
A Benchmark Suite for High Performance Java

J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty and R. A. Davey

EPCC, James Clerk Maxwell Building, The King's Buildings,

The University of Edinburgh, May�eld Road, Edinburgh EH9 3JZ,

Scotland, U.K.

email: epcc-javagrande@epcc.ed.ac.uk

Abstract

Increasing interest is being shown in the use of Java for large
scale or Grande applications. This new use of Java places
speci�c demands on the Java execution environments that
could be tested and compared using a standard benchmark
suite. We describe the design and implementation of such
a suite, paying particular attention to Java-speci�c issues.
Sample results are presented for a number of implementa-
tions of the Java Virtual Machine (JVM).

1 Introduction

With the increasing ubiquity of Java comes a growing range
of uses for the language that fall well outside its original
design speci�cations. The use of Java for large scale ap-
plications with large memory, network or computational re-
quirements, so called Grande applications, represent a clear
example of this trend. Despite concerns about performance
and numerical de�nitions an increasing number of users are
taking seriously the possibility of using Java for Grande
codes.

The Java Grande Forum (JGF) is a community initiative
led by Sun and the Northeast Parallel Architectures Center
(NPAC) which aims to address these issues and in so doing
promote the use of Java in this area. This paper describes
work carried out by EPCC in the University of Edinburgh
on behalf of the JGF to initiate a benchmark suite aimed at
testing aspects of Java execution environments, (JVMs, Java
compilers, Java hardware etc.) pertinent to Grande Appli-
cations. The work involves constructing a framework for
the benchmarks, designing an instrumentation class to en-
sure standard presentation of results, and seeding the suite
with existing and original benchmark codes.

The aim of this work is ultimately to arrive at a standard
benchmark suite which can be used to:

� Demonstrate the use of Java for Grande applications.
Show that real large scale codes can be written and
provide the opportunity for performance comparison
against other languages.

� Provide metrics for comparing Java execution environ-
ments thus allowing Grande users to make informed
decisions about which environments are most suitable
for their needs.

� Expose those features of the execution environments
critical to Grande Applications and in doing so encour-
age the development of the environments in appropriate
directions.

A standard approach, ensuring that metrics and nomencla-
ture are consistent, is important in order to facilitate mean-
ingful comparisons in the Java Grande community. The
authors are keen to invite contributions from the commu-
nity to add to the benchmark suite and comments on the
approach taken.

The remainder of this paper is structured as follows: Sec-
tion 2 gives a brief survey of related work. Sections 3 and 4
outline the methodology we adopted in designing this suite
and describe the instrumentation API. Sections 5 and 6 give
the current status of the serial part of the suite, and some
results which illustrate the existing suite in action. Section 7
outlines directions for future work, concentrating on the par-
allel part of the suite, and invites participation in this e�ort,
and Section 8 provides some conclusions.

2 Related work

A considerable number of benchmarks and performance
tests for Java have been devised. Some of these consist
of small applets with relatively light computational load,
designed mainly for testing JVMs embedded in browsers|
these are of little relevance to Grande applications. Of more
interest are a number of benchmarks [2, 7, 8, 9, 16] which fo-
cus on determining the performance of basic operations such
as arithmetic, method calls, object creation and variable ac-
cesses. These are useful for highlighting di�erences between
Java environments, but give little useful information about
the likely performance of large application codes. Other
sets of benchmarks, from both academic [5, 14, 15, 19] and
commercial [13, 17, 20] sources, consist primarily of compu-
tational kernels, both numeric and non-numeric. This type
of benchmark is more reective of application performance,
though many of the kernels in these benchmarks are on the
small side, both in terms of execution time and memory re-
quirements. Finally there are some benchmarks [3, 10, 18]
which consist of a single, near full-scale, application. These
are useful in that they can be representative of real codes,

but it is virtually impossible to say why performance di�ers
from one environment to another, only that it does.

Few benchmark codes attempt inter-language compari-
son. In those that do, (for example [16, 19]) the second
language is usually C++, and the intention is principally to
compare the object oriented features. It is worth noting a
feature peculiar to Java benchmarking, which is that it is
possible to distribute the benchmark without revealing the
source code. This may be convenient, but if adopted, makes
it impossible for the user community to know exactly what
is being tested.

