
A Tale of Two Directories: Implementing

Distributed Shared Objects in Java

Maurice Herlihy
Computer Science Department

Brown University
Providence, RI 02912
herlihy@cs.brown.edu

Michael P. Warres
Sun Microsystems
mpw@east.sun.com

August 6, 1999

Abstract

A directory service keeps track of the location and status of mobile
objects in a distributed system. This paper describes our experience im-
plementing two distributed directory protocols as part of the Aleph toolkit,
a distributed shared object system implemented in Java. One protocol is
a conventional home-based protocol, in which a �xed node keeps track
of the object's location and status. The other is a novel arrow protocol,
based on a simple path-reversal algorithm.

We were surprised to discover that the arrow protocol outperformed
the home protocol, sometimes substantially, across a range of system sizes.
This paper describes a series of experiments testing whether the discrep-
ancy is due to an artifact of the Java run-time system (such as di�erences
in thread management or object serialization costs), or whether it is some-
thing inherent in the protocols themselves. In the end, we use insights
gained from these experimental results to design a new directory protocol
that outperforms both.

A preliminary version of this paper appeared in the 1999 Java Grande
Conference [1].

1 Introduction

Many distributed systems support some form of mobile object, which could be
a �le, a process, or any other data structure. A directory service allows nodes
to keep track of mobile objects. In this paper, we are primarily interested in
directories that track cached copies of shared data objects, but the techniques
described could also be applied to other kinds of mobile objects.

This paper describes our experience implementing two distributed directory
protocols as part of the Aleph toolkit [14], a distributed shared object system

1



implemented in Java. In the Aleph toolkit, as described below, a collection of
processing elements (PEs), each a Java virtual machine, share a collection of
global objects. Copies of global objects (either exclusive or shared) are cached at
PEs on demand. The directory manager package is in charge of keeping track
of each global object's cached copies, invalidating or moving them around as
needed.

We consider two alternative directory protocols.

� The home directory protocol is a conventional invalidation-based scheme
in which each global object is associated with a �xed home PE. The home
keeps track of the status and location of the object's cached copies.

� The arrow directory protocol [12] is a recently-developed protocol based
on a simple path-reversal algorithm.

This paper gives the �rst experimental comparison of the arrow and home di-
rectory protocols.

The arrow protocol was originally conceived as a way to circumvent scal-
ability problems inherent in home-based protocols, and a theoretical analysis
appears elsewhere [12]. Nevertheless, we were curious how it would perform in
practice on a relatively small-scale system, so we ran some simple distributed
benchmarks to compare the arrow protocol against the conventional home di-
rectory protocol. To our surprise, the arrow protocol outperformed the home
protocol, sometimes substantially, across a range of system sizes, and across
di�erent platforms and JDKs.

This paper describes a series of experiments devised to explain this discrep-
ancy. One hypothesis is that the di�erence is an artifact of the Java run-time
system, due to di�erent ways in which the protocols make use of potentially ex-
pensive Java constructs such as threading, object serialization, transport-level
protocols (e.g., RMI vs. UDP), etc. An alternative hypothesis is that the di�er-
ence reects inherent properties of the two protocols. In the end, we use insights
gained from these experimental results to devise a novel hybrid protocol that
combines advantages of both the home-based and arrow protocols.

2 Background: The Aleph Toolkit

The work described here was performed in the context of the Aleph toolkit [14], a
collection of Java packages that implements a platform-independent distributed
shared object system. A distributed program runs on a number of logical pro-
cessors, called Processing Elements (PEs). Each PE is a Java Virtual Machine,
with its own address space. Aleph provides the ability to start threads on re-
mote processors, and to communicate either by shared objects (with transparent
synchronization and caching), or by message-passing or by ordered reliable mul-
ticast.

Structuring a distributed system as a toolkit allows programmers to \mix-
and-match" di�erent implementations of run-time system components without

2



the need to restructure the application each time. To this end, the Aleph Toolkit
isolates the most performance-critical and application-dependent components of
the run-time system as distinct packages that can be replaced without having to
restructure higher-level applications. Within the toolkit, each of these packages
is accessible only through a Java interface, a language construct that constrains
method signatures (and indirectly functionality). The Aleph toolkit provides
one or more default implementations of these packages, and users are encouraged
to substitute their own customized implementations. When a PE is started, it
chooses at run-time which implementation to use based on run-time ags or a
con�guration �le.

