
Extended Semaphore Operations

S. Hodgson, N. Dunstan and I. Fris

School of Mathematical and Computer Science

University of New England

Abstract

Extended semaphores systems such as in UNIX System V are a powerful extension
of Dijkstra's semaphores. They allow e�cient solutions to a number of classic syn-
chronisation problems. UNIX semaphore operations appear to be insu�ciently well
de�ned, in particular when a semaphore is repeated in an operator. This results in
several solutions relying on assumed properties. A new semaphore operator, isem,
based on extended semaphore operators is introduced. The operator isem is clearly
de�ned, can be implemented e�ciently, and yields simple solutions to many classic
synchronisation problems.

1 Introduction

The semaphore was proposed as a simple if not the simplest and elegant synchronis-
ing mechanism for concurrent processes [7]. Despite the development of more and more
elaborate synchronisation mechanisms and concurrent programming language constructs,
semaphores continue to exist in many operating systems (such as OS2, UNIX and POSIX).
Also, the semaphore properties can be de�ned very precisely making semaphores a useful
primitive to de�ne more complicated constructs.

The practical concerns of concurrent programming led many researchers [16, 6, 4] to propose
various extensions of semaphore operations. Extended semaphore operations are intended
to provide more e�cient and transparent solutions to synchronisation problems and greater
convenience for programmers, albeit at the expense of the simplicity and elegance of the
original concept. The peak in the development of extended semaphore operations must
surely be those of UNIX System V which allow for a number of generalised operations to
be applied to an array of semaphores simultaneously. Although criticised for being too
complex [11] the UNIX System V semaphore system has been shown to be a powerful
mechanism for the scheduling of concurrent processes [13].

This paper presents further extension to the semaphore operator and continues the long
history of research stemming from Dijkstra's original concept. This research is principally

1



motivated by programming problems that arose using various versions of UNIX System
V semaphore system calls [8]. In fact, the new semaphore operator should be considered
as an improved version of the UNIX System V semaphore system. The new operator
has greater functionality, a more precise de�nition and enables more e�cient and clearer
solutions to some concurrent process synchronisation problems. After a brief discussion of
extended semaphore operations, the new semaphore operator is de�ned. The power of the
new operator is illustrated by several highly e�cient algorithms for solving some common
concurrent processing synchronisation problems.

2 Semaphore Systems

2.1 Dijkstra's Semaphores

The concept of (general) semaphore was introduced by Dijkstra in 1968 in [7]. Semaphore
s keeps a non-negative integer variable s:val and allows two atomic operations: V (s)
increases s:val by 1, while P (s) decreases it by 1, however P can only terminate if s:val > 0.
Operations P and V are atomic on the same semaphore, which means that they do not
interleave. Each operation must terminate1 before another one may start. When an
operation | such as P (s) on a semaphore whose value is 0 | cannot terminate, it is,
at least conceptually, not even started. The e�ect of this is that the process executing such
an operation is suspended. In this paper we are not interested with the details of how such
a suspension is implemented or how it is lifted. All these details are hidden in the word
\when" in the description in Figure 1.

P(s):

when s > 0

s  s - 1

V(s):

s  s + 1

Figure 1: Dijkstra Semaphores Operations

It is generally accepted that semaphores are low level primitives and thus not very suitable
for programming [19]. Nevertheless semaphores are useful for implementation of higher
level constructs, they can be used in programming languages (such as C) that do not
have any parallel constructs built in, and are also useful for multi-language programming.
When fully de�ned, semaphores can be useful in de�ning other more complex constructs
for parallel programming. Finally, semaphores are of considerable theoretical interest.

1Instead of \terminate" we equivalently say \succeed"

2



2.2 Specialised Semaphores

Synchronisation problems other than critical regions have typically very complex solu-
tions which are di�cult to understand. Consequently, a number of specialised forms of
semaphores have been proposed. The semaphore solution by Courtois et al to the readers
and writers problem prompted PP and VV operations [5] which are essentially the entry and
exit protocols for reader processes. The idea was extended to Reader/Writer semaphores
[3] with operations readP, readV, writeP and writeV. Which in turn led to Priority
semaphores [4] which generalise the readers and writers problem to one of any number of
classes of processes with di�erent priority levels. Also preemption by higher priority classes
may take place. A further specialised form manages sets of identical resources. Resource
Set semaphores [10] are initialised with the number of resources in an identical set. The
rsetP operation causes the calling process to be suspended until a resource becomes avail-
able. The process returns the unique identi�cation of the resource allocated to it. The
rsetV operation releases a resource.