3 Methodology

In this Section we discuss the principal issues a�ecting the
design of a benchmark suite for Java Grande applications,
and describe how we have addressed these issues.

For a benchmark suite to be successful, we believe it
should be:

� Representative: The nature of the computation in
the benchmark suite should reect the types of com-
putation which might be expected in Java Grande ap-
plications. This implies that the benchmarks should
stress Java environments in terms of CPU load, mem-
ory requirements, and I/O, network and memory band-
widths.

� Interpretable: As far as possible, the suite as a whole
should not merely report the performance of a Java
environment, but also lend some insight into why a
particular level of performance was achieved.

� Robust: The performance of suite should not be sensi-
tive to factors which are of little interest (for example,
the size of cache memory, or the e�ectiveness of dead
code elimination).

� Portable: The benchmark suite should run on as wide
a variety of Java environments as possible.

� Standardised: The elements of the benchmark should
have a common structure and a common `look and feel'.
Performance metrics should have the same meaning
across the benchmark suite.

� Transparent: It should be clear to anyone running
the suite exactly what is being tested.

We observe that the �rst two of these aims (representa-
tiveness and interpretability) tend to conict. To be repre-
sentative, we would like the contents of the benchmark to
be as much like real applications as possible, but the more
complex the code, the harder it is to interpret the observed
performance. Rather than attempt to meet both these ob-
jectives at once, we provide three types of benchmark, re-
ecting the classi�cation of existing benchmarks used in Sec-
tion 2: low-level operations (which we refer to as Section I
of the suite), simple kernels (Section II) and applications
(Section III). This structure is employed for both the serial
and parallel parts of the suite.

The low-level operation benchmarks have been designed
to test the performance of the low-level operations which
will ultimately determine the performance of real applica-
tions running under the Java environment. Examples in-
clude arithmetic and maths library operations, serialization,
method calls and casting in the serial part and ping-pong,

barriers and global reductions in the parallel part. The ker-
nel benchmarks are chosen to be short codes, each containing
a type of computation likely to be found in Grande appli-
cations, such as FFTs, LU Factorisation, matrix multipli-
cation, searching and sorting. The application benchmarks
are intended to be representative of Grande applications,
suitably modi�ed for inclusion in the benchmark suite by
removing any I/O and graphical components. By providing
these di�erent types of benchmark, we hope to observe the
behaviour of the most complex applications and interpret
that behaviour through the behaviour of the simpler codes.
We also choose the kernels and applications from a range of
disciplines, which are not all traditional scienti�c areas.

To make our suite robust, we avoid dependence on par-
ticular data sizes by o�ering a range of data sizes for each
benchmark in Sections II and III. We also take care to de-
feat possible compiler optimisation of strictly unnecessary
code. For Sections II and III this is achieved by validating
the results of each benchmark, and outputting any incor-
rect results. For Section I, even more care is required as
the operations performed are rather simple. We note that
some common tricks, used to fool compilers into thinking
that results are actually required, may fail in interpreted
systems where optimisations can be performed at run time.
Another potential di�culty, particularly relevant to Section
I benchmarks, is that very simple codes may fail to trigger
run-time code compilation. Typically each JVM uses some
heuristics, based on run-time statistics, to determine when
to use its just-in-time (JIT) compiler and switch from inter-
preted byte-code to a compiled version. Microbenchmarks
may therefore reect the interpreted, rather than the com-
piled, performance of the JVM. This is sometimes referred
to as the JIT warm-up problem. This e�ect may, however
also impact on larger codes. Some Grande applications may
spend a signi�cant amount of time in methods which are
called only a few times. Failure to trigger the JIT in these
cases may have a signi�cantly detrimental e�ect.

For maximum portability, as well as ensuring adherence
to standards, we have taken the decision to have no graphical
component in the benchmark suite. While applets provide
a convenient interface for running benchmarks on worksta-
tions and PCs, this is not true for typical supercomputers
where interactive access may not be possible. Thus we re-
strict ourselves to simple �le I/O.