Aleph encapsulates a variety of run-time services behind interfaces, but the
two that concern us here are the directory manager, in charge of managing
replicated copies of distributed shared objects, and the communication man-
ager, in charge of point-to-point message-passing. In this paper, we compare
two distinct implementations of the directory manager, one based on the home
protocol, and one based on the arrow protocol.

Within each implementationof the directory manager, point-to-pointmessage-
passing is handled by calls to the communication manager. Messages in Aleph
are modeled loosely on active messages [28]. Each message encompasses a
method and its arguments, and that method is called when the message is
received. The abstract class aleph.Message implements Serializable and
Runnable. A new message class is de�ned by extending aleph.Message, pro-
viding a void run() method to be called by the receiver. Messages sent from
one PE to another are received in FIFO order. To minimize thread manage-
ment overhead, if the programmer indicates that a message's run()method can-
not block (i.e., pause for an unpredictable duration), then that method is run
to completion before accepting the next message. Otherwise, the PE starts a
thread to execute the run() method, and immediately accepts the next mes-
sage. We currently have two implementations of the communication manager
interface, one based on UDP datagrams, and one based on Java RMI.

3 Directory Protocols

Because PEs are distinct Java virtual machines, they cannot share regular Java
objects. Aleph provides a GlobalObject class that allows PEs to share any
serializable object. The code fragment in Figure 1 shows how to create a
global object, open it, modify it, and commit the change. The methods of
the GlobalObject class do little more than call the directory manager.

We now describe the two directory protocols (and their variants). For
brevity, we omit many details. We describe each directory as if it were tracking
the location of a single object, and we focus on exclusive access.

3



GlobalObject g = new GlobalObject(new Queue());

Queue q = (Queue) g.open("w"); // acquire exclusive access

q.enq(x); // modify the object

g.release(); // commit and release

Figure 1: How to Use a Global Object

message function blocking?
RetrieveRequest ask home for object yes
RetrieveResponse grant object to PE no
ReleaseRequest invalidate cached copy yes
ReleaseResponse con�rm invalidation no

Figure 2: Home Directory Messages

3.1 The Home Directory

The home directory is a \vanilla" scheme in which each global object is asso-
ciated with a �xed PE, termed that object's \home". The home keeps track
of the number, status and location of all cached copies of that object. There
may be one read/write cached copy, or there may be multiple read-only cached
copies. If a client has a cached copy of the object, it keeps track of whether
the object is busy (in use by a local thread), and if so, whether the home has
requested the copy to be returned or invalidated.

We will illustrate this protocol by tracing how one PE can acquire exclusive
access to a global object held by another. When the client requests exclusive
access to a global object, it does the following.

1. It sends a RetrieveRequest message to the object's home.

2. The home sends a ReleaseRequestmessages to the PE holding the cached
copy, and RetrieveRequest.run() blocks.

3. At the PE holding the copy, the ReleaseRequest.run() method blocks
while the cached copy is in use. When object becomes free, the method
invalidates the copy and returns a ReleaseResponsemessage to the home
as con�rmation.

4. At the home, the blocked RetrieveRequest.run() is noti�ed, and it sends
a RetrieveResponse message containing the current object copy to the
requesting client.

Overall, acquiring exclusive access to an object requires four messages (two
blocking). The other cases (e.g., read access) are similar. Figure 2 shows a
table of message classes used by the home directory.

The home directory is simple and easy to implement, and similar schemes are
widely used in distributed shared memory (DSM) systems and shared-memory

4



node

node

node

node

node
object

Figure 3: Initial Directory State

multiprocessors([7, 9, 10, 17, 18, 21, 24]. Nevertheless, any scheme in which
an object has a �xed home su�ers from potential problems of scalability and
locality. As the number of PEs grows, or if an object is a \hot spot", that
object's home is likely to become a synchronization bottleneck, since it must
mediate all access to that object. Moreover, if a client is far from an object's
home, then it must incur the cost of communicating with the home, even if the
PE currently holding the object is nearby.

