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Abstract

Implementing eÆcient communication and I/O

mechanisms in Java requires both fast access to low-

level system resources (such as network and raw disk

interfaces) and direct manipulation of memory regions

external to the Java heap (such as communication and

I/O bu�ers). Java native methods are too expensive

to perform these operations and raise serious protection

concerns. We present Jaguar, a new mechanism which

provides Java applications with eÆcient access to sys-

tem resources while retaining the protection of the Java

environment. This is accomplished through compile-

time translation of certain Java bytecodes to inlined ma-

chine code segments. We demonstrate the use of Jaguar

through a Java interface to the VIA fast communica-

tions layer, which achieves nearly identical performance

to that of C, and Pre-Serialized Objects, a mechanism

which greatly reduces the cost of Java object serializa-

tion.

1 Introduction

The Java programming environment [9] has made
signi�cant headway in support of a wide array of ap-
plication areas, including mobile agent systems [24],
distributed programming models [15], enterprise-
wide information processing [12], and scienti�c and
numerical computing [7]. As Java's popularity
grows, so will the demands placed upon it to sup-
port even more diverse computing platforms, from
embedded systems [23] to workstation clusters [28].
If we wish to bring Java to bear on large problems,
it seems natural that Java should take advantage of
the resources of large-scale servers, including multi-
processors, high-speed networks, and fast I/O.

A great deal of previous work has addressed prob-
lems with Java processor performance, namely, ef-
�ciency of compiled code, thread synchronization,
and garbage collection algorithms [13, 16]. Java
compilers, including both static and \just-in-time"
(JIT) compilers, are now capable of generating code
which rivals lower-level languages such as C++ in

performance [20]. However, in a large server envi-
ronment, high-performance communication and I/O
play a dominant role. These aspects of Java perfor-
mance remain largely unaddressed.

Implementing eÆcient communication and I/O
generally requires the application to invoke op-
erating system calls, perform direct manipulation
of memory (e.g., use pointers) to access memory-
mapped I/O and network devices, and so forth.
Unfortunately, these operations are inexpressible as
machine-independent Java bytecodes. Rather than
exposing low-level (and hence unsafe) machine oper-
ations directly to the Java application, it is desirable
to abstract away the access mechanisms required
for communication and I/O as a Java object replete
with type-safe methods and �elds. Operations on
these Java objects should translate into eÆcient and
direct (as much as possible) access to the low-level
machine resources they represent, while retaining
the protection of the Java environment.

Java provides so-called \native methods" which
enable code implemented in another language (such
as C) to be invoked from Java. This is typically used
to abstract O/S calls and other functions as Java
classes. However, native methods incur a high over-
head, requiring that data be copied between Java
and native code; in addition, implementing native
methods in a low-level language is error-prone and
potentially negates the safety guarantees of the Java
sandbox. Considering these performance and safety
limitations, we believe native methods are ill-suited
to enable high-performance communication and I/O
in Java.

We present an alternate approach, Jaguar,1

which enables direct, protected access to system
resources represented as Java objects. This is ac-
complished through compile-time code transforma-
tion which maps certain Java bytecodes to short, in-
lined machine code segments. This approach retains
the type-safety and protection of the Java environ-
ment while allowing applications to directly leverage

1Jaguar is an acronym for Java Access to Generic Un-

derlying Architectural Resources. For more information, see

http://www.cs.berkeley.edu/~mdw/proj/jaguar.



server resources such as memory-mapped network
interfaces, raw disk I/O, and so forth. We demon-
strate Jaguar through two examples: JaguarVIA,
a Java binding to the VIA [5] fast communications
substrate, and Pre-Serialized Objects, a mechanism
which greatly reduces the cost of rendering Java ob-
jects in an externalized form for communication or
I/O. We believe that the approach taken in Jaguar
is general enough to capture a large range of addi-
tional uses.

This paper makes three major contributions.
First, we present a novel approach to enabling ef-
�cient and safe utilization of server hardware re-
sources from Java. Second, we present JaguarVIA,
which obtains the same VIA communications per-
formance as C. Third, we present Pre-Serialized Ob-
jects, and demonstrate how their use, as enabled by
Jaguar, can eliminate the high overhead of Java ob-
ject serialization.

The organization of the rest of this paper is
as follows. Section 2 provides background on the
issues faced by Jaguar and related work. Sec-
tion 3 describes the design and implementation of
Jaguar, and Section 4 demonstrates its use through
a fast Java binding to VIA. Section 5 describes Pre-
Serialized Objects. Section 6 discusses directions for
future work and Section 7 concludes.