For standardisation we have created a JGFInstrumen-
tor class to be used in all benchmark programs. This is
described in detail in Section 4.

Transparency is achieved by distributing the source code
for all the benchmarks. This removes any ambiguity in the
question of what is being tested: we do not consider it ac-
ceptable to distribute benchmarks in Java byte code form.

4 Instrumentation

4.1 Performance metrics

We present performance metrics for the benchmarks in three
forms: execution time, temporal performance and rela-
tive performance. The execution time is simply the wall
clock time required to execute the portion of the bench-
mark code which comprises the `interesting' computation|
initialisation, validation and I/O are excluded from the time
measured. For portability reasons, we chose to use the
System.currentTimeMillis method from the java.lang

package. Millisecond resolution is less than ideal for mea-
suring benchmark performance, so care must be taken that
the run-time of all benchmarks is su�ciently long that clock
resolution is not signi�cant.

Temporal performance (see [6]) is de�ned in units of op-
erations per second, where the operation is chosen to be
the most appropriate for each individual benchmark. For
example, we might choose oating point operations for a
linear algebra benchmark, but this would be inappropriate
for, say, a Fourier analysis benchmark which relies heavily
on transcendental functions. For some benchmarks, where
the choice of most appropriate unit is not obvious, we allow
more than one operation unit to be de�ned.

Relative performance is the ration of temporal perfor-
mance to that obtained for a reference system, that is a
chosen JVM/operating system/hardware combination. The
merit of this metric is that it can be used to compute the
average performance over a groups of benchmark. Note that
the most appropriate average is the geometric mean of the
relative performances on each benchmark.

For the low-level benchmarks (Section I) we do not report
execution times. This allows us to adjust the number of op-
erations performed at run-time to give a suitable execution
time, which is guaranteed to be much larger than the clock
resolution. This overcomes the di�culty that there can be
one or two orders of magnitude di�erence in performance on
these benchmarks between di�erent Java environments.

4.2 Design of instrumentation classes

Creating an instrumentation class raises some interesting
issues in object-oriented design. Our objective is to be able
to take an existing code and to both instrument it, and force
it to conform with a common benchmark structure, with as
few changes as possible.

A natural approach would be to create an abstract
benchmark class which would be sub-classed by an existing
class in the benchmark's hierarchy: access to instrumenta-
tion would be via the benchmark class. However, since Java
does not support multiple inheritance, this is not possible.
Other options include:

� Inserting the benchmark class at some point in the ex-
isting hierarchy.

� Creating an instance of the benchmark class at some
point in the existing hierarchy.

� Accessing benchmark methods as class methods.

The last option was chosen because minimal changes are
required to existing code: the benchmark methods can be
referred to from anywhere within existing code by a global
name. However, we would like, for instance, to be able to ac-
cess multiple instances of a timer object. This can achieved
by �lling a hash-table with timer objects. Each timer object
can be given a global name through a unique string.

We can force compliance to common structure to some
extent by sub-classing the lowest level of the main hierarchy
in the benchmark, and implementing a de�ned interface,
which includes a `run' method. We can then create a sep-
arate main class which creates an instance of this sub-class
and calls its `run' method. It is then straightforward to cre-
ate a main which, for example, runs all the benchmarks of a
given size in a given Section.

4.3 The JGF Benchmark API

Figure 1 describes the API for the benchmark class.
addTimer creates a new timer and assigns a name to it.
The optional second argument assigns a name to the per-
formance units to be counted by the timer. startTimer
and stopTimer turn the named timer on and o�. The ef-
fect of repeating this process is to accumulate the total time
for which the timer was switched on. addOpsToTimer adds
a number of operations to the timer: multiple calls are
cumulative. readTimer returns the currently stored time.
resetTimer resets both the time and operation count to
zero. printTimer prints both time and performance for the
named timer; printperfTimer prints just the performance.
storeData and retrieveData allow storage and retrieval of
arbitrary objects without, for example, the need for them to
be passed through argument lists. This may be useful, for
example, for passing iteration count data between methods
without altering existing code. printHeader prints a stan-
dard header line, depending on the benchmark Section and
data size passed to it.