2.3 Notation for Extended Semaphore Operations

There have been many extensions to Dijkstra's P/V primitives e.g. [16, 18]. We are
concerned with three extensions, essentially those which comprise the UNIX System V
semaphore operations. To describe those extensions we will use the operator (function)
�(s;m). In the operator �, s is a (generalised) semaphore and m is an integer which
extends the standard P=V operators as follows :{

� Incrementing or decrementing a semaphore by values other than 1.
When m 6= 0, �(s;m) alters the value of s by adding m. The operation succeeds if
and only if the new value of s is � 0.

Thus �(s, 1) is V(s), while �(s;�1) is P (s)

� Blocking until the semaphore value equals 0.
This operation is denoted as �(s, 0). When the value of s equals 0, the operation
�(s; 0) succeeds and does nothing, the process issuing the operation continues nor-
mally, otherwise the executing process is suspended until the value of s becomes 0.
Thus we can describe it in Figure 2.

�(s; 0) :

when s = 0

do nothing

Figure 2:

� Operating on s1; : : : ; sk semaphores simultaneously (in parallel) as an atomic opera-
tion.

3



�(s1;m1jj:::jjsk;mk) (1)

The semaphore operator in (1) succeeds i� all the component operations �(si;mi)
succeed. The process calling the function suspends until such time when all the
components succeed. By atomicity we mean that either all or none of the updates of
semaphore values are done.

2.4 UNIX Semaphore

UNIX Semaphores form a powerful and versatile synchronisation system but as space
is limited only the system call which performs semaphore operations will be discussed.
For a fuller description of UNIX semaphores see UNIX system manuals. The semaphore
operations are performed using semop(sid, ops, nops). The parameter sid speci�es an
array of semaphores, ops refers to an array of size nops which speci�es the component
operations to be executed. The component operations are speci�ed by the data structure
shown in Figure 3.

struct sembuff
ushort sem num;
short sem op;
short sem g;
g

Figure 3:

Here sem num indicates the index of the semaphore within the array, sem op is the op-
eration to be performed and sem g is used to modify the operation in ways we are not
dealing with here. The operations that may be performed are described in Table 1.

Semaphore Operations
sem op < 0 Calling process waits until semval � jsem opj

semval  semval + sem op
sem op = 0 Calling process waits until semval = 0
sem op > 0 sem val  semval + sem op

Table 1:

When using UNIX semaphores in this paper we will use function semop(s1; o1jj � � � jjsn; on)
in place of the UNIX semop system call [8, 12]. In this notation si are semaphore numbers
and oi are integers which specify the operation to be performed on the semaphore si.
For example, Dijkstra's P(s) and V(s) could be written semop(s;�1) and semop(s; 1)
respectively.

4



2.5 Issues Regarding Extended Semaphore Operations

In order to maximise the power and usefulness of extended semaphore operations two
aspects must be clari�ed. First, when several semaphores are operated on simultaneously
and all the component semaphores are di�erent then the order in which each component
operation is done is irrelevant. E.g. �(s; ajjt; b) is the same as �(t; bjjs; a). At the same
time natural and economical solutions to many synchronisation problems may be produced
by repeating a semaphore within a semaphore operator [Figures 4,12,19]. However, when
one or more semaphores are repeated within a semaphore operator the order the component
operations are executed must be de�ned. As an example consider the UNIX semaphore
implementation of an eventcounters given in Figure 4. The eventcounter [17] has two
operations

� await(s,a) suspend until the semaphore s is � a

� advance(s) increments the semaphore s by 1

await(s, a):

semop(s, -a jj s, +a)

advance(s):

semop(s, +1)

Figure 4: The Event Counter Implemented with UNIX Semaphores

Quite clearly await de�ned as in Figure 4 works only if the component operations are
attempted in the order s;�a and s;+a.