2 Motivation and Background

In this section, we motivate the approach taken
by Jaguar by looking more closely at the problems
which it addresses.

A number of performance issues arise when one
considers implementing large-scale server applica-
tions in Java. These can be roughly divided into
two categories: CPU-related issues and I/O-related
issues. In terms of the CPU, performance of com-
piled Java code is the paramount concern, but other
factors | including garbage collection and thread
synchronization | must be considered as well. For-
tunately, a great deal of previous work has investi-
gated this problem domain, for Java [13, 16] as well
as other object-oriented languages [2, 6].

Java I/O performance remains largely uninvesti-
gated. A primary goal is to give Java applications
eÆcient access to low-level system resources (such as
fast network interfaces, I/O and RAID controllers,
and so forth); such access is necessary for imple-
menting high-performance communication and I/O.
It is this set of problems which Jaguar intends to
solve.

Traditionally, the operating system is responsible

for providing applications access to hardware, either
through high-level interfaces (such as �lesystems
and sockets) or lower-level mechanisms (such as raw
disk I/O calls). However, in many cases it is desir-
able to circumvent the operating system to obtain
higher performance. In the case of fast networking,
user-level network interfaces provide low-overhead
communication while allowing multiple processes to
safely share the network interface (NI). Applications
circumvent the operating system kernel and directly
access network interface resources, such as memory-
mapped data structures or \protected" NI registers.
Doing so eliminates context switch overhead and the
cost of copying data between user and kernel space.
A large number of of user-level network interface
prototypes have demonstrated this principle, such
as Active Messages [4] and U-Net [26]; VIA [5] is a
recent e�ort to standardize these interfaces.

A related requirement for communication and
I/O is the use of explicitly-managed memory re-
gions. For example, user-level network interfaces
often require that communication bu�ers be pinned
to physical memory for direct access by the NI hard-
ware; these pages must be allocated from a special
pool or pinned dynamically by the O/S or NI [27].
Memory-mapped �les are often used for I/O, and
raw disk interfaces usually have special requirements
for bu�er allocation. However, this requirement
runs counter to the existing Java model in which
all objects and arrays are allocated from a single
heap, managed by the JVM's garbage collector.

2.1 Related Work

EÆcient I/O and communication in Java has
been investigated through two primary avenues: im-
plementing fast object serialization, and binding
fast network interfaces to the Java environment.
In terms of serialization, [22] describes a more ef-
�cient implementation of Java remote method in-
vocation (RMI) which is based on careful coding
and a new serialization algorithm, coded entirely
in Java. Manta [17] takes the more extreme ap-
proach of translating the entire Java application
to C, generating specialized per-class serialization
code. While this moves much of the run-time over-
head of communication to compile time, this neces-
sitates a reengineering of the Java run-time, and the
resultant environment is arguably something other
than \true" Java.

Several projects have attempted to bind fast
communication layers into the Java environment
through the use of native methods. Native method
bindings to MPI [8] and PVM [25] have been de-



scribed, however, neither of these have considered
performance issues with respect to obtaining low la-
tency or high bandwidth. The approach taken by
Javia [3] is closest to that in Jaguar, which describes
modi�cations to a static Java compiler to enable ef-
�cient bindings to a commercial VIA implementa-
tion. Here, native methods were used to invoke the
C-based VIA library, while communication bu�ers
were exposed to Java through specially-generated
code from a modi�ed compiler. While this addresses
most of the performance issues with implementing a
fast Java VIA interface, the approach does not cover
eÆcient access to hardware resources in general.

2.2 Are native methods adequate?

Java native methods can provide access to low-
level system functions, albeit at high cost: the
overhead of invoking native methods, and trans-
ferring data between Java and native code, often
outweighs their utility. This is of particular con-
cern for �ne-grained operations such as manipula-
tion of network interface data structures. Such op-
erations are performance-critical and should incur
as little overhead as possible. Additionally, native
code requires that data be copied between specially-
managed memory regions (such as network bu�ers)
and the Java heap, again resulting in high overhead.

