two applications: parallel sorting and LU factorization on an ATM-connected heterogene-
ous cluster of servers.  Clients are run in a remote local area network. Although the current prototype has not
been deliberately refined for performance, benefits from parallel computing have been observed in both ap-
plications. Preliminary results were reported in [38].

The rest of the paper is organized as follows. Section 2 discusses related work with an emphasis on the
distinctive features of the Traveler. Section 3 presents the TRAVELER's architecture of mobile agents and
agent programming environments.  Section 4 presents run-time support for dynamic virtual machines on
clusters of servers. Programming interfaces to the TRAVELER are presented in Section 5.  Section 6 contains
the experimental results from a comprehensive evaluation of the TRAVELER. The paper is concluded in Sec-
tion 7 with remarks on future work.

2 Background and Related Work
Global computing is a natural extension of cluster computing. The later is rooted in systems as old as the
VAX VMS cluster [20]. Traditionally, clusters have been used to provide fault tolerant services for high
availability and to serve multiprogramming workloads for high throughput computing.  Availability clusters,
such as Microsoft SQL Server/ClusterServer [24] and Tandem NonStop Server Cluster [35], utilize mirror-
ing techniques to allow a service on one machine to “fail over” to another machine and continue operation
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upon occurrence of a hardware or operating system failure. High throughput clusters rely on job queuing and
scheduling services to harness computing power of lightly loaded computers.  Job queuing or scheduling
systems like Condor [23] covered a wide range of needs, from traditional batch queuing to load sharing and
cycle stealing. Recent research efforts were to seamlessly integrate networked computers together to form a
computational grid and to provide dependable, consistent, pervasive, and inexpensive access to high-end
computational capabilities on the Internet [10][32].

2.1 Wide Area Parallel Computing Infrastructures

A number of recent research projects were dedicated to providing programming models and a range of
services that programmers can call upon when developing wide area applications [10].  Legion [16] pro-
vided a single coherent virtual machine by addressing key issues like security, scalability, programmability,
fault tolerance, and site autonomy within a reflective object-based meta-system.  It was implemented in
Mentat programming language (MPL) and based on a customized security model.  It supported parallel ap-
plications in MPL and executes MPI and PVM programs via simulation.  By contrast, the infrastructure we
propose will be based on the platform-neutral Java programming environment and on a de facto industry
standard Java security model. It will also support multithreaded applications on clusters of symmetric multi-
processors.

Globus toolkit [11] provided a “bag of services”, including multi-party security, resource location, re-
source management (GRAM), and multiprotocol communication (Nexus) [12], while leaving programming
models to be addressed by application developers. These services complement to the agent-oriented pro-
gramming model. As a matter of fact, GRAM can be integrated into the infrastructure due to its standard in-
terface to existing Condor- and LSF-like cluster-wide resource management systems.

The infrastructure we propose shares a need for similar global parallel computing infrastructure with
“pull” model based systems. In Charlotte [2], when a program reaches a parallel step, it registers itself with
specific daemon process, which creates an applet for each parallel task and maintains a list of the applets in a
URL homepage.  Any servers can visit this homepage using browsers and download applets for execution if
they wish to donate some of its cycles.  Since parallel tasks are declared by clients, it is the computational
server that initiates parallel computation on demands. The machine-centric model provides no guarantee of
service quality from the viewpoint of applications.

In Javelin[8], servers register their CPU by visiting a broker web page and download a Java applet that
keeps in contact with the broker.  Clients submit tasks by visiting another Web page and submitting a form
to request resources.  As clients request resources, the broker maps these to the next available server, using a
simple round-robin algorithm.  The broker does not ship actual client tasks, but rather sends a URL pointer
to the tasks.  The servers then directly retrieve the chosen task from the client.  As in Charlotte, tasks are
declared as applets and maintained in an http server accessible to the computing servers.

A defining characteristic of “pull” execution model is passive. Tasks declared as Java applets are just
waiting for visits from voluntary servers. The “pull’’ model was also referred to as volunteer computing in
Bayanihan [30].  It is similar to the idea of global work stealing in Atlas [1].  Atlas provided a framework for
idle servers to steal threads from those that are busy. Unlike other Web-based global computing infrastruc-
ture, any Atlas machine can be either a server or a client and clients are closely coupled with servers. The
passive “pull” or volunteer execution model was demonstrated simple and effective for applications that
were of common interest to a group of users [9][29].  However, it cannot provide any guarantee of the serv-
ice quality from the perspective of applications. By contrast, the proposed agent-based approach will acti-
vate the tasks and enable them to locate execution resources.
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There are other types of Internet-based metacomputing infrastructures. NetSolve [6] and Ninf [31] as-
sumed that programs persistently reside on servers.  Users request services by sending data to the server,
which executes the code correspondingly and sends results back to the users.  Such network-enabled solvers
allowed users to invoke advanced numerical solution methods without having to install sophisticated soft-
ware.  In [6], the authors categorized client/server architectures into three classes: proxy computing, code
shipping, and remote computing. Proxy computing require clients to send both the code and data to servers;
code shipping stores the code on a server and requires clients to download the code on demand; remote
computing allows clients to invoke remote services by sending data to the server. In this classification, Net-
Solve and Ninf  belong to remote computing and Web-based applet-oriented systems like Javelin, Charlotte,
and Bayanihan are of code shipping. The mobile agent approach goes beyond the way of proxy computing
because the running state is to be migrated, together with the code and data.