The second aspect is \fairness". Ideally all operations whatsoever, including those on
semaphores should be strongly fair . By de�nition � is strongly fair if � terminates when
ever the conditions for termination are true in�nitely often[14]. To be useful operations
on semaphores must be at least weakly fair. Again, by de�nition, � is weakly fair if �
terminates as long as the conditions for termination are true for su�ciently long time[14].

As an example consider process A executing �(s;�1jjs; 0). Clearly, this succeeds if the
value of s is 1. If the value is 2 (or more) the second component operation would suspend,
so the whole operation suspends, and s stays 2. If now another process executes �(s;�1),
it succeeds changing s to 1, and the weak fairness requires that now the process A resumes
and its � terminates too. On the other hand the value of s was never 0, so if the description
saying that A should re-try � when s = 0 is taken literally2, A stays suspended. Such an
implementation of � is thus not even weakly fair.

2A common description [ [1],[2]] says that when the �rst component si;mi that cannot be done is found
then the executing process suspends until the operation can be done.

5



2.6 Problems with UNIX System V Semaphores

In [12] N. Dunstan and I. Fris identify some poorly de�ned areas of UNIX Semaphores.
The following is a brief summary of their �ndings.

� The order component semaphore operations are executed within a semop call. It
can be assumed, but is not clearly documented, that the component operations are
executed in the order they occur in the semop call. Figures 4,12,19 rely on this
assumption.

� The degree of Atomicity of the UNIX semaphore system is unclear.

� It is assumed that UNIX semaphore are at least weakly fair, but examples have been
found showing that in some implementations semaphore operations are not always
weakly fair (see Figure 12).

The combination of the above means that it may not be possible to produce e�cient and
portable solution when using repeated occurrences of semaphores with UNIX semaphores.

3 Interval Semaphores

In this section an alternative system, Interval Semaphores, is introduced. First the Inter-
val Semaphore operator isem is de�ned. Then we show that isem overcomes the issues
discussed in Section 2.6.

3.1 Interval Semaphore Operations

The Interval Semaphore atomic operator isem for a single semaphore s is de�ned in Fig-
ure 4. The semaphore's value s:val may take any integer value including negative. The
arguments a, b, i are also arbitrary integers with a � b, a and b can also be + or - 1, to
indicate \no condition".

isem(a : s: b, i) :

when a � s � b

s s + i

Figure 5: The Interval Semaphore Operator for single semaphore

The operator de�ned in Figure 5 may be extended to operate atomically on several semaphores
simultaneously:

isem(a1 : s1 : b1; i1jj � � � jjan : sn : bn; in)

The whole operation succeeds if and only if all its components operations succeed. Dijk-
stra's V (s) can be expressed as isem(0 : s : 1; 1), while P (s) is isem(0 : s : 1;�1) The

6



operator isem overcomes the �rst di�culty of extended semaphore operations discussed in
2.5. Consider the following isem operation.

isem(a : s : b; d jj a0 : s : b0; d0) (2)

This operation terminates successfully when a � s � b and a0 � s + d � b0. Thus (2)
succeeds if and only if

max(a; a0 � d) � s � min(b; b0 � d)

In other words (2) is equivalent to isem(mx : s : mi; d + d0) where mx = max(a; a0 �
d) and mi = min(b; b0 � d). Consequently, there is no need to allow repeated use of
the same semaphore in isem3. The example in Figure 6 shows an implementation of
eventcounters using Interval Semaphores. Unlike the UNIX semaphore implementation of
the eventcounter which decreases the value of the semaphore only to increase it immediately
the Interval Semaphore solution simply suspends until s.val � t.

await(s,t):

isem(t : s : 1, 0)

advance(s):

isem(0 : s : 1, 1)

Figure 6: The Event Counter Implemented with Interval Semaphores

To overcome the second problem discussed in 2.5 we explicitly decree that isem is strongly
fair.

4 Algorithm Comparisons

In this section a collection of synchronisation problems are solved using Dijkstra's semaphores.
Then it will be shown that the extended semaphore operations of UNIX semaphores enable
simpler and more economical solution to be produced. Finally, the Interval Semaphores
operator, isem, will be used to solve the same problem.

4.1 Bounded Bu�er

4.1.1 Dijkstra's Solution

The solution in Figure 7 is a standard solution found in many books [9, 19].