Figure 1 details the overhead of native code in-
vocation from Java. These measurements were per-
formed on a 350 MHz Pentium II running Linux
2.2.5 using Sun JVM 1.1.7. Here, the standard Java
Native Interface (JNI) [14] was employed, which
abstracts away details of the JVM structure from
native code; the intent is to allow native code to
be ported across di�erent JVM architectures. For
comparison, similar tests conducted in C are shown;
all compiler optimizations were disabled for the C
benchmark. As the results show, use of JNI is quite
expensive, requiring nearly a microsecond just to
perform a native method call and return. More se-
rious is the array-copy overhead which would surely
limit the performance of any fast communication or
I/O system implemented using native methods.

Regardless of performance, however, native code
is a blunt instrument with which to enable low-level
operations in Java. Native code must be as trust-
worthy as the JVM and compiler, yet its power is
e�ectively unlimited: a native method can spin in
an in�nite loop, access any memory location, and
crash the virtual machine. It is up to programmers
to exercise proper discipline when implementing na-
tive methods, but this discipline cannot be enforced
by the system in any way. Likewise, because na-
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Figure 2: Native code and Jaguar compared.

tive code is generally implemented in a low-level
language such as C, it is both error-prone and non-
portable; it is diÆcult to convince oneself that a
piece of native code will work as advertised. The
problem is exacerbated by the fact that native meth-
ods must generally do a large amount of work to
amortize the cost of their invocation. This concern
is a serious one, as it is the robustness of the Java
environment which makes the language attractive in
the �rst place.

The Jaguar approach is motivated by the obser-
vation that the sort of low-level operations required
for enabling high-performance communication and
I/O are generally short and easily expressed as a se-
quence of simple instructions (e.g., accessing a par-
ticular memory address, or invoking a system call).
This suggests that such operations can be inlined

into the compiled Java bytecode stream for perfor-
mance, and that some form of static analysis could
be performed to guarantee safety or type-exactness.
Such an approach is tantamount to extending the
Java runtime with new, safe primitives which per-
form specialized operations on behalf of an applica-
tion.

This situation is depicted in Figure 2. Rather
than binding a large amount of native code to Java,
Jaguar allows the Java runtime to be extended with
a set of new, simple primitives. Because use of these
primitives is inexpensive, nearly all functionality,
including complex system software, can be imple-
mented in Java, leading to more robust applications.
The use of Jaguar lends itself to a programming
style which uses mostly Java and a small amount of
native code, rather than the converse.

3 Jaguar Design and Implementation

Jaguar allows the Java runtime to be extended
with new primitive operations which enable eÆ-



Benchmark Java Native Interface Comparable C code Slowdown factor

void arg, void return native method call .909 �sec 0.038 �sec 23.9
void arg, int return native method call .932 �sec 0.042 �sec 22.2
int arg, int return native method call .985 �sec 0.049 �sec 20.1
4-int arg, int return native method call 1.31 �sec 0.072 �sec 18.2

10-byte C-to-Java array copy 3.0 �sec 0.354 �sec (memcpy) 8.47
1024-byte C-to-Java array copy 18.0 �sec 1.68 �sec (memcpy) 10.7
102400-byte C-to-Java array copy 1706.0 �sec 432.5 �sec (memcpy) 3.94

10-byte Java-to-C array copy 7.0 �sec 0.354 �sec (memcpy) 19.8
1024-byte Java-to-C array copy 272.0 �sec 1.68 �sec (memcpy) 161.9
102400-byte Java-to-C array copy 27274.0 �sec 432.5 �sec (memcpy) 63.1

Figure 1: A comparison between Java Native Interface and C overheads.

cient access to hardware resources. These primi-
tives are speci�ed as short machine code segments
which are directly inlined into the Java bytecode
as it is compiled. The fundamental operation of
a Java compiler is to translate sequences of Java
bytecodes (which manipulate Java objects) into na-
tive machine code (which manipulate analogues of
those objects on the actual hardware). Jaguar
builds upon this concept by introducing an addi-
tional set of bytecode-to-machine code translation
rules into the compiler, transforming certain byte-
code sequences directly to operations on low-level
hardware resources.

There are two primary concepts embodied in
Jaguar: code mappings and External Objects.

3.1 Code mappings

Specifying new Java bytecodes to represent low-
level machine operations would necessitate modi�-
cations to the javac bytecode compiler and perhaps
to the Java language itself. Rather, we have cho-
sen to apply the concept of code mappings which
describe transformations from Java bytecode se-
quences to inlined machine code. In this way, pre-
existing bytecodes (say, method calls or �eld ac-
cesses) are translated to specialized operations at
compile time. This approach a�ords a very natural
programming model: low-level machine operations
are expressed as operations on regular Java objects.
Accessing a �eld or calling a method may trans-
parently trigger an alternative sequence of machine
events.