All these infrastructures were intended to provide user-level services for building and running wide-
area applications.  WebOS[36] represented an effort to offer system level services for simplifying the devel-
opment of wide-area applications and improving the utilization efficiency of global resources.

2.2 Mobile Agent and Push Technologies

The word “agent”, or software agent, has found its way into a number of technologies.  It has been applied to
artificial intelligence, information gathering and services on the Internet, computer supported coordinated
work, etc[17].  Although there is no single definition of an agent, all definitions agree that an agent is essen-
tially a special software component (object) type that has autonomy.   It behaves like a human agent, work-
ing for some clients in pursuit of its own agenda. Mobile agents have their defining trait the ability to travel
from machine to machine.  When traveling, the software agent packages its code, data, and its running state
and moves to a new site.  Once arriving at a new site, the agent continues executing its code from where it
left off.

Mobile agents grew out earlier technologies of mobile codes and remote evaluation. Code mobility has
long been an active research topic in distributed systems; see [14] for a classification and comprehensive
review. Process or fine-grained thread migration concerns the transfer of user-level processes or threads
across different address spaces for load balancing, fault masking, and improving data locality. It is the
autonomy of the agents that makes high performance metacomputing different from cluster-wide proc-
ess/thread migrations.  Mobile agents extend the model of Java applet-like remote evaluation. Like an app-
let, the code for an agent can migrate across a network. But a mobile agent can also carries its state when it
migrates. An applet tends to move from a server to a client on demand. An agent can be pushed from one
machine to another on a network. This provides the agents the ability to travel and gather information at dif-
ferent sites, and negotiate with other agents on behalf of their clients [19]. This paper intends to employ mo-
bile agent technologies in a non-traditional way.  Within the infrastructure, computational tasks are defined
as agents. Instead of gathering data or servicing machines, they roam in the network from one machine to
the other to find appropriate machines to run.

Until recently, mobile agent systems were developed primarily based on research languages like Tcl,
Scheme, and Telescript. Current explosion of interest in mobile agent systems is due almost entirely to the
widespread adoption of Java. The Java virtual machine and Java’s class loading model, coupled with several
of Java other features---most importantly serialization, remote method invocation, multithreading, and re-
flection---have made building first-pass mobile agent systems a fairly simple task. During the past years,
over a dozen of Java-based agent frameworks (e.g. Voyage [28], Aglet [21], and Odyssey [15]) have been
announced for developers to choose from; see [40] for an excellent review of Java-based mobile agent
frameworks. They were pure Java implementations and based on Java remote method invocations. While



- 6 -

they have proven effectiveness in support of information retrieval, collaboration, and negotiation agents,
none of them supports multithreaded agents for high performance computing on the Internet.

Finally, we note that the “push” model, in contrast to “pull” (i.e. download or browsing), mostly re-
ferred to as push publishing in Web technology [33]. The pushing server is essentially a CGI program. It
enables content providers to create channels and associate them with particular web pages on a site. Channel
subscribers will be notified of any content change with the related pages. The agent based push execution
model goes beyond the conventional push technologies by allowing users to distribute their codes to servers
for remote execution.

3 Architecture of TRAVELER

TRAVELER relies on mobile agent technologies to realize ubiquitous global computing. Its implementation is
based Java's Remote Method Invocation (RMI) and object serialization.  The RMI system allows RPC-like
access to remote objects [34]. It supports mobile behaviors and features high performance via parallelism
and flexible security policies.

Like traditional RPC, RMI is enabled by declaring a remote interface of an object to expose its methods
to remote objects.  The following $JHQW6HUYHU interface enables clients to create agents and send them to
a server that implements the interface.