Figure 2 illustrates the use of an interface to standardise
the form of the benchmark. The interface for Section II is
shown here; that for Section III is similar, while that for
Section I is somewhat simpler.

To produce a conforming benchmark, a new class is cre-
ated which extends the lowest class of the main hierarchy
in the existing code and implements this interface. The
JGFrun method should call JGFsetsize to set the data size,
JGFinitialise to perform any initialisation, JGFkernel to
run the main (timed) part of the benchmark, JGFvalidate
to test the results for correctness, and �nally JGFtidyup
to permit garbage collection of any large objects or arrays.
Calls to JGFInstrumentor class methods can be made ei-
ther from any of these methods, or from any methods in the
existing code, as appropriate.

5 Current Status

Currently the parallel codes are under development. The
following serial codes are available in the release version 2.0.

5.1 Section I: Low Level Operations

Arith Measures the performance of arithmetic operations
(add, multiply and divide) on the primitive data types
int, long, oat and double. Performance units are ad-
ditions, multiplications or divisions per second.

Assign Measures the cost of assigning to di�erent types of
variable. The variables may be scalars or array ele-
ments, and may be local variables, instance variables
or class variables. In the cases of instance and class
variables, they may belong to the same class or to a
di�erent one. Performance units are assignments per
second.

Cast Tests the performance of casting between di�erent
primitive types. The types tested are int to oat and
back, int to double and back, long to oat and back,
long to double and back. Performance units are casts
per second. Note that other pairs of types could also
be tested (e.g. byte to int and back), but these are too
amenable to compiler optimisation to give meaningful
results.

public class JGFInstrumentorf
// No constructor
// Class methods

public static synchronized void addTimer(String name);
public static synchronized void addTimer(String name, String opname);
public static synchronized void startTimer(String name);
public static synchronized void stopTimer(String name);
public static synchronized void addOpsToTimer(String name, double count);
public static synchronized double readTimer(String name);
public static synchronized void resetTimer(String name);
public static synchronized void printTimer(String name);
public static synchronized void printperfTimer(String name);
public static synchronized void storeData(String name, Object obj);
public static synchronized void retrieveData(String name, Object obj);
public static synchronized void printHeader(int section, int size);

g

Figure 1: API for the JGFInstrumentor class

public interface JGFSection2 f
public void JGFsetsize(int size);
public void JGFinitialise();
public void JGFkernel();
public void JGFvalidate();
public void JGFtidyup();
public void JGFrun(int size);

g

Figure 2: Interface de�nition for Section II

Create This benchmark tests the performance of creating
objects and arrays. Arrays are created for ints, longs,
oats and objects, and of di�erent sizes. Complex and
simple objects are created, with and without construc-
tors. Performance units are arrays or objects per sec-
ond.

Exception Measures the cost of creating, throwing and
catching exceptions, both in the current method and
further down the call tree. Performance units are ex-
ceptions per second.

Loop This benchmark measures loop overheads, for a sim-
ple for loop, a reverse for loop and a while loop. Per-
formance units are iterations per second.

Serial Tests the performance of serialization, both writing
and reading of objects to and from a �le. The types
of objects tested are arrays, vectors, linked lists and
binary trees. Results are reported in bytes per second.

Math Measures the performance of all the methods in the
java.lang.Math class. Performance units are opera-
tions per second. Note that for a few of the methods
(e.g. exp, log, inverse trig functions) the cost also in-
cludes the cost of an arithmetic operation (add or mul-
tiply). This was necessary to produce a stable iteration
which will not overow and cannot be optimised away.
However, it is likely the the cost of these additional op-
erations is insigni�cant: if necessary the performance

can be corrected by using the relevant result from the
Arith benchmark.

Method Determines the cost of a method call. The meth-
ods can be instance, �nal instance or class methods,
and may be called from an instance of the same class,
or a di�erent one. Performance units are calls per sec-
ond. Note that �nal instance and class methods can be
statically linked and are thus amenable to inlining. An
infeasible high performance �gure for these tests gener-
ally indicates that the compiler has successfully inlined
these methods.

5.2 Section II: Kernels

Series Computes the �rstN Fourier coe�cients of the func-
tion f(x) = (x + 1)x on the interval 0,2. Perfor-
mance units are coe�cients per second. This bench-
mark heavily exercises transcendental and trigonomet-
ric functions.