3.2 The Arrow Directory

We start with the simplest form of the protocol, postponing re�nements until
later. The arrow directory is a tree spanning all PEs. Each PE stores a directory
entry in the form of an \arrow" which can point either to itself, or to any
of its neighbors in the tree. The meaning of the link is the following: if a
PE's link points to itself, then the object either resides at that PE, or will
soon reside there. Otherwise, if the PE's link points to a neighbor, then the
object currently resides in the component of the directory tree containing that
neighbor. Informally, except for the PE that currently holds an object, a PE
knows only in which \direction" that object lies.

The entire directory protocol can be described in a single paragraph. The
directory tree is initialized so that following the links from any PE leads to
the PE where the object resides (Figure 3). To acquire exclusive access to the
object, a PE sends a Find message to the the PE indicated by its arrow, and
\ips" its arrow to point to itself (Figure 4). When a PE P whose arrow points

5



node node

Figure 4: Path Reversal at Source Node

node node

Figure 5: Path Reversal at Intermediate Node

node

shortest path

Figure 6: Path Reversal at Destination Node

6



nodeobject

A

B

nodeobject

A

B

Figure 7: Two Find requests issued concurrently

nodeobject

A

B object

A

waiting

Figure 8: B's request overtakes and diverts A's request

to Q receives a Find message from R, it immediately \ips" its arrow back to
R. If it does not have a cached copy of the object, it forwards the message to Q,
the prior target of its arrow (Figure 5). If it does have a copy, it waits until the
copy is no longer in use, and sends the object back to the originator of the Find
message. Note that the PE can send the object back directly, without further
interaction with the directory (Figure 6).

An interesting aspect of the arrow protocol is that it integrates synchroniza-
tion and navigation in a single mechanism. Figure 7 shows a directory in which
nodes A and B have issued concurrent Find requests. In Figure 8, B's request
arrives �rst, and \diverts" A's request back to B. In this way, path reversal
imposes a distributed queue structure on blocked Find requests, where each
Find is bu�ered at its predecessor's PE. When a PE releases the object, it goes
directly to the next waiting PE. This distributed queue structure is attractive
for several reasons. First, it ensures that no single PE becomes a synchroniza-
tion bottleneck. Second, if there is contention for an object, then each time that

7



0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ite
ra

tio
n 

T
im

e 
(m

ill
is

ec
on

ds
)

Number of PEs

Home Directory
Arrow Directory

Figure 9: Comparison of arrow and home directories

object is released, that PE will already have a bu�ered Find request. In the
limit, the latency of delivering Find messages is hidden by the local computa-
tion times, and the protocol's performance approaches optimal (repeated local
computation followed by direct object delivery). Finally, the queue structure
ensures locality: each Find message takes a direct path through the directory
tree to its predecessor's PE, with no detour to a home PE.

4 Experiments

The arrow directory protocol was developed as an exercise in alleviating the scal-
ability problems inherent in the home directory protocol [12]. We were curious,
however, how the two protocols compare in practice on relatively small systems
(sixteen or fewer PEs), so we implemented two versions of the Aleph directory
manager, one using the home directory, and one using the arrow directory. We
then ran some simple synthetic benchmarks to compare their performance.

We begin by describing the results of the simplest such benchmark, which
measures the time needed to for a collection of PEs to increment a shared
counter. When the program starts at PE 0, it creates and initializes the counter.
The program's main thread then proceeds in a sequence of rounds. In each
round, the main thread starts a timer, and creates and starts a remote thread
at each PE. Each thread then opens the shared counter (causing it to be moved
into the local cache), increments it, and releases it. When all threads have
completed their increments, the round ends, and the main program stops the

8



timer. The entire process is repeated one hundred times, and the average delay
across all rounds is recorded.

Times were measured in milliseconds by calls to System.currentTimeMillis().
All programs were executed using the local system's default just-in-time com-
piler. We ran tests on Sun workstations running Solaris 5.6 with JDK1.1.7A
and JDK1.2, as well as Alpha workstations running Digital Unix V 4.0 and
JDK1.1.6. The Sun workstations were linked to each other via 100MB Ether-
net, while the Alpha workstations were connected by a mixture of both 10MB
and 100MB networks. In this abstract, we focus on the Solaris numbers under
JDK1.2, but all the systems we observed behaved in essentially the same way.