While Jaguar code mappings are similar in nature
to native methods, there are two major di�erences:

� Jaguar code mappings may be applied to vir-
tually any bytecode sequence (such as �eld ac-
cesses, operators, and so forth) while native
code is limited to method invocation. As such,

Jaguar enables much greater expressiveness:
machine resources can be represented by Java
objects, with methods, �elds, or operators be-
ing used as appropriate to describe low-level
operations.

� Jaguar primitives consist of short, limited se-
quences of machine code rather than C func-
tions of arbitrary complexity. This property
makes it easier to verify that the implementa-
tion of a Jaguar primitive is correct. It also
inherently limits Jaguar code mappings to pro-
vide basic, low-level operations rather than ex-
tensive functionality. In this way, applications
can be written almost entirely in Java, aided
by a few simple primitives provided by Jaguar.

3.2 External Objects

Jaguar allows Java applications to directly ma-
nipulate memory outside of the Java heap, such as
specially-allocated bu�ers for communication and
I/O. Jaguar code mappings are used to rewrite �eld
accesses on certain Java objects to directly manip-
ulate this \external" memory; we call the result
External Objects. External Objects are treated by
the application as regular Java objects, the mem-
ory storage for which happens to be located outside
of the Java heap. This eliminates the expense of
copying data between Java and external memory as
required by native code.

External Objects have numerous uses. They can
be used to map Java object references onto shared-
memory segments, memory-mapped �les, communi-
cation and I/O bu�ers, and even memory-mapped
hardware devices. Because �eld accesses are pro-
cessed by Jaguar using knowledge of both �eld name
and type, di�erent behaviors can be implemented
for di�erent �elds. For example, one �eld in an ob-
ject may reference a communication bu�er while an-



other references the network interface with which it
is associated.

3.3 Implementation

Our prototype of Jaguar is implemented as a Java
just-in-time compiler which has been augmented
with a set of transformation rules implementing
Jaguar code mappings. Each such mapping de-
scribes a particular bytecode sequence and a cor-
responding machine code sequence which should be
generated when this bytecode is encountered dur-
ing compilation. An example of such a mapping
might be to transform the bytecode invokevirtual
SomeClass.someMethod() into a specialized ma-
chine code fragment which directly manipulates a
hardware resource in some way.

Our prototype JIT compiles Java bytecode
to machine code by performing a straightfor-
ward translation from each bytecode to a par-
ticular machine code template. Jaguar code
mappings are implemented by rewriting certain
Java bytecodes as Jaguar-speci�c \meta-bytecodes"
during the �rst pass of the compiler; machine
code templates for each such meta-bytecode are
provided which implement new Jaguar primi-
tives. For example, the operation invokevirtual

SomeClass.someMethod might be translated to the
meta-bytecode opc do somemethod, and the ma-
chine code template for opc do somemethod will be
inlined into the compiled code sequence during the
compiler's second pass.

Jaguar code mappings can be applied to virtually
any bytecode sequence; however, they are limited in
two fundamental ways:

� The system must have enough information to
determine whether the mapping should be ap-
plied at compile time. This has an impact on
the use of bytecode transformation for virtual
methods (see below).

� Recognizing the application of certain map-
pings is easier than others. For example, map-
ping a complex sequence of arrayref and add

bytecodes to, say, a fast vector-add instruction
would certainly be more diÆcult than recogniz-
ing a method call to a particular object.

In our current prototype, these transformation
rules must be compiled into the JIT compiler itself;
however, we are currently working on a new im-
plementation (based on the OpenJIT [19] compiler)
which allows new code mappings to be speci�ed at

runtime. Such an approach presents numerous op-
portunities for dynamic code specialization beyond
the scope of this paper.

Jaguar runs on the Intel x86 platform under
Linux 2.2.5 and Sun JDK 1.1.7.

3.4 Discussion

Apart from the mechanisms employed by Jaguar,
by far the most important aspect of this approach
is the programming model which it enables. By ex-
tending the Java environment with the minimal set
of necessary primitives, it is possible to implement
complex system software entirely in Java. For ex-
ample, high-level messaging protocols or disk bu�er
allocation strategies can be implemented in Java,
with only the lowest-level system functions aided
by Jaguar code mappings. This helps to ensure the
safety and robustness of such system software, and
is preferable to wrapping a complex, unwieldy piece
of C code up as a set of Java native methods.

