
JCArray – the jCrunchTM Java Array Classes

David S. Dixon
Least Squares Software

Albuquerque, NM

ABSTRACT
In connection with jCrunchTM Lapack, Least Squares Software has developed Java array classes to
encapsulate a Fortran-like data array implementation. These classes are designed to provide 1-D
and 2-D arrays directly to Native methods while presenting the Java programmer with a useful,
well-behaved, object-oriented API. The proposed representation has much in common with other
proposals, such as JAMA1, JNL2 and NINJA3. The principal differences among these proposals
are: degree of exposure to the internal data representation; persistence; reliance on specific
implementations of Blas, Lapack, Linpack, etc.; and utility methods useful to “array jockeys”
familiar with APL, Python, etc. Design goals of the JCArray classes include providing the same
API to both pure Java and Native methods, and to support special matrices such as tri-diagonal,
banded, etc.

1 About the JCArray Classes

Three principal goals drove the design of the JCArray Class and its descendents – JCFVector,
JCDVector, JCFMatrix and JCDMatrix:

1. Provide a well-mannered Java wrapper for Fortran-like column-major numerical
arrays to be passed to Native routines. These arrays may have a number of attribute
parameters of interest to the Native procedures, such as an internal leading dimension
(lDim), offset pointers into the array (gOffset), etc. The wrappers must provide
access methods to those parameters.

2. Provide a robust framework for high-performance methods supporting the Lapack
BLAS (basic linear algebra subprograms) array operations such as multiplication,
determinants, eigenvalue calculations, systems of equation solvers, etc. The
framework must be able to support either pure Java or Native BLAS.

3. Provide easy to use methods for performing typical array operations, such as
transposing or reversing, taking a submatrix or subvector, computing a trace, etc.

2. The JCArray API

Utility methods are included to get and set all parameters, such as getRank(), getShape() and
setShape(int[]).

Class JCxVector

JCxVector objects are instantiated with

rank = 1
shape = (int[1]){length}
datatype = x (x: float for JCFVector, double for JCDVector).

Objects of this class are primarily intended to support vector operations in Native Fortran.
Additionally, they are the receptacle objects for row, column, and diagonal slicing operations in
the JCxMatrix classes.

Terse example:

JCFVector v = new JCFVector(3); // instantiate an empty,
 // 3-element float vector

Verbose example:

double[] d = new double[] {1.0, 2.0, 3.0, 4.0};

JCDVector v = new JCDVector(d, // data array
4, // array length
1, // leading dimension (lDim)
0, // global offset (gOffset)
1, // index origin (indexOffset)
1) // global spacing (gStep)

There is a copy constructor, called by the clone() method, which makes a deep copy of the
JCxVector object. That is, the underlying array data[] is copied from one object to the other.

Deep copying (COPY) is the default mode, but some methods support a NOCOPY mode. These
methods return a pointer to the original data array, and may set the gOffset to point to a subset
(subVector) within the array. These methods are intended to support extremely large data
arrays for which time and memory constraints make multiple copies prohibitive.

JCxVector methods which support the NOCOPY mode include: getDataNoCopy(),
setDataNoCopy(double[]) , subVectorNoCopy(int, int), and transposeNoCopy().

Utility methods are included to get and set all parameters, such as v.getSize(),
, etc.

Class JCxMatrix

JCxMatrix objects are instantiated with

rank = 2,
shape = (int[2]){mrows, ncols} and
datatype = x (x: float for JCFMatrix, double for JCDMatrix).

The constructors range from terse and simple to verbose, setting dimensions, offsets, and data
array.

 Terse example:

JCDMatrix m = new JCMatrix(4,4); // instantiate an empty,
 // 4x4 double matrix

Verbose example:

float[] f = new float[] {1.0, 3.0, 2.0, 4.0);

JCFMatrix m = new JCFMatrix(m, // data array
2, // row count (mrows)
2, // column count (ncols)
1, // leading dimension (lDim)
0, // global offset (gOffset)
0, // row index origin (rowOffset)
1) // column index origin (colOffset)

Utility methods are included to get and set all parameters, such as m.getShape(),
m.getRowCount(), m.setLDim(int), etc.

Deep copying (COPY) is the default mode, but some methods support a NOCOPY mode. These
methods return a pointer to the original data array, and may set the gOffset to point to a subset
(subMatrix) within the array. These methods are intended to support extremely large data
arrays for which time and memory constraints make multiple copies prohibitive.