We focus on the shared counter benchmark here because it is simple enough
that performance di�erences are likely to reect properties of the underlying
directory protocols. This benchmark is not compute-bound, nor does it use
multithreading. It tests the directories under fairly heavy contention, highlight-
ing inherent performance di�erences.

Our initial comparison of the two protocols appears in Figure 9. To our
surprise, we found that the arrow directory outperformed the home directory
by a signi�cant margin, across both small and medium sized PE groups. In
the remainder of this paper, we explore the reasons behind this disparity. In
particular, we were interested in determining whether the di�erence is an artifact
of the Java implementation, or whether it is a result of the di�erences in the
underlying algorithms.

4.1 Possible Java Artifacts

As shown in Figure 2, RetrieveRequest.run() blocks at the home PE if the
requested object is not immediately available. When contention for an object
is high, many threads may be blocked at the home waiting for the object to
become available. When the object does becomes available at the home, all
blocked run() methods are awakened by a call to notifyAll(). Although use
of notifyAll() (instead of notify()) is considered good programming practice
for safety reasons [19], it can result in a \thundering herd" e�ect if there are
too many threads. Only one thread can successfully claim the object, but every
blocked thread is awakened, checks the object's status, and returns to a blocked
state. This threading overhead could conceivably cause the home directory to
lag behind the arrow directory in performance, since the arrow directory does
not use as many threads.

We tested this hypothesis in two ways. First, we instrumented the home
directory to collect threading and wait queue statistics. The results indicate
that the performance disparity between the home and arrow directories is not
thread-related. Second, we reimplemented the home directory so that a message
whose run() method would block places itself on a linked list instead. Even
so, the modi�ed version still ran signi�cantly slower than the arrow directory
implementation.

Another hypothesis is that the performance lag was somehow related to fea-
tures of the underlying communication manager. To test this hypothesis, we

9



0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ot

al
 M

es
sa

ge
s

Number of PEs

Arrow Directory
Home Directory

Figure 10: Number of Messages

ran the benchmarks using two distinct communication manager implementa-
tions: one based on Java RMI and one using UDP datagrams. Although both
home and arrow directory protocols performed faster with the RMI communica-
tions manager, the home directory protocol was still comparatively slower under
both JDK 1.1.7 and JDK 1.2. Repeating the tests on Digital Unix instead of
Solaris yielded equivalent results.

Another hypothesis is that the benchmark results were somehow skewed
by the costs of object serialization (reputed to be expensive). Replacing the
built-in serialization methods associated with the Serializable interface with
hand-crafted serialization methods associated with the Externalizable inter-
face made both benchmarks run faster, but did not noticeably a�ect their rela-
tive performance.

A �nal hypothesis concerns favorable race conditions. We were concerned
that the order in which threads were created, or some similar recurring race
condition, might cause the object to traverse the arrow tree in a particularly
advantageous order, perhaps repeatedly passing the object from one PE to a
neighbor. To confound such e�ects, we reimplemented the benchmark to start
threads in a random order. This change had no e�ect on performance.

4.2 Algorithmic E�ects

Having eliminated the most plausible Java e�ects, we turned our attention to
the protocols themselves.

How many messages do the protocols send? It turns out to be useful to

10



1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F
in

d 
M

es
sa

ge
 H

op
 C

ou
nt

Number of PEs

Figure 11: Number of Hops

distinguish between the message traÆc needed to request an object, and the
message traÆc needed to retrieve an object.

The home directory usually requires two messages to request an object, one
from the originating PE to the home, and one from the home to the PE currently
holding the object. The arrow directory, by contrast, requires dmessages, where
d is the distance from the requesting PE to the object's current location. Since
our arrow protocol implementation arranges PEs in a binary tree, the longest
possible distance is 7 in a system of 16 PEs (roughly 2 logn for n PEs). One
might therefore expect the arrow protocol to have signi�cantly higher message
traÆc. In fact, it does not. As shown in Figure 10, the arrow directory generates
uniformly lower message counts. One reason is that the counter benchmark
produces enough contention to ensure that most arrow messages are quickly
\diverted" to a neighboring PE, where they queue up awaiting the object. As a
result, the actual message traÆc under the arrow protocol is substantially lighter
than one might expect. Figure 11 counts the average number of hops taken by
Find messages: even for 16 PEs, the average barely exceeds two. In summary,
the observed message traÆc needed to request an object is comparable in both
protocols, although the potential traÆc is higher in the arrow protocol.