Because our prototype speci�es code mappings
as machine code segments, it is necessary to trust
these code mappings as one would trust the com-
piler or JVM. In some sense, this is more viable
than trusting native methods; it is far easier to con-
vince oneself that a short piece of machine code
will behave correctly and maintain protection than a
complex set of functions coded in C. Using machine
code also has the bene�cial side-e�ect that it is dif-
�cult for programmers to implement overly complex
functionality as a single Jaguar primitive. We are
currently investigating the use of a higher-level lan-
guage in which to represent code mappings, which
may allow automatic type-checking and veri�cation.

There is an issue with respect to applying code
mappings to virtual method invocations. Normally,
the Java runtime resolves virtual method calls at
run time, dispatching them to the correct imple-
mentation based on the type of the object being
invoked. Jaguar currently does not perform any
run-time type checks for virtual method code map-
pings, meaning that an \incorrect" code transfor-
mation may be applied to an object if it is cast to
one of its superclasses at runtime. While it is fea-
sible to incorporate code transformations into the
run-time \jump table" used by the JVM for virtual
method resolution, a workaround in the current pro-
totype is to limit transformations to virtual meth-
ods which are marked as private or final, which
prohibit overloading. Use of static methods is un-
problematic.

Quite similar to Jaguar code mappings is seman-

tic inlining [29], a technique which extends the com-



piler to treat certain operators and method calls as
new Java primitives which are inlined. Semantic
inlining has been used to implement fast complex
arithmetic (by inlining operators on objects of type
Complex) as well as eÆcient multidimensional ar-
rays. While the mechanism has much in common
with Jaguar, its focus has been on the needs of nu-
merical computing rather than enabling fast com-
munication and I/O. As such, Jaguar raises issues
with safely exposing low-level resources to Java ap-
plications which semantic inlining alone does not
address.

The next two sections evaluate Jaguar through
two applications: a fast Java binding to the
VIA communications architecture, as well as Pre-
Serialized Objects, a mechanism which eliminates
Java object serialization overhead for communica-
tion and I/O.

4 JaguarVIA

As an example use of Jaguar enabling eÆ-
cient access to low-level resources, we have imple-
mented JaguarVIA, a Java interface to the Berke-
ley Virtual Interface Architecture (VIA) commu-
nications layer [1]. VIA [5] is an emerging stan-
dard for user-level network interfaces which enable
high-bandwidth and low-latency communication for
workstation clusters over both specialized and com-
modity interconnects. This is accomplished by elim-
inating data copies on the critical path and cir-
cumventing the operating system for direct access
to the network interface hardware; VIA de�nes a
standard API for applications to interact with the
network layer. Berkeley VIA is implemented over
the Myrinet system area network, which provides
raw link speeds of 1.2 Gbps; generally, the e�ec-
tive bandwidth to applications is limited by I/O
bus bandwidth. The Myrinet network interface
used in Berkeley VIA has a programmable on-board
controller, the LanAI, and 1 megabyte of SRAM
which is used for program storage and packet stag-
ing. The implementation described here employs
the PCI Myrinet interface board on dual 450 MHz
Pentium II systems running Linux 2.2.5.

4.1 The Berkeley VIA architecture

The Berkeley VIA architecture is shown in Fig-
ure 3. Each user process may contain a number of
Virtual Interfaces (VIs), each of which corresponds
to a peer-to-peer communications link. Each VI has
a pair of transmit and receive descriptor queues as
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Figure 3: Berkeley VIA Architecture.

well as a transmit and receive doorbell correspond-
ing to each queue.

To transmit data, the user builds a descriptor
on the appropriate transmit queue, indicating the
location and size of the message to send, and \rings"
the transmit doorbell by writing a pointer to the
new transmit queue entry. In order to receive data,
the user pushes a descriptor to a free bu�er in host
memory onto the receive queue and similarly rings
the receive doorbell.

The LanAI processor on the NI is responsible for
polling the doorbells and taking appropriate action
to transmit or receive data on behalf of the (poten-
tially) multiple user processes sharing the network
interface.

Transmit and free packet bu�ers must be �rst
registered with the network interface before they are
used; this operation, performed by a kernel system
call, pins them to physical memory. The network
interface performs virtual-to-physical address trans-
lation by consulting page maps in host memory, us-
ing an on-board translation lookaside bu�er to cache
address mappings.