LUFact Solves an N � N linear system using LU factori-
sation followed by a triangular solve. This is a Java
version of the well known Linpack benchmark [4]. Per-
formance units are Mops per second. Memory and
oating point intensive.

HeapSort Sorts an array of N integers using a heap sort
algorithm. Performance is reported in units of items
per second. Memory and integer intensive.

SOR The SOR benchmark performs 100 iterations of suc-
cessive over-relaxation on an N � N grid. The per-
formance reported is in iterations per second. Array
access intensive.

Crypt Performs IDEA (International Data Encryption Al-
gorithm [11]) encryption and decryption on an array
of N bytes. Performance units are bytes per second.
Bit/byte operation intensive.

FFT This performs a one-dimensional forward transform
of N complex numbers. This kernel exercises complex
arithmetic, shu�ing, non-constant memory references
and trigonometric functions.

Sparse This uses an unstructured sparse matrix stored
in compressed-row format with a prescribed sparsity
structure. This kernel exercises indirection addressing
and non-regular memory references. An N �N sparse
matrix is multiplied by a dense vector 200 times.

5.3 Section III: Applications

Euler Solves the time-dependent Euler equations for ow
in a channel with a \bump" on one of the walls. A
structured, irregular, N � 4N mesh is employed, and
the solution method is a �nite volume scheme using
a fourth order Runge-Kutta method with both second
and fourth order damping. The solution is iterated
for 200 timesteps. Performance is reported in units of
timesteps per second.

MonteCarlo A �nancial simulation, using Monte Carlo
techniques to price products derived from the price of
an underlying asset. The code generates N sample time
series with the same mean and uctuation as a series
of historical data. Performance is measured in samples
per second.

MolDyn A simple N-body code modelling the behaviour
of N argon atoms interacting under a Lennard-Jones
potential in a cubic spatial volume with periodic
boundary conditions. The solution is advanced for
100 timesteps. Performance is reported in units of
timesteps per second.

Search Solves a game of connect-4 on a 6 x 7 board using a
alpha-beta pruned search technique. The problem size
is determined by the initial position from which the
game in analysed. The number of positions evaluated,
N , is recorded, and the performance reported in units
of positions per second. Memory and integer intensive.

RayTracer This benchmark measures the performance of a
3D ray tracer. The scene rendered contains 64 spheres,
and is rendered at a resolution of N � N pixels. The
performance is measured in pixels per second.

6 Results

The benchmark suite has been run on a number of di�er-
ent execution environments on two di�erent hardware plat-
forms. The following JVMs have been tested on a 200MHz
Pentium Pro with 256 Mb of RAM running Windows NT:

� Sun JDK Version 1.2.1 02 (production version)

� Sun JDK Version 1.2.1 (reference version) + Hotspot
version 1.0

� IBM Win32 JDK Version 1.1.7

� Microsoft SDK Version 3.2

The following JVMs have also been tested on a 250MHz
Sun Ultra Enterprise 3000 with 1Gb of RAM running Solaris
2.6:

� Sun JDK Version 1.2.1 02 (production version)

� Sun JDK Version (reference version) + Hotspot version
1.0

6.1 Programming language comparison

The benchmark suite has been developed to allow the perfor-
mance of various execution environments on di�erent hard-
ware platforms to be tested. Also of interest is language
comparisons, comparing the performance of Java versus
other programming languages such as Fortran, C and C++.
Currently, the LUFact and MolDyn benchmarks, allow pro-
gramming language comparisons with Fortran77 and C. It
is intended, however, that the parallel part of the suite will
contain versions of well-known Fortran and C parallel bench-
marks, thus facilitating further inter-language comparisons.

Measurements have been taken for the Linpack Bench-
mark (on a 1000 � 1000 problem size) and the Molecular
Dynamics benchmark (2048 particles), using Java (Sun JDK
1.2.1 02 production version, and Sun JDK 1.2.1 reference
version + Hotspot 1.0), Fortran and C on a 250MHz Sun
Ultra Enterprise 3000 with 1Gb of RAM and the results are
shown in Figure 3. For the Linpack code, both JVMs give
performance which is approximately half that of C and one
third that of Fortran. It should be noted that the LU fac-
torisation code used in all cases was not optimised for cache
reuse, hence the percentage of peak performance obtained
by these codes is lower than would be expected for a well-
tuned LU factorisation.