The major performance di�erence between the two protocols concerns the
way objects are retrieved. In both protocols, even at moderate levels of con-
tention, whenever a PE releases an object, there is a waiting request for that
object. The object request latency is increasingly hidden by the alternation of
local computation and object retrieval. For this reason, the latency of request-
ing an object becomes less and less important as contention grows, and the

11



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
at

ur
at

io
n

Number of PEs

RMI
UDP

Figure 12: Saturation in arrow protocol

latency of retrieving an object becomes more and more important. In the limit,
the protocol alternates local computation and object delivery. Figure 12 shows
the percentage of times an object is released to an already waiting request. The
principal reason the arrow directory is faster is that it requires only one message
to retrieve an object, while the home protocol requires two.

5 A Hybrid Protocol

The solution to our mystery can be summarized as follows. Contrary to our
original expectations, the performance disparity between the home directory and
the arrow directory is not an artifact of the Java run-time system, it is inherent
in the protocols themselves. The home directory is (in principle) more eÆcient
at requesting an object, but the arrow directory is more eÆcient at retrieving it.
When there is contention for the object, however, request latencies are hidden
by computation and retrieval latencies, so the retrieval latency dominates.

Motivated by this observation, we designed a hybrid protocol combining the
best aspects of the home and arrow protocols. Each object has a home PE, but
the home tracks only the last PE to request access to the object. A PE requests
an object by sending a message to its home, which forwards the message to the
last PE to request that object. Requesting PEs are linked in a chain just as in
the arrow protocol. As a result, it takes two messages to request an object, and
one to retrieve it. As shown in Figure 13, the hybrid protocol outperforms both
the home and the arrow protocol.

12



0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ite
ra

tio
n 

T
im

e 
(m

ill
is

ec
on

ds
)

Number of PEs

Home Directory
Arrow Directory

Hybrid Directory

Figure 13: Comparison of home, arrow, and hybrid protocols

6 Other Benchmarks

As described above, we focus on the counter benchmarks (and its variants)
because its simplicity makes it easy to isolate algorithm e�ects. Nevertheless,
we also tested the directories under more complex benchmarks. We compared
the Home directory, the Arrow directory, a version of the Arrow directory that
also supports shared access, and the Hybrid directory, all running on eight PEs
under JDK 1.2 on Solaris. Times shown are normalized to the running time
under the Home directory.

Figure 14 shows the running time for parallel Cholesky decomposition, Fig-
ure 15 shows a parallel traveling salesman problem, and Figure 16 a parallel ray-
tracing benchmark. In each benchmark, the addition of shared access speeds up
the Arrow protocol by only a modest amount. The Hybrid protocol does poorly
on the Traveling salesman benchmark, and reasonably well on the others.

7 Discussion

We now discuss some details of our Arrow directory implementation. Each of n
PEs is given a unique index in the range 0 to n� 1. The directory is organized
as a binary tree, in a way that each PE's location in the tree can be calculated
from its index. Since our experiments were conducted on workstations within
the same local area network, we did not attempt to make the directory spanning
tree reect the underlying network topology.

13



Home Arrow Arrow R/W Hybrid

Figure 14: Cholesky Benchmark: 8 PEs

Home Arrow Arrow R/W Hybrid

Figure 15: Traveling Salesman Benchmark: 8 PEs

Home Arrow Arrow R/W Hybrid

Figure 16: Ray Tracing Benchmark: 8 PEs

14



The directory is initiated in the following \lazy" manner. When a PE creates
a global object, it places an entry in its local directory. Each remote reference to
a global object includes the identity of the PE at which it was created. When PE
opens a global object, it consults its local directory. If the object is unknown,
then the directory manager acts as if the arrow pointed toward the creating PE.
In this way, the Find message �nds its way to the object's creating PE, or to
another PE that has an entry for that object.

Each PE keeps a count of the threads that have an object locked. An object
is released only when the count reaches zero. To minimize message traÆc, local
requests take priority over remote requests.