3Moreover as isem(�1 : s :1; 0) is a no-operation which always completes we may, if we wish, require
that every semaphore is listed exactly once.

7



There are three semaphores: empty initialised to the size of the bu�er,
full initialised to 0, mutex initialised 1

producer: consumer:

P(empty) P(full)

P(mutex) P(mutex)

enter item take item

V(mutex) V(mutex)

V(full) V(empty)

Figure 7: A Solution to the Bounded Bu�er using Dijkstra's semaphores

4.1.2 A UNIX Solution

In the solution in Figure 7 it can be seen that all semaphore operations are in pairs and
each pair performs the same operation but on di�erent semaphores. UNIX semaphores
enable the number of system calls to be reduced by operating on the pairs of semaphores
simultaneously. The solution is outlined in Figure 8.

There are three semaphores: empty initialised to the size of the bu�er,
full initialised to 0, mutex initialised 1

producer: consumer:

semop(empty, -1 jj mutex, -1) semop(full, -1 jj mutex, -1)

enter item take item

semop(mutex, 1 jj full, 1) semop(mutex, 1 jj empty, 1)

Figure 8: A UNIX Solution to the Bounded Bu�er

The number of system calls can not be further reduced but UNIX semaphores allow a
reduction in the number of semaphores. A solution to the bounded bu�er that uses just
two semaphores is given in Figure 9.

Two semaphores: empty and full both initialised to n the size of the bu�er

producer: consumer:

semop(empty, -1 jj full, -n) semop(full, -(n+1))

enter item take item

semop(full, n+1) semop(empty, 1 jj full, n)

Figure 9: A UNIX Solution to the Bounded Bu�er using Two Semaphores

This solution is not as clear or as natural as the �rst. The added complexity is due to the

8



fact that one of the semaphores, full in this case, is used to synchronise two conditions.
Synchronisation is achieved in the following way. The producer is able to pass the entry
condition i� empty > 0 and full � n. The semaphore full will be less than n when and
only when a process is in its critical section. When a producer completes the exit protocol
full is incremented by n + 1 so that the semaphore value is equal to n plus the number
of items in the bu�er. The consumer may only pass the entry protocol when there is at
least one item to take and the critical section is free. In other words full � n+1. The exit
protocol of the consumer releases mutual exclusion by increasing full by n and increases
empty by 1.

4.1.3 Interval Semaphore Solution

One of the di�erences between semop and isem is that isem may suspend a process if a
semaphore value is not between two values. This diversity of Interval semaphores enables
the bounded bu�er to be solved with just one semaphore as given in Figure 10.

One semaphore : s initialised to the twice the size of the bu�er

producer: consumer:

isem(n+1 : s : 2n, -(n+1)) isem(n : s : 2n-1, -n)

enter item take item

isem(0 : s :1, n) isem(0 : s: 1, n+1)

Figure 10: A Interval Semaphore Solution to the Bounded Bu�er

This solution works as follows. The entry protocol to the producer subtracts (n+ 1) from
s if n + 1 � s � 2n. After a producer has accessed the bu�er s � n � 1 which prevents
other producers or consumers gaining access to the bu�er. The exit protocol adds n to s.
When the bu�er is full s = n, which prevents producers entering the bu�er. The entry
protocol of the consumer prevents entry if the bu�er is empty. i.e n � s � 2n � 1. When
this condition is meet mutual exclusion is guaranteed by subtracting n from s. The exit
protocol releases mutual exclusion and increase the number of spaces in the bu�er.

4.2 Concurrent Readers and Writers

The Concurrent Readers and Writers (CRW) Problem is a classic synchronisation problem
[15] which models access to a database. It is acceptable to have multiple processes reading
the database, but if one process is writing to the database, no other process may have
access to it. The problem is how to synchronise the reader and writer processes.

9



4.2.1 Dijkstra Semaphore Solution

A solution using Dijkstra's semaphores [15] is illustrated in Figure 11. A detailed evaluation
of Courtois et.al's solution and the solution produced using UNIX semaphores is given in
[8].