The C API provided by VIA includes routines
such as the following:

� VipPostSend(), post a bu�er on the transmit
queue;

� VipPostRecv(), post a bu�er on the receive
queue;

� VipSendWait(), wait for a packet to be sent;

� VipRecvWait(), wait for a packet to be re-
ceived;

as well as routines to handle VI setup/teardown,
memory registration, and so forth.

4.2 JaguarVIA Implementation

Implementing an eÆcient Java binding to VIA,
then, relies upon two major requirements:



1. The ability to eÆciently manipulate VIA door-
bells and queues; and

2. The ability to directly access registered VIA
data bu�ers, without a copy.

Exposing the JaguarVIA API to Java could be
implemented through the Java native code interface,
however, copying data between C and Java is expen-
sive, and the high overhead of native method invo-
cation would dominate the cost of issuing VIA API
calls; most of these functions do little more than ma-
nipulate a couple of pointers, or write small values
to the doorbells. Because CPU overhead can be the
dominant factor when considering application sensi-
tivity to network interface performance [18], main-
taining minimal host overhead for VIA operations
is desirable.

JaguarVIA is implemented using two compo-
nents: �rst, a Java library duplicating the func-
tionality of the C-based library which provides the
VIA API; and second, a set of Jaguar code map-
pings which translate low-level operations on VIA
descriptor queues, doorbells, and data bu�ers into
fast machine code segments. Thus, the majority of
JaguarVIA is implemented in Java itself, and only
the barest essentials are handled through Jaguar
code transformations.

Let us consider the operation of the VipPostSend
method, contained in the VIA VI class. Here is the
Java source code:

public int VipPostSend(VIA_Descr descr) {

/* Queue management omitted ... */

while (TxDoorbell.isBusy()) /* spin */;

TxDoorbell.set(descr); return VIP_SUCCESS;

}

Its essential function is to poll the transmit door-
bell until it is ready to be written, and then set its
value to point to the transmit descriptor specifying
the data to be sent.2 Here, TxDoorbell is a private
�eld in the VIA VI class representing the transmit
doorbell for this VI, and Descr is an object of the
type VIA Descr representing the descriptor-queue
entry for the packet to be sent.

The layout of the doorbell structure, as mapped
from the SRAM of the network interface, is two 32-
bit words: the �rst is a pointer to the transmit de-
scriptor itself, and the second is a memory handle,
an opaque value which is associated with the reg-
istered memory region in which the descriptor is
contained. To poll the doorbell it is suÆcient to
test whether the �rst word is non-zero. To update

2Additional code to maintain a linked list of outstanding

transmit descriptors has been omitted for space reasons.

the doorbell, both values must be written (�rst the
memory handle, then the descriptor pointer) as vir-
tual addresses in the process address space; however,
the Java application has no means by which to gen-
erate or use virtual addresses directly. In fact, we
wish to prevent the application from specifying an
arbitrary address as a transmit or receive descriptor
(say), as this would allow the application to access
or corrupt any virtual memory address, including
memory internal to the JVM.

The methods VIA Doorbell.isBusy and
VIA Doorbell.set are implemented through
Jaguar code mappings, as shown in Fig-
ure 4. Jaguar recognizes the bytecode sequence
invokevirtual VIA Doorbell.isBusy (as well as
for VIA Doorbell.set) and inlines machine code
which performs the doorbell polling and write
functions, respectively. In the case of isBusy, the
machine code segment simply tests the �rst word
of the doorbell for a non-zero value, and pushes
a true or false value onto the Java stack as
appropriate. In the case of set, the machine code
segment writes the two words of the doorbell in
the appropriate order. The address of the doorbell
itself (as mapped from the LanAI SRAM) is stored
in a private �eld within the doorbell class, and is
extracted from the doorbell object by the generated
machine code. Similarly, the address and memory
handle of the VIA Descriptor object are stored
in private �elds of that class. The use of private
�elds ensures that only trusted code is capable of
accessing those values | in this case, constructors
which create doorbell and descriptor objects, and
the Jaguar code mappings which operate on them.