For the MolDyn code, the Hotspot JVM is about twice
as fast as the production version, giving approximately two-
thirds of the performance of C and nearly 90% the perfor-
mance of Fortran. The relatively poor performance of For-
tran on this code may be attributable to the data layout|
both the C and Java implementations store all the �elds for
one particle in one data structure, whereas the Fortran im-
plementation uses a separate array for storing each �eld for
all the particles.

6.2 JVM comparison

Figure 4 shows the averaged relative performance for each
of the tested systems on the three sections of the benchmark
suite. For Sections II and III the medium data size was used.
The reference implementation (relative performance = 1.0)
was the Sun JDK 1.2.1 02 production version on a 250MHz
Sun Ultra Enterprise 3000 running Solaris 2.6.

Perhaps the most striking feature of these results is
that on both platforms, the Sun production JDK gives
much higher performance on Section I that the other JVMs.
The likely cause of this is JIT warmup e�ects. For some
benchmarks, all the computation takes place within a single
method call and it is known, for example, that the Hotspot
JIT is not invoked for the �rst two calls to any method. The

0

5

10

15

20

25

30

35

40

Sun JDK 1.2.1_02 Sun JDK 1.2.1 +
HotSpot

cc -fast -xO5 f90 -fast -O5

M
fl

o
p

/s

0

10000

20000

30000

40000

50000

60000

Sun JDK 1.2.1_02 Sun JDK 1.2.1 +
HotSpot

cc -fast -xO5 f90 -fast -O5

In
te

ra
ct

io
n

s/
s

(a) (b)

Figure 3: Language comparisons for (a) the LUFact (Linpack) benchmark and (b) the MolDyn benchmark.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Section

R
el

at
iv

e
p

er
fo

rm
an

ce

Sun JDK 1.2.1_02
Sun E3000 (250 MHz)
Sun JDK 1.2.1 + HotSpot
Sun E3000 (250MHz)
Sun JDK 1.2.1_02
PentiumPro (200MHz)
Sun JDK 1.2.1 + HotSpot
PentiumPro (200MHz)
Microsoft SDK 3.2
PentiumPro (200MHz)
IBM Win32 JDK 1.1.7
PentiumPro (200MHz)

Figure 4: Relative performance of JDKs on Section 1, 2 and 3

0

0.5

1

1.5

2

2.5

Cry
pt

FFT

Hea
pS

or
t

SOR

LU
Fac

t

Ser
ies

Spa
rs

e

R
el

at
iv

e
p

er
fo

rm
an

ce
Sun JDK 1.2.1_02
Sun E3000 (250 MHz)
Sun JDK 1.2.1 + HotSpot
Sun E3000 (250MHz)
Sun JDK 1.2.1_02
PentiumPro (200MHz)
Sun JDK 1.2.1 + HotSpot
PentiumPro (200MHz)
Microsoft SDK 3.2
PentiumPro (200MHz)
IBM Win32 JDK 1.1.7
PentiumPro (200MHz)

Figure 5: Relative performance of JDKs on Section 2 benchmarks, medium data size

0

0.5

1

1.5

2

2.5

Sea
rc

h
Eule

r

M
olD

yn

M
on

te
Car

lo

Ray
Tra

ce
r

R
el

at
iv

e
p

er
fo

rm
an

ce

Sun JDK 1.2.1_02
Sun E3000 (250 MHz)
Sun JDK 1.2.1 + HotSpot
Sun E3000 (250MHz)
Sun JDK 1.2.1_02
PentiumPro (200MHz)
Sun JDK 1.2.1 + HotSpot
PentiumPro (200MHz)
Microsoft SDK 3.2
PentiumPro (200MHz)
IBM Win32 JDK 1.1.7
PentiumPro (200MHz)

Figure 6: Relative performance of JDKs on Section 3 benchmarks, medium data size

Microsoft and IBM JDKs may also be su�ering a similar
problem. Additional e�orts need to be made to make these
benchmarks more robust, though it is di�cult to anticipate
all possible heuristics for JIT invocation.