LPSRUW��MDYD�UPL�
SXEOLF��LQWHUIDFH�$JHQW6HUYHU�H[WHQGV�5HPRWH�^
����2EMHFW�H[HFXWH��$JHQW�DJHQW���WKURZV�5HPRWH([FHSWLRQ�
`

A basic implementation of the $JHQW6HUYHU is as follows.  The H[HFXWH method takes the agent ob-
ject and starts the execution of the object. RMI provides for secure channels including encrypted sockets
between client and server. It also uses built-in Java security mechanisms to protect servers from possible
attacks by untrusted clients.  It is realized by installing a security manager before exporting any server object
or invoking any method on a server.  RMI provides a 50,6HFXULW\0DQDJHU type that is as restrictive as
those used for applets.  Each server can also define and install its own security manager object to enforce
different security constraints. For example, a server can open a WPS directory for agent to store intermediate
results. The server should also allow alien agents to open connections to the broker and the servers of the
same virtual machine

LPSRUW��MDYD�UPL��
LPSRUW��MDYD�UPL�VHUYHU��
SXEOLF�FODVV�$JHQW6HUYHU,PSO�LPSOHPHQWV�$JHQW6HUYHU�^
����SXEOLF�$JHQW6HUYHU,PSO���WKURZV�5HPRWH([FHSWLRQ^`
����SXEOLF�2EMHFW�H[HFXWH��$JHQW�DJHQW��WKURZV�5HPRWH([FHSWLRQ�^
��������UHWXUQ�DJHQW�H[HFXWH���
����`
����SXEOLF�VWDWLF�YRLG�PDLQ��6WULQJ�DUJV>@���^
��������6\VWHP�VHW6HFXULW\0DQDJHU��QHZ�50,6HFXULW\0DQDJHU�����
��������WU\�^
������������$JHQW6HUYHU�DV� �QHZ�$JHQW6HUYHU,PSO���
������������1DPLQJ�UHELQG���$JHQW6HUYHU���DV���
��������`�FDWFK���,2([FHSWLRQ��^`�
����`
`
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3.1 The Broker Architecture

The TRAVELER, as shown in Figure 1, is essentially an agent oriented broker system. The broker executes
trades between clients and servers and forms a parallel virtual machine out of the available servers upon re-
ceiving an agent task.  The agent is then cloned for each server. The cloned agents are run in a single-
program-multiple-data paradigm. They are executed on the virtual machine independently of the broker.
Servers of the machine can report results to the broker or directly to clients.  Notice that the system may
comprise of more than one broker. Each broker serves regional clients and servers or nation wide domain-
specific clients and servers. Brokers are organized in a hierarchical way for a wide area computational grid.

Application

1

Broker

Server

Server Server

Server

 Virtual
Machine

Client submits 
Agent to Broker

2
Broker distributes Agent
to an initial Virtual
Machine

3 Virtual Machine executes
task while communicating
with Client

VPI

Agent

Client

Agent
Task

Figure 1  Architecture of Traveler

Specifically, a client defines a computational task as an $JHQW7DVN and meanwhile creates a Virtual
Processor Interface (VPI) for communication between the client, the broker and servers.  The VPI creates a
3DUDOOHO$JHQW to wrap the $JHQW7DVN object.  The VPI then sends out the 3DUDOOHO$JHQW object to a
broker via RMI.  The broker collects states of the registered servers and forms a virtual machine out of the
servers for the 3DUDOOHO$JHQW object.  On each server, the task agent spawns threads for multiprocessing.
A monitoring agent can be created to oversee the execution of the code on the virtual machine.  Multi-
threaded agents are run on the virtual machine, supported by an integrated distributed shared array (DSA)
run-time support system. Agents communicate to one another via accessing user-defined shared regions of
distributed arrays. Servers can contact clients for input data or returning results through callback handlers
carried with the task agent.   The virtual machine is finally destroyed upon completion of the computation.

The broker constructs a virtual machine based on the workload information of registered servers. The
information can be either polled by the broker or reported by the servers.  Information polling is realized by
a normal information-collection agent. It is dispatched by the broker and is moved from server to server to
collect the workload information of servers periodically.  Since there is no agreement about a single metric
for server workload in the literature, agent-based information collector provides the broker a way to define
customized services (workload indices) from the servers.
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3.2 Client Architecture: Virtual Processor Interface

The client architecture provides user task agents with a perception of running on a machine with an unlim-
ited number of processors.  It is accomplished via a Virtual Processor Interface (VPI) class.  Each VPI object
provides a communication channel between user task agents, brokers, and parallel virtual machines.

The $JHQW interface and 3DUDOOHO$JHQW Class

User task agents are wrapped by a 3DUDOOHO$JHQW object and dispatched via a VPI.  When the object ar-
rives at a server, it spawns user task agents to each available CPU.  3DUDOOHO$JHQW objects implement a
serializable $JHQW interface. A serializable object means its internal state, excluding stack, can be sent as a
message to another Java virtual machine and be reconstructured at the remote JVM. The $JHQW interface
declares three primary abstract methods LQLWLDOL]H(), H[HFXWH(), and WHUPLQDWH(). The initialize
method creates an $JHQW object.  The H[HFXWH starts the execution of an Agent object when it reaches a
server.  The $JHQW object spawns threads to the available CPUs on the server.  The WHUPLQDWH method
stops the execution of the $JHQW object for either transfer, storage, or termination.  It suspends each of its
threads on the server.