There are three semaphores: mutex, r and w all initialised to 1
and one integer shared variable `readers' initialised to 0

reader: writer:

P(mutex) P(w)

readers  readers+1 write

if reader = 1 then P(w) V(w)

V(mutex)

read

P(mutex)

readers  readers-1

if readers = 0 then V(w)

V(mutex)

Figure 11: A solution to CRW using Dijkstra's Semaphores

4.2.2 A UNIX Semaphore Solution

The solution by Fris and Dunstan [8] in Figure 12 uses one semaphore and one system call
at entry and exit for both readers and writers. A natural implementation to the readers

One semaphore rw initialised to 1

readers: writers:

semop(rw, -1 jj rw, 2) semop(rw, -1 jj rw, 0)

read write

semop(rw, -2 jj rw, 1) semop(rw, 1)

Figure 12: One UNIX semaphore solution to CRW

exit protocol would be semop(wr;�1). In some, but not all, implementations of UNIX
this simpler semop call may not release processes suspended on the entry protocol of the
Writer. Such an implementation of semaphores is not even weakly fair!

4.2.3 Interval Semaphore Solution

The algorithm using Interval Semaphores in Figure 13 uses the same logic as the solution
using UNIX semaphores. The di�erence is Interval Semaphores uses one semaphore op-
eration in the entry and exit protocols of both reader and writer. In addition as Interval

10



Semaphore are strongly fair a natural exit protocol to the reader is possible.

There is one semaphore wr initialised to 1

readers: writers:

isem(1 : wr : 1, 1) isem(1 : wr : 1, -1)

read write

isem(2 : wr : 1, -1) isem(0 : wr : 1, 1)

Figure 13: A Interval Semaphore solution to CRW

The solution in Figure 12 works in the following way: To write to the database the value
of wr must equal 1. If this condition is met the value of wr is decremented preventing any
readers or writes accessing the database. The exit protocol of the writer returns the value
of wr to 1. A process may read if a process is not writing to the database, i.e wr � 1.
When this condition is met wr is incremented preventing writers accessing the database
but allowing more readers access. The exit protocol of the reader decrements wr by 1.

4.3 The One Lane Bridge Problem

There is tra�c travelling from opposite directions at irregular intervals towards a single
lane bridge. When a car reaches the bridge it may cross the bridge if one of the two
conditions hold:-

� The bridge is empty.

� The tra�c on the bridge is travelling in the same direction.

If neither of these conditions is met the car must wait until the �rst condition is met.

4.3.1 A Dijkstra Semaphore Solution

A solution using Dijkstra semaphores is not obvious and complicated in the sense it uses
three semaphores and a shared variable with at least two �elds. The solution is given in
Figure 14.

4.3.2 A UNIX Solution to the One Lane Bridge

A natural solution to this problem requires only two UNIX semaphores and is given in
Figure 15. Apart from being more e�cient than the Dijkstra semaphore solution it is
so simple that an explanation is almost unnecessary. The two semaphores keep count of
the tra�c travelling on the bridge in each direction. To enter the bridge a vehicle must
complete its entry protocol by testing to see if the bridge is free from tra�c travelling in
the opposite direction by executing the �rst semaphore operation as written in the entry

11



Three semaphore block, mutex left, mutex right initialised to 1
and two integer shared variable left count , right count

left tra�c: right tra�c:

P(mutex left); P(mutex right)

if ( left count = 0) if( right count = 0)

left count  left count + 1 right count  right count + 1

P(block); P(block)

V(mutex left); V(mutex right)

on the bridge on the bridge

P(mutex left); P(mutex right)

if( left count = 1) if( right count = 1)

left count  left count - 1 right count  right count - 1

V(block); V(block)

V(mutex left); V(mutex right)

Figure 14: A Dijkstra's Semaphore Solution to the One Lane Bridge

Two semaphore left and right initialised to 0

left tra�c: right tra�c:

semop(right, 0 jj left, 1) semop(left, 0 jj right,1)

travelling on bridge travelling on bridge

semop(left, -1) semop(right, -1)

Figure 15: A UNIX Solution to the One Lane Bridge

protocol. If this condition is met the process increments the number of vehicles travelling
in its direction by executing the second semaphore operation in the entry protocol. Note as
the semaphores are di�erent the order the component operations are executed is relevant.
The exit protocol decreases the number of vehicles travelling on the bridge.