We extended the Arrow directory protocol to support shared access in the
following way. When a PE opens an object, it speci�es shared or exclusive
access. When a Findmessage requesting shared access arrives at a node holding
an object in shared mode, the object is granted immediately, and the arrows
are ipped in the usual way. When the object is sent to the new node, however,
the message includes a list of PEs that hold the object in shared mode. Before
another PE can acquire exclusive access to the object, it must invalidate all
those shared copies.

8 Related Work

The home directory can be modi�ed to allow an object's home to move. For
example, Li and Hudak [21] proposed a protocol in which each object is initially
associated with a particular node, but as an object is moved around, it leaves a
virtual trail of forwarding pointers, starting from the original home. A limita-
tion of this approach is that many requests for an object may still go through
the original home, or end up chasing an arbitrarily long sequence of pointers.
Additionally, if the object is close but the home is far, the client may still have
to incur the large communication costs.

Distributed mutual exclusion algorithms based on path reversal include Na��mi,
Tr�ehel, and Arnold [23], Sch�onhage (as attributed by by Lynch and Tuttle [22]).
As discussed in detail elsewhere [14], none of these algorithms uses path-reversal
in the same way as the arrow protocol.

The arrow directory protocol was motivated by emerging active network
technology [20], in which programmable network switches are used to imple-
ment customized protocols, such as application-speci�c packet routing. Active
networks are intended to ensure that the cost of routing messages through the
directory tree is comparable to the cost of routing messages directly through
the network.

Small-scale multiprocessors (e.g., [13]) typically rely on broadcast-based pro-
tocols to locate objects in a distributed system of caches. Existing large-scale
multiprocessors and existing DSM systems are either home-based, or use a com-
bination of home-based and forwarding pointers [7, 9, 10, 17, 18, 21, 24].

Plaxton et al. [26] give a randomized directory scheme for read-only objects.
Peleg [25] and Awerbuch and Peleg [4] describe directory services organized

15



as a hierarchical system of subdirectories based on sparse network covers [3].
A detailed analysis of the relative asymptotic complexity of these algorithms
appears elsewhere [14].

Pioneering work on DSM systems includes Ivy [21], Munin [6], Treadmarks
[18], Midway [8], and others. Early work on language support for DSM includes
Linda [2] and Orca [5]. The early Aleph design was substantially inuenced by
experience using the Cid DSM system [24]. In Cid, as in CRL [17], an object is
constrained to be a contiguous region of memory, a restriction not well-suited
to languages such as C++ or Java where objects are typically implemented as
non-contiguous list structures.

DSM projects based on Java include Java/DSM [30], and Mocha [27]. Java/DSM
implements a parallel Java Virtual Machine (JVM) running on top of Tread-
marks [18]. The Infospheres [11] project is also based on Java, but has less of
an emphasis on shared objects. Mocha, like Aleph, provides the ability to run
threads at di�erent nodes, and to share objects among those threads, without
modi�cations to the JVM. Mocha provides a substantially di�erent API, with
an emphasis on fault-tolerance and replication. The Jini system [29] provides
Java-based support for distributed systems with a focus on \federating" dis-
tinct services. JavaParty [15] provides language support for remote objects and
threads, while Kan [16] also supports nested transactions.

References

[1] ACM Java Grande Conference. A Tale of Two Directories: Implementing
Distributed Shared Objects in Java, 1999.

[2] S. Ahuja, N. Carriero, and D. Gelernter. Linda and Friends. IEEE Com-
puter, 19(8):26{34, August 1986.

[3] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast distributed network
decompositions and covers. Journal of Parallel and Distributed Computing,
39(2):105{114, 15 December 1996.

[4] B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the
ACM, 42(5):1021{1058, September 1995.

[5] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Experience with Dis-
tributed Programming in Orca. In Proc. of the 1990 Int'l Conf. on Com-
puter Languages, pages 79{89, March 1990.

[6] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed
Shared Memory Based on Type-Speci�c Memory Coherence. In Proc. of
the Second ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming (PPOPP'90), pages 168{177, March 1990.

[7] B. Bershad, M. Zekauskas, and W.A. Sawdon. The Midway distributed
shared memory system. In Proceedings of 38th IEEE Computer Society
International Conference, pages 528{537, February 1993.