SXEOLF�LQWHUIDFH�$JHQW�LPSOHPHQWV�6HULDOL]DEOH�^
��DEVWUDFW�SXEOLF�LQLWLDOL]H���
��DEVWUDFW�SXEOLF�H[HFXWH���
��DEVWUDFW�SXEOLF�WHUPLQDWH���
`

Virtual Processor Interface

A VPI object, extending from 8QLFDVW5HPRH2EMHFW, provides methods for synchronous or asynchronous
communication between $JHQW7DVN objects, the broker, and servers.   The VPI is run at each client,
through which agents are dispatched.

SXEOLF�FODVV�93,���H[WHQGV�8QLFDVW5HPRWH2EMHFW�LPSOHPHQWV�/LVWHQHU^
���SXEOLF�93,���^���`
���SXEOLF�9LUWXDO0DFKLQH�VHQG$JHQW�3DUDOOHO$JHQW�SD��^���`
���SXEOLF�6KDUHG$UUD\�ORRN8S$UUD\�6WULQJ�QDPH�^���`
���SXEOLF�ERROHDQ�FRPSOHWH��^���`
���SXEOLF�YRLG�ZDLW8QWLO&RPSOHWH��^���`
���SXEOLF�6WULQJ�SV���^���`
���SXEOLF�LQW�NLOO�LQW�EURNHU$JHQW�^`
���SXEOLF�V\QFKURQL]HG�YRLG�HQG$JHQW�2EMHFW�R��WKURZV�5HPRWH([FHSWLRQ^`
`

The VHQG$JHQW method packages a new 3DUDOOHO$JHQW object and submits it to the broker.  The
object contains a callback reference of a receiving server to contact its matching sender. When the broker
successfully creates a virtual machine, it returns to the VPI object the location of the Virtual Machine.  With
this information, the user task agent can interact with shared data and monitor the status of the operation, if
needed.  Method ORRN8S$UUD\ returns a reference to a 6KDUHG$UUD\ object in the virtual machine, as
shown in the subsequent section.  Methods FRPSOHWH and SV asynchronously check the status of a running
task and kill allows a client to kill its virtual machine.  Method ZDLW8QWLO&RPSOHWH will suspend the cli-
ent thread itself until the virtual machine completes the task.  The VPI object also provides a remote method
HQG$JHQW so that a virtual machine can report results and completion status.
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4 Dynamic Virtual Machine on Clusters of Servers
Throughout the lifetime of an agent, availability of the computational resources of its servers may change
with time. Servers may also stop their services due to some unexpected events. In both scenarios, the
TRAVELER’s virtual machine must be reconfigured to adapt to the change of resource supplies. It is a self-
adaptive process.  The virtual machine decides whether or not to change its configuration based on the avail-
ability of resources from the broker.  The broker should be informed of the new occupancy status once the
virtual machine has finished its reconfiguration.

4.1 Strong Mobility of Multithreaded Agents

In theory, a software agent should be able to migrate with all its state: heap, execution stack, and registers.
Since Java virtual machine does not allow a program to directly access and manipulate execution stacks for
security reasons, the execution state and program counters of the threads are not serializable. In other words,
Java-based agents are weak in mobility[14]. They are unable to carry the state of their execution stacks with
threads as they migrate.  On arrival at a new site, each thread will start over at the beginning of its UXQ()2

method. It is because of the reasons that none of the Java-based agent systems we reviewed in Section 3.2
has support for strong mobility.

While strong mobility for arbitrary Java-based agents is hardly viable without changing the Java Virtual
Machine, we propose an application-level transformation mechanism in support of multithreaded mobile
agents.  We introduce a RQ0RYH() method in the 7DVN$JHQW base class to record the execution state in a
number of Agent’s instance variables. The instance variables can be serialized and migrated with the agent.
When UXQ() is invoked to start the agent’s new life, the UXQ() method would check the instance variables to
determine where to resume. The RQ0RYH() method will be called when there is an impending serialization.
For example, in a multithreaded LU factorization code using the row-wise block decomposition approach, as
shown below, only a single instance variable is needed to keep the current pivot row if we assume no migra-
tion is allowed before an iteration sweep is finished.