VIA packet bu�ers are an example of Jaguar Ex-
ternal Objects at work. They are implemented as
the class VIA Databuffer, which represents a re-
gion of registered virtual memory. The data bu�er
may be manipulated in a manner similar to a Java
array, through the methods readByte/writeByte,
readInt/writeInt, and so forth. These meth-
ods are implemented through Jaguar code map-
pings which directly manipulate the contents of the
bu�er in virtual memory. The class contains the
private �elds vaddr, size, and memhandle which
keep track of the bu�er's address, size, and VIA
memory handle, respectively. A VIA Databuffer

is created through a special constructor which al-
locates a memory region outside of the JVM heap
and registers (pins) it through the appropriate sys-
tem call; this memory is not managed directly by the
JVM. The class can also be used as a \container"
for Jaguar Pre-Serialized Objects, as described in
Section 5.



public int VipPostSend(VIA_Descr descr) {
  /* ... */
  while (TxDoorbell.isBusy()) ; // poll
  TxDoorbell.set(descr);
  return VIP_SUCCESS;
}

43 aload_0
44 getfield <TxDoorbell>
47 invokevirtual <isBusy()>
50 ifne 43
53 aload_0
54 getfield <TxDoorbell>
57 aload_1
58 invokevirtual <set(VIA_Descr)>
61 iconst_0
62 return

set:     %ebx <- Doorbell.vaddr;
         %eax <- Descr.memhandle;

         %eax <- Descr.vaddr;
         movl %eax,4(%ebx);

         movl %eax,0(%ebx);        

isBusy:  %eax <- Doorbell.vaddr;
         movl $0, %edx;
         cmpl $0, 4(%eax);
         setne %dl;Jaguar

JIT +
code rewrite

isBusy x86 code

set x86 code

Java Sourcecode

Java Bytecode

javac

Figure 4: Jaguar VIA Code Transformations.
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Figure 5: JaguarVIA microbenchmark results.

4.3 JaguarVIA Performance

To demonstrate the eÆciency of this approach to
mapping VIA resources into Java, we implemented
two standard VIA microbenchmarks: pingpong,
which measures round-trip latency for messages
of varying sizes, and bandwidth, which measures
the bandwidth obtained when streaming packets
through the network interfaces at the maximum
rate.3

The results of these microbenchmarks for C and
Java are shown in Figure 5. The Java and C
pingpong benchmarks obtain identical performance
with a minimal round-trip time of 70 microseconds

3Note that Berkeley VIA itself does not implement ow

control or reliable delivery; applications are expected to im-

plement their own protocols over the raw transport mecha-

nisms provided. Therefore, the bandwidth benchmark makes

no presumption about the ow-control protocol used, and

assumes that data is received as rapidly as it is transmitted.

for small messages. bandwidth in Java obtains 99%
of the bandwidth achieved by C, peaking at 488
megabits/sec for 32Kb packets. The lost eÆciency
is due to higher loop and method-call overheads in
Java. More aggressive optimization in the JIT com-
piler used by Jaguar should be able to overcome
these issues.

To highlight the advantage of using Jaguar over
the Java native code interface, we have estimated
the performance of the bandwidth benchmark if the
Java Native Interface (JNI) were used to provide
VIA functionality in Java. In the estimation, the
overhead of using JNI (from Figure 1) was added
to the measured per-message cost and the result-
ing bandwidth recalculated. We assume that each
native method call costs 1.0 �sec and that copy-
ing data from Java to native code costs 270 �sec
per kilobyte. Four native method calls are required
per message transmitted. The estimated bandwidth



peaks at 28.55 megabits/sec, a factor of 17 less than
JaguarVIA. Even if the performance of the native
interface were a factor of 10 faster, the peak band-
width would be only 187 megabits/sec, far below
that obtained with Jaguar.

These results clearly show the performance ben-
e�t of the Jaguar approach. VIA communication
requires several �ne-grained manipulations of NI re-
sources (doorbells and descriptor queues) per mes-
sage, for which the cost of the native code inter-
face would be prohibitive. Furthermore, the use of
Jaguar External Objects provides a thin interface to
VIA packet bu�ers, enabling zero-copy communica-
tion.

5 Pre-Serialized Objects

JaguarVIA allows arbitrary sequences of bytes
to be transferred over the network, using the
VIA Databuffer class to represent a registered com-
munication bu�er. The methods on this class treat
the bu�er as a simple array; however, it is desirable
to allow more structured Java objects to be commu-
nicated over VIA.

The traditional approach to communicating or
storing Java objects is to use Java object serializa-
tion, which writes out the state of a set of Java
objects as a string of bytes. Java objects may be
later recovered from this string of bytes, meaning
that the bytes are retrieved from the disk or net-
work and converted into a set of new Java objects.