16



[8] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway Dis-
tributed Shared Memory System. In Proc. of the 38th IEEE Int'l Computer
Conf. (COMPCON Spring'93), pages 528{537, February 1993.

[9] J.B. Carter, J.K. Bennet, and W. Zwaenepoel. Implementation and per-
formance of Munin. In Proceedings of the 13th Symposium on Operating
Systems Principles, pages 152{164, October 1991.

[10] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS directories: A
scalable cache coherence scheme. In Proceedings Of The 4th International
Conference on Architectural Support for Programming Langauges and Op-
erating Systems, pages 224{234. ACM, April 1991.

[11] K. M. Chandy, A.dam Rifkin, P. Sivilotti, J. Mandelson, M. Richardson,
W. Tanaka, and Luke Weisman. A world-wide distributed system using java
and the internet. In IEEE International Symposium on High Performance
Distributed Computing (HPDC-5), August 1996.

[12] M. Demmer and M.P. Herlihy. The arrow directory protocol. In Proceed-
ings of 12th International Symposium on Distributed Computing, Septem-
ber 1998.

[13] G. Graunke and S. Thakkar. Synchronization algorithms for shared-
memory multiprocessors. IEEE Computer, 23(6):60{70, June 1990.

[14] M. Herlihy. The aleph toolkit: Support for scalable distributed shared
objects. In Proc. of the Third Int'l Workshop on Communication and Ar-
chitectural Support for Network-Based Parallel Computing (CANPC'99),
January 1999.

[15] M. Jacob, M. Phillipsen, and M. Karrenback. Javaparty, a distributed
companion to java. www.icsi.berkeley.edu/ phlipp/JavaParty.

[16] J. James and A. Singh. Design of the kan distributed object syste. Tech-
nical Report TRCS99-29, Department of Computer Science, University of
California at Santa Barbara, August 1999.

[17] K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. CRL: High-
Performance All-Software Distributed Shared Memory. In Proc. of the 15th
ACM Symp. on Operating Systems Principles (SOSP-15), pages 213{228,
December 1995.

[18] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. TreadMarks:
Distributed Shared Memory on Standard Workstations and Operating Sys-
tems. In Proc. of the Winter 1994 USENIX Conference, pages 115{131,
January 1994.

[19] Doug Lea. Concurrent Programming in Java. Addison Wesley, 1996.

17



[20] U. Legedza, D. Wetherhall, and J. Guttag. Improving the performance of
distributed applications using active networks. Submitted to IEEE INFO-
COMM, San Francisco, April 1998.

[21] K. Li and P. Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems, 7(4):321{359, November 1987.

[22] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. Technical Report MIT/LCS/TM-387, MIT Laboratory For
Computer Science, April 1987.

[23] M. Na��mi, M. Tr�ehel, and A. Arnold. A log(n) distributed mutual exclu-
sion algorithm based on path reveral. Journal of Parallel and Distributed
Computing, 34:1{13, 1996.

[24] R. S. Nikhil. Cid: A Parallel, \Shared Memory" C for Distributed-Memory
Machines. In Proc. of the 7th Int'l Workshop on Languages and Compilers
for Parallel Computing, August 1994.

[25] D. Peleg. Distance-dependent distributed directories. Information and
Computation, 103(2):270{298, April 1993.

[26] C.G. Plaxton, R. Rajaman, and A.W. Richa. Accessing nearby copies of
replicated objects in a distributed environment. In Proceedings of the 9th
Annual ACM Symposium on Parallel Algorithms and Architectures, pages
311{321, June 1997.

[27] B. Topol, M. Ahamad, and J.T. Stasko. Robust state sharing for wide area
distributed applications. Technical Report GIT-CC-97-25, Georia Institute
of Technology, Atlanta, GA, September 1997.

[28] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active
messages: a mechanism for integrated communication and computation. In
Proc. of the 19th Annual Int'l Symp. on Computer Architecture (ISCA'92),
May 1992.

[29] J. Waldo. Jini architecture overview. www.javasoft.com/products/jini-
/whitepapers/index.html, 1998.

[30] W. M. Yu and A. L. Cox. Java/DSM: a Platform for Heterogeneous Com-
puting. In ACM 1997 Workshop on Java for Science and Engineering
Computation, June 1997.

18