3XEOLF�FODVV�OX'HPR�H[WHQGV�7DVN$JHQWV�,PSOHPHQWV�5XQQDEOH
LQW>�@�FXU3LYRW5RZ��� ��// curPivotRow, as a single element array, is to be stored in heap
GRXEOH>1@>1@�$�
SULYDWH�YRLG�OX���^
��IRU��LQW�N FXU3LYRW5RZ>�@��N�1��N�����// Migration occurs between iteration sweep
����IRU��LQW�M N����M�1��M����$>N@>M@� �$>N@>M@�$>N@>N@�
����IRU��LQW�L N����L�1��L���

IRU��LQW�M N����M�1��M���
��$>L@>M@� �$>L@>M@���$>L@>N@$>N@>M@�

����RQ0RYH��� ������// restore the value of k into curPivotRow
`
SXEOLF�YRLG�UXQ���^�OX����`

Due to the complexity in the migration of Java-based multithreaded agents, in general, we gear recon-
figured virtual machines toward to a popular bulk synchronous SPMD computational model. Such a com-
putation proceeds in phases. During each phase, agents perform calculations independently and then com-
                                                          
2 Not that UXQ() method represents the entry point for each Java thread.
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municate with their data-dependent peers. The phases are separated by global synchronization operations.
For simplicity in implementation, we restrict a virtual machine to be reconfigured only in between phases of
a computation. Since little information needs to be recorded for the computation to proceed into the subse-
quent phase, threads of an agent can be re-started easily from its limited instance variables.

  The Traveler’s virtual machine can be reconfigured in two ways:

• It moves its running agent to new servers in the case that some current servers of the virtual machine
become unavailable.  If no additional servers are available to continue the execution, the virtual machine
just transfers data.

• It changes its configuration, expanding or shrinking the size to adapt to the varying resource require-
ments of the agent or to the change of the availability of server resources.  Expanding a virtual machine
needs to duplicate the running agent in new servers.
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Figure 2 Mobile Virtual Machine Figure 3 Adaptive Virtual Machine

Details of the mobile and adaptive procedures of a virtual machine are shown in Figures 2 and 3. It
starts with a request from the virtual machine to its broker. Upon receiving a request for additional servers,
the broker checks the states of the registered servers and allocates required servers to the virtual machine, if
possible. The agent then pauses its execution in between phases of bulk synchronous computations and
clones itself for the new servers. If the request from a virtual machine is a migration to a new server (for the
purpose of enhancing data locality or fault masking), the agent running at the original machine will be killed
after it clones for the new site.  The expanding, shrinking, or migration process ends with a status report to
the broker and/or the client.

4.2 Distributed Shared Array Runtime Support

To support multithreaded agents on virtual machines, the TRAVELER implements a distributed shared array
(DSA) runtime support system, as an integral part.  It shares a common objective with Global Array [27] to
combine the better features of message passing and shared-memory for a fairly large class of regular appli-
cations.  It makes a better tradeoff between ease of programming and execution efficiency.  Due to the space
limit, we present its distinctive features in this paper. Details of the model please be referred to [39].
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The DSA system provides a transparent interface with two distributed variables, 6KDUHG$UUD\ and
6KDUHG3PW9DU, to user programmers.  The interface comprises of a collection of access primitives, includ-
ing asynchronous read and write methods.  A distributed object is created by the methods FUH�
DWH6KDUHG$UUD\ and FUHDWH6KDUHG3PW9DU of the $JHQW7DVN object.  Upon arriving at a virtual ma-
chine, the object is distributed among the local and global threads (within a server and across servers) of the
machine.  Each server owns its partition.  Accordingly, array access operations are distinguished between
local and remote. Access to any array items is through a DSA run-time support system.

The DSA support system consists of a group of threads (DSA threads) running at each server.  The
DSA threads are spawned on demand.  On receiving an access request to an item from an application thread,
the local DSA thread first determines the owner of the item according to the item index. Remote access is
implemented using Java RMI, too.  To tolerate remote access latency, the DSA support system fetches a
chunk of data items at a time and caches them on non-owner sites.  The chunk size can be variant in differ-
ent implementations.  For simplicity, we set the chunk unit as the entire partition containing the requested
item.

The DSA ensures cache coherence by deploying an invalidation scheme together with a mobile parti-
tion ownership.  A local write will spawn a DSA thread to invalidate remote copies.  The DSA thread for a
remote write will request ownership of the remote partition.  Invalidation occurs after the ownership is
granted by the current owner.  The current owner is located by tracing the ownership trail.  The invalida-
tionand mobile ownership events are transparent to applications.

To provide multistep atomic operations, DSA allows a thread to lock out other threads from accessing
an index.   When a thread has a combined read and write operation, the thread can lock out other threads
from writing in the middle of the operation.  The mutux exclusive operation can occur at either index or par-
tition level.

We conclude this section by a summary of the features of the DSA run-time support system, in com-
parison with the Global Array.  Both the DSA and GA provide a shared array programming model. How-
ever, the DSA run-time support features a thread-oriented, adaptive, and Java-based implementation.

• The DSA provides a shared addressing space to threads running over a cluster of servers.  The DSA
itself is implemented as a collection of threads which dynamically spawned on demands.  It matches
well with the server architecture and has potential to deliver higher performance than GA’s process
model.

• The DSA supports dynamic re-distribution of a 6KDUHG$UUD\ object and hence facilities masking
server faults, balancing workload, and improving data locality.