JCxMatrix methods which support the NOCOPY mode include: getColNoCopy(int),
getDataNoCopy(), setDataNoCopy(double[]) , subMatrixNoCopy(int, int), and
transposeNoCopy().

There are print() methods (also from Jama[1]):

m.print(10,3);

1.000 2.000

these distinctions have come about because either a) some high-performance algorithms can only
be performed on certain types of matrices, or b) especially large sparse matrices of these types
can be more compactly stored (packed). To reduce confusion over the words type and class, in
JCArray parlance the symmetry class is called the matrix form (i.e. general, diagonal, symmetric,
triangular) while the packing is called storage format (i.e. conventional, band, or packed). A
JCxMatrix object has an integer vector storageFormat[] the zeroeth element of which gives the
form and storage format, the remaining elements specifying parameters of the storage format.
For example, a general matrix has a one-element

storageFormat[] = int[]{JCxMatrix.GENERAL}.

A band matrix with two lower subdiagonals and one upper subdiagonal would have a three-
element

storageFormat[] = int[]{JCxMatrix.GENERAL_BAND,2,1} .

The storageFormat is set at instantiation from constructor arguments and can only be changed
by methods that determine if the internal data meet the criteria for the requested form and storage
format. If not, a new object will have to be instantiated with the desired form and storage
format. Although JCArray Rev. 1.1 supports only GENERAL matrices (general form,
conventional storage format), future releases will support all matrix types in Lapack.

4. Matrix operations and BLAS
The jCrunchTMLapack library contains low-level Java classes for both pure Java and
NativeBroker Blas. The jCrunch line will be expanded to include high-level wrappers which
manage all the Fortran-like details of the low-level classes, providing a pure object-oriented API.
The jCrunch wrappers are designed to be easily adapted to custom Blas packages, taking
advantage of high-performance, and application- or platform-tuned products. At that time, the
JCArray classes will be enhanced to include the high-level Blas methods for array products,
rotations, etc. In the meantime, the Numerics Working Group of the Java Grande Forum is
completing proposals for a Java Array class which will include a standard API for array
arithmetic. The JCArray classes will implement the standard API as arithmetic operations are
added.

5. Relationship to JAMA, JNL, and NINJA

A joint proposal of The MathWorks and the National Institute of Standards and Techcnology
(NIST), JAMA instantiates matrix objects with a two-dimensional Java array as the internal

Blas-like computations in the class reduces the generality of a matrix object.

The JNL array classes from Visual Numerics, Inc. are made up entirely of static classes acting on
Java one-dimensional and two-dimensional arrays. Thus, all array access is done via normal
Java assignment and reference. Matrix methods include basic math, determinate, various norms,
transpose, and solvers using LU factorization or QR decomposition. The package includes a
Complex class from which Java arrays of Complex objects can be built, and classes for
computation objects. For example, computating a Complex Cholesky decomposition involves
the instantiation of a ComplexCholesky object and execution of its R() method, which retains the
various solution components as private members. These members are returned via access
methods such as inverse(), condition(), determinant(), etc.

The approach to arrays in JNL is quite different from JCArray, but the computation objects are
very similar to those of jCrunch Lapack. Because JNL does all basic array operations in Java,
the bookkeeping to support a Fortran-like data representation can be done in Java.

NINJA package from the IBM Research includes a general array classes (e.g. doubleArray)
supporting up to seven- dimensional arrays, with derived classes for one-, two-, or three-
dimensional arrays (e.g. doubleArray1D, doubleArray2D, and doubleArray3D). NINJA supports
a number of subarray methods and puts a great deal of focus on Index and Range objects. Other
methods are included for transpose, permuteAxes, and reshape, but remain specific to arrays and
array characteristics.

The NINJA approach is most similar to JCArray, going so far as to allow that there may be a
column-major (i.e. Fortran-like) internal representation, but not for enough to allow that it be
specified as such. The access and manipulation methods are very similar to JCArray.

6. The Java Grande Proposed Array Class
The Numerics Working Group of the Java Grande Forum is currently completing a proposed
standard Array package for Java[5]. Many of the considerations that influenced JCArray have
been included in the proposal, including the ability to present array data in column-major order at
the Native level. Although it is unlikely the Java Array standard will include any of the special
array forms considered in JCArray, a future version of JCArray -- which will implement the Java
Array package when it is included in the Java standard -- will continue to connect the best of
Java portability to the best native array mathematics on earth.