For the Section II benchmarks the relative performance
for each benchmark is shown in Figure 5. JIT warmup prob-
lems are evident for Hotspot on certain benchmarks (no-
tably Crypt, FFT and SOR) and contribute to a low overall
performance for this Section. For the other JVMs there is
some variability on individual benchmarks, but the averaged
scores are surprisingly close. No single JVM shows consis-
tently better or worse performance.

This latter observation also holds true for Section III
benchmarks (Figure 6). For example, the Windows NT ver-
sion of Sun JDK with Hotspot gives the best performance
on Search and the worst on Euler and MolDyn. Perhaps
surprisingly, the variability in performance is very low. The
MolDyn benchmark shows the greatest di�erences between
best and worst performance (a factor of around 5.5), the
others considerably less.

7 Future Work

All the benchmarks presented in this paper are serial and
only utilise a single processor. However, one of our major
aims is to increase the scope of the suite to include bench-
marks that measure how e�ciently Java codes and envi-
ronments can utilise multi-processor architectures. Parallel
machines are obvious target platforms for our work since
they have the potential to supply the large amounts of CPU
power and memory required by Grande applications. Under-
standing Java performance on a single processor is a neces-
sary precursor to this work, and having developed the serial
benchmark we will now start to include parallel benchmarks
into the suite.

There are issues to be considered when developing any
parallel benchmark, even when targeting well established
languages such as C or Fortran. In the past, portability
was a major issue, but with the almost universal adoption
of the MPI standard this is no longer a problem. However,
MPI provides many possible methods for even the most sim-
ple task of a single point-to-point communication and the
performance of the di�erent modes can vary dramatically
on di�erent platforms. A generic parallel benchmark us-
ing MPI must either attempt to measure as many di�erent
modes as possible (with the aim of allowing the program-
mer to choose the most e�cient method) or simply time
what is considered to be the most commonly used method
(in an attempt to predict the performance of \typical" appli-
cations). This problem has lead to di�erent disciplines de-
veloping their own parallel benchmarks designed to test the
communication methods and patterns most commonly used
in speci�c applications areas. For examples see OCCOMM
[1] (ocean modelling) and SSB [12] (social sciences).

Developing a useful parallel Java benchmark is even more
problematic since it is not yet clear which of the many par-
allelisation models to target. A parallel Java code might
use built-in Java methods such as threads or RMI, Java li-
brary routines such as a Java implementation of MPI, or
a Java interface to a platform-speci�c MPI implementation
written in C. For the built-in methods, parallel performance
may depend critically on the details of the JVM implemen-
tation, for example how e�ectively threads are scheduled
across multiple processors.

Consideration of these issues has lead us to decide on the
following strategy:

� Low-level benchmarks will be written to test the per-
formance of the fundamental operations of the vari-
ous parallel models, e.g. the overhead of creating a
new thread, or the latency and bandwidth of message-
passing using MPI.

� Kernel benchmarks will be written that implement one
or more common communications patterns using a va-
riety of parallel models.

� We will collect a set of genuine parallel applications.
Each application is likely to be only available for a sin-
gle parallel model. However, we hope that we will have
applications using a wide variety of models. All parallel
applications will also be available in serial form.

The current suite, instrumentation classes, and a
more comprehensive set of results, are available at
http://www.epcc.ed.ac.uk/javagrande/. We would
strongly welcome use of, and comments on, this material
from developers both of Grande applications and of Grande
environments.

8 Conclusions

We have presented a methodology for, and initial imple-
mentation of, a suite of benchmarks for Java Grande ap-
plications. We have set out criteria which we believe such
a suite should meet, and have demonstrated how we have
met these criteria. We have discussed methods of bench-
mark instrumentation, and have presented the instrumen-
tation API. Sample results show that the suite gives some
useful and meaningful insight into the performance of Java
environments. Finally, we have discussed the future of the
benchmark suite in terms of parallel benchmarks.