• The DSA exploits spatial and temporal localities by duplicating array partitions. Its mobile owner-
ship mechanism help improve data locality further.

• The DSA is based on platform-neural Java language and its remote array access is implemented in
Java RMI.  It enables parallel global computing.

5 The  TRAVELER  API
The DSA runtime support system provides a Java-compliant programming interface to extend multithreaded
programming to clusters. It exposes the hierarchical organization to programmers and allows programmers
to explicitly specify globally shared arrays and their distributions. It is realized by extending their codes
from the $JHQW7DVN class.
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5.1 AgentTask: A Base Class of Parallel Applications

The Agent7DVN class refers a server to the machine that has one or more processors. Parallel programs ex-
tended from the class should be supplemented with a list of servers and the number of threads to be created
at each server. In TRAVELER, the server list is provided by the broker when a DSA-based virtual machine is
formed. We designate the Thread-0 of Server-0 as the main thread.

3XEOLF�FODVV�$JHQW7DVN�LPSOHPHQWV�$JHQW�^
�6KDUHG$UUD\�FUHDWH6KDUHG$UUD\��6WULQJ�QDPH��LQW�VL]H��LQW�JUDLQ�
�6KDUHG3PW9DU�FUHDWH3PW9DU��6WULQJ�QDPH�
�YRLG�JOREDO%DUULHU��
�YRLG�ORFDO%DUULHU��
�%DUULHU�FUHDWH%DUULHU�6WULQJ�QDPH��LQW�VL]H��6WULQJ�W\SH�

�LQW�QXP6HUYHU����P\6HUYHU,'���VHW6HUYHU,'��
�LQW�QXP*OREDO7KUHDGV����QXP/RFDO7KUHDGV����P\/RFDO7KUHDG,'��

�LQW�ILOH2SHQ�6ULQJ�ILOHQDPH��FKDU�W\SH� ���UHWXUQ�D�ILOH�LG
�LQW�ILOH5HDG/LQH�LQW�ILG�
�LQW�ILOH:ULWH�LQW�ILG��6WULQJ�OLQH�

�YRLG�HQG-RE�2EMHFW�R�
�YRLG�VHW6WDWXV�6WULQJ�VWDWXV�
`

 The DSA system defines two distributed variables: 6KDUHG$UUD\ and 6KDUHG3PW9DU. The method
FUHDWH6KDUHG$UUD\() creates a 6KDUHG$UUD\ object.  It can be distributed between threads in different
ways. Currently, block decomposition is supported. The parameter JUDLQ specifies the granularity of coher-
ence for data replication.  Since Java doesn’t allow operator overloading, the DSA actually provides three
extensions of 6KDUHG$UUD\V: 6KDUHG,QW$UUD\, 6KDUHG)ORDW$UUD\, and 6KDUHG'RXEOH$UUD\.
Similarly, the object 6KDUHG3PW9DU refers to a base of shared objects of primitive type. The method FUH�
DWH3PW9DU creates shared singular variable of types 6KDUHG,QWHJHU, 6KDUHG)ORDW, and 6KDUHG'RX�
EOH for synchronization purposes. Operations over the distributed arrays and shared variables include syn-
chronous and asynchronous read and write.

The methods JOREDO%DUULHU and ORFDO%DUULHU methods provide barrier synchronization between
global threads of the entire virtual machine  (across servers) and local threads (within a server), respectively.
Programmers can also create their own barrier objects, via the method FUHDWH%DUULHU, for synchroniza-
tion between any group of threads.  The next method group returns the total number of servers of a virtual
machine, local server identifier with respect to a thread, total number of local threads within a server, thread
identifier within a server.  The information helps programmers to distribute and redistribute data between
threads. The methods regarding file read and write are for the virtual machine to contact the VPI of the run-
ning agent for input data or returning results.

5.2 An Example – Parallel Inner Product of Vectors

In TRAVELER, a user program starts with a master thread, which calls a VPI method to create an application-
specific VPI object and create a 3DUDOOHO$JHQW object to wrap a 7DVN$JHQW. 3DUDOOHO,QQHU3URGXFW,
defined in the following, is a 7DVN$JHQW��which performs inner product of a vector. The TRAVELER’s
broker will clone the agent for each server of a virtual machine. One each server, a number of threads, either
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specified by programmers or provided by the broker, will be spawned to perform the operations defined in
the run method.