4.3.3 An Interval Solution to the One Lane Bridge

The Interval Semaphores solution to the One lane bridge problem is even more economical
that the UNIX solution as it may solved with one semaphore. For left tra�c to gain access

One semaphore: s initialised to 0

left tra�c: right tra�c:

isem(�1 : s : 0, -1) isem(0 : s : 1, 1)

travelling on bridge travelling on bridge

isem(�1 : s : 0, 1) isem(0 : s : 1, -1)

Figure 16: Interval Semaphore Solution to the One Lane Bridge

12



to the bridge when s � 0 . When this is true the value of s is decremented. Tra�c travelling
from the right may only gain access to the bridge when s � 0. When this condition is met
the value of s is incremented. Both exit protocols perform the opposite operation to their
respective entry protocol.

4.3.4 A Starvation Free Dijkstra Solution

The solutions to the one lane bridge given above may lead to starvation. This occurs when
tra�c from one direction is waiting to enter the bridge and tra�c from the other direction
is entering the bridge at a faster rate than is leaving it. A simple way to prevent starvation
is to stop all cars from reaching the bridge if a car is waiting to access the bridge. A
Dijkstra semaphore solution achieves this by using a new semaphore, start initialised to 1.
The semaphore start is decremented by a process before access the bridge is tested. It is
incremented back after the process has access to the bridge. Hence if a process is waiting to
access the bridge no other process may access the entry protocol of the bridge preventing
starvation. The solution is given in Figure 17.

Three semaphore block=mutex left=mutex right=start=1
Two integer shared variable left count, right count

left tra�c: right tra�c:

P(start) P(start)

P(mutex left) P(mutex right)

if ( left count = 0) if ( right count = 0)

left count  left count + 1 right count  right count + 1

P(block) P(block)

V(start) V(start)

V(mutex left) V(mutex right)

on the bridge on the bridge

P(mutex left) P(mutex right)

if( left count = 1) if( right count = 1)

left count  left count - 1 right count  right count - 1

V(block); V(block)

V(mutex left) V(mutex right)

Figure 17: Starvation Free Solution using Dijkstra Semaphores

4.3.5 A Starvation Free UNIX Solution

A starvation free UNIX solution uses logic similar to the Dijkstra semaphore solution.
Starvation is prevented in the solution shown in Figure 18 in the following way. A process
entering the bridge changes start from 1 to 0 suspending all other processes from entering
the bridge. This operation is followed by a single operation which checks that there is no

13



Three semaphores left, right initialised to 0, start initialised to 1

left tra�c: right tra�c :

semop(start, -1) semop(start, -1)

semop(right, 0 jj left, 1 jj start, 1) semop(left, 0 jj right, 1 jjstart, 1)

travelling on bridge travelling on bridge

semop(left, -1) semop(right, -1)

Figure 18: A UNIX Starvation Free Solution

opposite tra�c, increases the count of vehicles in its direction, and incrementing start back
to 1. Starvation is prevented (assuming fairness) as the execution of semop(start;�1) by,
say, a right tra�c prevents further left (and right) tra�c from entry. Thus the bridge will
eventually clear, allowing the right tra�c to proceed.

Three semaphores left and right both initialises to 1

left tra�c: right tra�c:

semop(right, -1 jj left, -1) semop(left, -1 jj right, -1)

semop(right, 0 jj right, 1 jj left, 2) semop(left, 0 jj left, 1 jj right, 2)

travelling on bridge travelling on bridge

semop(left, -1) semop(right, -1);

Figure 19: A UNIX Starvation Free Solution to the One Lane Bridge Problem using Two
Semaphores

Actually, the extra semaphore start is not necessary in the case of UNIX semaphores.
Instead, we let left and right semaphores to have values 1+number of vehicles in their par-
ticular directions. So, 1 means \no vehicles", and we use the value 0 to indicate that no
further tra�c in this direction should enter the bridge. See Figure 19. If both semaphores
have positive values further tra�c can successfully execute semop(left, -1 jj right, -1),
leaving one of the semaphores with a value of 0. If the bridge is free from tra�c travel-
ling in opposite direction the value of both semaphores are incremented by 1. Otherwise
neither of the semaphores are incremented. This causes all new processes to suspend on
semop(right;�1jjleft;�1). Hence starvation is prevented.