Acknowledgements

We wish to thank the following who have contributed bench-
marks to the suite: Jesudas Mathew and Paul Coddington
of the University of Adelaide, Roldan Pozo of NIST, Florian
Doyan, Wilfried Klauser and Denis Caromel of INRIA, Hon
Yau, formerly of EPCC, Gabriel Zachmann of the Fraun-
hofer Institute for Computer Graphics, Reed Wade of the
University of Tennessee at Knoxville, John Tromp of CWI,
Amsterdam and David Oh, formerly of MIT's Computa-
tional Aerospace Sciences Laboratory.

This work was funded by the UK High Performance
Computing Initiative, EPSRC grant GR/K42653.

References

[1] Ashworth, M. (1996) OCCOMM Benchmarking
Guide. Version 1.2, Daresbury Laboratory Technical
Report, available from http://www.dl.ac.uk/TCSC/
CompEng/OCCOMM/uguide-1.2.ps

[2] Bell, D. (1997) Make Java fast: Optimize!, JavaWorld,
vol. 2, no. 4, April 1997, http://www.javaworld.com/
javaworld/jw-04-1997/jw-04-optimize.html

[3] Caromel, D., F. Doyon, W. Klauser and J. Vayssiere,
A distributed raytracer for benchmarking Java RMI
and Serialization, http://www.inria.fr/sloop/C3D/

[4] Dongarra, J. J. (1998) Performance of Various
Computers Using Standard Linear Equations Software
(Linpack Benchmark Report), University of Tennessee
Computer Science Technical Report, CS-89-85.

[5] Dongarra, J. J. and R. Wade, Linpack benchmark:
Java version, http://www.netlib.org/benchmark/
linpackjava/

[6] Hockney, R. W. (1992) A Framework for Benchmark
Performance Analysis, Supercomputer, vol. 48, no.
IX(2), pp. 9-22.

[7] Getov, V.S. The ParkBench single-processor low-level
benchmarks in Java, available from
http://perun.hscs.wmin.ac.uk/CSPE/software.html

[8] Griswold, W. and P. Phillips, UCSD Benchmarks for
Java, http://www-cse.ucsd.edu/users/wgg/
JavaProf/javaprof.html

[9] Hardwick, J. Java Microbenchmarks,
http://www.cs.cmu.edu/�jch/java/
benchmarks.html

[10] Jacob, M., M. Philippsen and M. Karrenbach, (1998)
Large-scale parallel geophysical algorithms in Java: a
feasibility study, Concurrency: Practice and
Experience, vol. 10, nos. 11{13, pp. 1143-1154.

[11] Lai, X., J. L. Massey and S. Murphy (1992) Markov
ciphers and di�erential cryptanalysis, in Advances in
Cryptology|Eurocrypt '91, pp. 17{38,
Springer-Verlag.

[12] Openshaw S., and J. Schmidt (1997) A Social Science
Benchmark (SSB/1) Code for Serial, Vector and
Parallel Supercomputers, Geographical and
Environment Modelling, vol. 1, no. 1, pp. 65{82.

[13] Pendragon Software Corp. Ca�eine Mark 3.0,
http://www.pendragon-software.com/
pendragon/cm3/

[14] Pozo, R. Java SciMark benchmark for scienti�c
computing, http://math.nist.gov/scimark

[15] Richter, H. BenchBeans: A Benchmark for Java
Applets, http://user.cs.tu-berlin.de/
�mondraig/english/benchbeans.html

[16] Roulo, M. (1998) Accelerate your Java apps!
JavaWorld, vol. 3, no. 9, Sept. 1998, available from
http://www.javaworld.com/javaworld/
jw-09-1998/jw-09-speed.html

[17] SPEC, SPEC JVM98 Benchmarks,
http://www.spec.org/osg/jvm98/

[18] Trom, J. The Fhourstones 2.0 Benchmark,
http://www.cwi.nl/�tromp/c4/fhour.html

[19] Zachmann, G. Java/C++ Benchmark,
http://www.igd.fhg.de/�zach/benchmarks/
java-vs-c++.html

[20] ZDNet, JMark 2.0,
http://www.zdnet.com/zdbop/jmark/jmark.html