import traveler.agent.*;
public class ParallelInnerProduct  extends TaskAgent {
    private int vecSize;
    private String fileName;
    private SharedFloatArray vec; // input vector
    private SharedFloatArray result; // temporary vector to store results of each thread
    public ParallelInnerProduct(String fn, int sz) {
         fileName = fn;
         vecSize = sz;
    }
    public void run() {
         vec = createSharedFloatArray(“Inner Product Vector”, vecSize);
        result = createSharedFloatArray(“Immediate Result Vec”, numServer());
        globalBarrier();
        if ( mainThread() )  read fileName to initialize the vector // mainThread is Thread-0 at Server-0
         int blkSize = vec.length/(numServer() * numLocalThread()); // Assume same thread number per server
        int myMinIndex = (myServerId() * numLocalThread() + myLocalThreadId())*blkSize;   // Assume block decomp.
        float sum = 0.0;
        for (int k = myMinIndex; k < myMinIndex + blkSize; k++)
            sum  + = vec.read(k) * vec.read(k);
        result.write(myServerId, sum);
        barrier.globalBarrier();

        if ( dsa.mainThread() ) {
            float sum = 0.0;
            for (int k = 0; k < numServer; k++)
                sum  += result.read(k);
            fileWrite( VpiStdout, sum ); // Output results to VPI at the client machine
        }
    }
}

The 3DUDOOHO,QQHU3URGXFW TaskAgent is first wrapped by 3DUDOOHO$JHQW, and then dispatched
via a VPI. The following is a method LQQHU3URGXFW93,, which establishes an application-specific VPI
object (LS9SL) and creates a 3DUDOOHO$JHQW object (SD) to wrap the task agent 3DUDOOHO,QQHU3UR�
GXFW.

public void innerProductVPI() {
     VPI ipVpi = new VPI();
     ParallelAgent pa = new ParallelAgent();
     ParallelInnerProduct ft = new ParallelinnerProduct(“Datafile”, 1000);    // Assume data is in “Datafile” and size=1000
     pa.addTask(ft);
     vpi.addAgent(pa, “Datafile”); // “Datafile” is provided to VPI for its communication with agents.
     vpi.sendAgent();
     float answer = (float[]) ipVpi.waitUntilComplete();
 }
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6 Experiments
The evaluation of the TRAVELER was done in three major aspects.  First is the time for establishing a parallel
virtual machine, including the cost of RMI.  Second is the cost of local (within a server) and remote (across
servers) data access over the DSA.  Last is about TRAVELER’s overall performance in the solution of two
applications: sorting and LU factorization.

All the experiments were conducted on on a cluster of four SUN Enterprise Servers.  One machine is 6-
way E4000 with 1.5 Gbytes of memory and the other three are 4-way E3000 with 512 Mbytes of memory.
Each processor module has one 250MHz UltraSPARCII and 4 Mbytes of cache. The machines are con-
nected by a 155 Mbs ATM switch.  We designated one 4-way machine as the broker and others for parallel
virtual machines.  Clients were run either in the same machine as the broker or in workstations of a remote
local area network.   All codes were written in Java and compiled in JDK 1.1.6.

6.1 Cost of Creating a Virtual Machine

Establishing a parallel virtual machine on a cluster of servers involves three major steps: a client submits
task agents to a broker, the broker executes trades, and the broker dispatches the agents to selected servers.
The client and broker can be run either on the same machine or on different machines.  Figure 4 shows the
overall time and a breakdown of the time for creating a virtual machine comprising up to three servers.

The time from client to broker (to Broker) and from broker to each server  (to Server 1, Server 2, and
Server 3) is basically the cost of RMI and object serialization.  We measured the round-trip time and then
took half of it.  Since the broker and servers are located in an ATM network, the cost of RMI and object se-
rialization between a pair of machines is from 20 to 27 milliseconds.

The broker overhead  (Overhead) includes the time for selecting servers, duplicating the task agent for
each server, and initializing data for the virtual machine and the waiting time for server acknowledgements.
Since each server would not acknowledge its status until it finishes thread spawn and DSA object distribu-
tion, the waiting period is actually the time required by the servers to construct a virtual machine plus one-
way RMI.  From the figure, it can be seen that the cost of RMI is still a large portion of the broker overhead.

Figure 4 Cost of Creating Virtual Machine
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Since the TRAVELER is targeted global computing on the Internet, we also experimented with remote
submission of task agents.  We set up a client in a different local area network from the broker. The two
LANs were connected by an Ethernet.  It was observed that a remote submission took about 37 to 48  milli-
seconds.  Compared with the cost for a local submission, RMI and object serialization dominate the total
cost.

6.2 Overhead of the DSA

In the second experiment, we measured the access time of an array item via the DSA within a server and
across servers.  An array of 10,000 integers was assumed to be distributed equally among the whole threads
spawned by a computational agent.

Figures 5 and 6 plot remote and local access time versus the number of threads spawned by the agent
on each server.  The figures show that a remote access takes around 5 milliseconds.  It is huge compared
with 1.7 microsecond local access time because remote data access is realized via Java RMI.  Recall that the
last experiment showed the cost of a RMI-based agent submission was between 24 to 34 milliseconds.  The
big difference between two RMI costs should be due to the complexity of the transmitted objects.  Since
RMI-based remote array access only involves primitive objects (indices and item values), their serializations
can be done quickly.  By contrast, serialization of a complicated agent object will take much longer.  The
difference between the two RMI cost also implies that object serialization dominates the cost in Java RMI.