4.3.6 A Interval Semaphore Solution

The Interval Semaphore solution in Figure 20 is a direct transposition of the UNIX solution
given in Figure 19. It is a more economical and simpler solution as semaphores are not
repeated in any of the isem operators.

14



Two semaphores left and right both initialises to 1

left tra�c: right tra�c:

isem(1:left :1,-1 k 1:right:1, -1) isem(1:left:1,-1k 1:right :1,-1)

isem(0:right:0, 1 k 0:left:1, 2) isem(0:left:0, 1 k 0:right:1,2)

travelling on bridge travelling on bridge

isem(0:left:1, -1) isem(0:right :1, -1)

Figure 20: A Interval Semaphore Solution to the One Lane Bridge

5 Conclusions

In this paper several classic synchronisation problems where solved using various semaphore
systems. It is clear that extended semaphore operations allow us to �nd more econom-
ical solutions than those produced using Dijkstra's semaphores. It is also apparent that
by allowing a semaphore to be repeated in a UNIX Semaphore operation the economy
and clarity is increased. In addition a more natural solution may be produced. When
a semaphore is repeated in a semaphore operation the order component operations are
executed must be de�ned. As this is a poorly de�ned area of UNIX semaphores a better
de�ned semaphore operator was designed. The new semaphore operator isem has been
de�ned as atomic and strongly fair. Using isem eliminates the need to repeat a semaphore
in any semaphore operation. It should be noted that a user level prototype of the Interval
Semaphore System has been implemented and used to test our algorithms. We propose that
a kernel level implementation of Interval Semaphores replaces the current implementation
of UNIX System V semaphores.

References

[1] AT and T Unix System and user's Manual. Prentice-Hall, Englewood Cli�s, N.J,
1986.

[2] M.J. Bach. Design of the UNIX Operating System. Prentice-Hall, Englewood Cli�s,
N.J,, 1986.

[3] B.Freisleben and J.L. Keedy. On synchronizing readers and writers with semaphores.
The Computer Journal, 25(1), 1982.

[4] B.Freisleben and J.L. Keedy. Priority semaphores. The Australian Computer Journal,
pages 24{28, 1989.

[5] R.H. Campbell and A.N Habermann. The speci�cation of synchronisation by path
expressions, Springer Lecture Notes in Computing Science, 16. Springer-Verlag, 1974.

[6] R. Conradi. Some comments on concurrent readers and writers. Acta Information,
10(8):335{340, 1977.

15



[7] E.W. Dijkstra. Cooperating sequential processes. Programming Languages, pages
43{112, 1968.

[8] N. Dunstan and I.Fris. Concurrent readers and writers revisited. Technical report,
University of New England, 1992.

[9] G.J.Nutt. Centralised and Distributed Operating Systems. Prentice-Hall, 1993.

[10] K.Ramamohanrao J.L.Keedy, J.Rosenberg. On implementing semaphopres with sets.
The Computer Journal, 22(2), 1979.

[11] M.J.Rochkind. Advanced UNIX Programming. Prentice-Hall, Englewood Cli�s, N.J,,
1985.

[12] N.Dunstan and I.Fris. A tighter de�ntion of unix semaphores. In Proceedings of the
Australian UNIX Users Group Conference, Melbourne, 1992.

[13] N.Dunstan and I.Fris. Process scheduling and unix semaphores. Software Practice
and Experience, 25(10):1141{1153, 1995.

[14] N.Francez. Fairness. Springer-Verlag, 1986.

[15] F.Heymans P.J. Courtious and D.L. Parnas. Concurrent control with `readers' and
`writers'. Communications of the ACM, 14(10), 1977.

[16] L. Presser. Multiprogramming coordination. Computing Surveys, pages 21{44, 1975.

[17] D.P Reed and R.K Kanodia. Synchronisation with eventcounters and sequencers.
Communications of the ACM, 22(2):115{123, 1979.

[18] T.Agerwala. Some extended semaphore primitives. Acta Information, 10(8):171{176,
1977.

[19] A.S. Tannenbaum and A.S. Woodhull. Operating Systems Design and Implementation.
Prentice-Hall, Englewood Cli�s, N.J, 1997.

16