Figure 5 Cost of Remote DSA Access Figure 6.  Cost of Local and Average DSA Access

In addition to local access time plots, there are also two plots of average access time in Figure 6.  They
were measured by scanning the whole array from the beginning to the end.  Since the partition size of each
thread decreases with the increase of the number of threads per server, the figure shows that the average ac-
cess time becomes close to local access time, in particular in the case of large partition size.  It is resulted
from the DSA’s data caching and mobile ownership strategies.

Success of the DSA mechanism also relies critical on the performance of synchronization operations.
The TRAVELER implements barrier synchronization of threads across servers by designating one of the local
application threads to communicate with remote threads.  Figure 7 plots the cost for barriers between threads
within a server and across servers as the number of thread increases.  Expectedly, the figure shows the cost
of a local barrier within a server increases with the number of threads.  Synchronization with remote threads
will cause a big jump in cost due to the overhead of remote memory access.
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Figure 7.  Cost of Barrier Synchronization

6.3 Distributed LU Factorization and Sorting

Finally, we evaluated the overall performance of the TRAVELER in the solution of two problems: odd-even
sorting and LU factorization.

Figure 8.  Timing of LU Factorization

We considered LU factorization of a 100 x 100  integer array.  It was partitioned into threads in the
simplest row-wise block decomposition way.   Figure 8 shows the total execution time on virtual machines
of one, two, and three servers as the number of threads per server increases.   From the figure, benefits from
a parallel virtual machine with multiple servers can be seen clearly.  The machine with two servers outper-
forms the others.  In each case, the machine performs best when 4 to 5 threads exist.  It is because all the
servers, except one, have four CPUs.  One server has 6 CPUs.  That is why a virtual machine with the single
6-way SMP wouldn’t saturate until 6 threads.

In the parallel sorting application, an input array was block decomposed.  Threads proceed independ-
ently over their array partitions.  They are then synchronized to combine their sorted results in parallel.  We
selected the odd-even sorting due to its simple algorithmic structure.  Figure 9 shows the total sorting time of
an array of 10,000 integers on virtual machines with one, two, and three SMPs.  The figure clearly indicates
the performance improvement due to the use of multiple servers. The breakdown of the execution time dem-
onstrates again the efficiency of TRAVELER’s thread synchronization.
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7 Concluding Remarks
In this paper, we have proposed a novel mobile agent based “push” methodology for wide area parallel
computing. In the method, clients declare their applications as mobile agents which roam on the network to
find servers to run. Since the agents can be programmed to satisfy their goals, even if they move and lose
contact with their creators, they can survive intermittent or unreliable network connection. During their life-
time, the agents can also move themselves autonomously from one machine to another for load balancing,
enhancing data locality, and tolerating faults. We have presented an agent-oriented programming and re-
source brokerage infrastructure, TRAVELER, to support wide area parallel applications. Traveler provides an
agent wrapper to simplify agent programming. Agents are dispatched to a resource broker for services.
Upon receiving an agent, the broker executes trades and forms a parallel virtual machine over available
servers to execute the computational agent. TRAVELER also provides an integrated distributed shared array
run-time support system to support agent communications on clusters of servers. Java RMI provides for se-
cure channels between clients and servers.  Its built-in security mechanisms also protect servers from possi-
ble attacks by untrusted clients.

We have demonstrated the feasibility of the TRAVELER in parallel sorting and LU factorization prob-
lems.  The broker and servers were run on a cluster of SUN Enterprise servers.   Remote clients programmed
their applications as agents by extending the TRAVELER API’s AgentTask class and submitted them via a
Virtual Processor Interface. We have evaluated the overall performance of the TRAVELER as well as the cost
of its two major components: creation of a parallel virtual machine and DSA data access. Although the cur-
rent prototype was presented as a proof-of-concept and has not been deliberately refined, benefits in per-
formance from parallel global computing have been observed in both applications. It was found that the cost
of RMI and its related object serialization were two major sources of performance loss.  Their optimization
[37] are expected to boost the overall performance of the TRAVELER further.

Future work will primarily be on refining the TRAVELER system for performance and demonstrating the
feasibility of the system with more applications. First, we will investigate the mobility of computational
agents. Due to the needs of multithreading for high performance computing on multiprocessor servers, our
focus will be on the mobility of multithreaded agents. Second, we will refine the DSA runtime system with
an implementation of variable shared granularities so as to make agent communication more efficient. Re-
cent studies explored the potential of fine-grained mobile agents [25]. We will also implement a Java
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TCP/UDP-based DSA version for a cluster of machines that belong to the same administrative domain.
Third, we will improve on the current virtual machine to support fully adaptive parallelism of bulk synchro-
nous SPMD applications.
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