Standard implementations of Java serialization
are quite costly, although alternatives have been de-
veloped [22]. These alternatives, however, rely upon
making a copy of the data contained within a Java
object and all objects referred to by it. EÆcient se-
rialization is the key problem to overcome in imple-
menting high-performance communication and per-
sistence models in Java, such as Remote Method
Invocation [17].

A special use of Jaguar code mappings is to
implement Pre-serialized Objects, or PSOs. Ab-
stractly, a PSO can be thought of a Java object
for which the memory representation is already se-
rialized. PSOs eliminate the copy and reference-
traversal steps in serialization and de-serialization
by requiring that the object be stored in a \pre-
packaged" form, ready for storage or communica-
tion. Sending the PSO over a communications link,
therefore, requires nothing more than directly trans-
mitting the pre-serialized object bu�er in memory.
On the receiver, the bu�er into which data was re-
ceived need only be pointed to by a new PSO refer-

ence.

5.1 PSO Implementation

PSOs are implemented through specialized
Jaguar code mappings which recognize putfield

and getfield accesses to the object in ques-
tion, marshalling object data into and out of its
pre-serialized form. Atomic �elds (byte, long,
and so forth) are stored using a simple machine-
independent representation. The position of each
�eld within the PSO bu�er region is determined in
a manner similar to that of a C struct: each �eld
is stored at a location which maintains alignment
constraints on common architectures (for example,
that a 32-bit value must be stored on a 32-bit word
boundary).

Figure 6 shows code for a simple user-de�ned
PSO type and the memory layout of three such
PSOs with references between them.

Object references are handled by requiring that
each PSO have an associated container, which is a
Jaguar External Object acting as the backing store
for the object's pre-serialized form. Multiple PSOs
may share the same container, and containers can
be nested. (The JaguarVIA VIA Databuffer class
implements a PSO container, allowing PSOs to be
stored within VIA communication bu�ers.) Each
PSO can be thought of as occupying a certain loca-
tion in its container, with an associated o�set and
size. The PSO's container and o�set are stored as
private �elds in the PSO itself, and are accessed by
the Jaguar code mappings which implement PSOs.

When a reference to another PSO is stored us-
ing the putfield bytecode, if the two PSOs are
within the same container, then the referenced ob-
ject's o�set into that container is stored. Otherwise,
a special null value is stored, indicating that the ob-
ject reference cannot be recovered externally to this
JVM. Note, however, that references to PSOs out-
side of the container and to non-PSO objects are
permitted; such references are stored within the �eld
slot of the Java object corresponding to the PSO.
However, these references are unrecoverable outside
of this JVM (e.g., by the receiver of a PSO sent over
a communications channel).

The �rst time an object reference is read (using
the getfield bytecode), a new Java PSO object is
created which maps onto the container at the given
o�set. If the stored o�set is null or outside of the
range of the container, the special Java null value is
returned. Subsequent getfield accesses will yield
the PSO reference created during the original ac-
cess, which is stored in the actual Java object corre-



public class MyObject extends PSO {

public static int getPSOSize() {

/* Jaguar redirected */

}

/* Fields */

public int someInt; // Offset 0

public byte someByte; // Offset 4

public MyObject someRef; // Offset 8

}
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Figure 6: An example PSO and its memory layout.

sponding to the PSO. Thus, object references within
a PSO are resolved \lazily," that is, only upon their
�rst use. This has the advantage that if a reference
within a received PSO container is never traversed,
a Java object reference will never be created for it.

5.2 Limitations

Pre-serialized Objects have several limitations.
The �rst is that arbitrary Java objects cannot
be represented as PSOs; the implementation de-
pends upon the use of Jaguar code mappings
for putfield/getfield operations on particular
classes (in this case, any subclasses of Jaguar.PSO).
It would be possible, however, to integrate the use of
a standard Java object serializer with PSOs, allow-
ing those portions of the object not pre-serialized
by Jaguar to be serialized and deserialized in the
standard way (albeit at higher cost).

A second limitation is that only atomic types and
references to other PSOs within the same container
are recoverable from a PSO's memory representa-
tion. This is not as limiting as it might seem. Java
arrays are simulated through a generic PSOArray

class which permits array-like operations on a con-
tainer using method calls such as readByte and
writeInt.

Further, we believe that the eÆciency a�orded by
PSOs will make it worthwhile for programmers to
manage PSO cross-references within the same con-
tainer. Finding the right balance of programming
generality and eÆciency in this case is an open re-
search issue.4

4Supporting cross-container PSO references is feasible,

but unsupported by our current prototype. We have decided

to retain the simplicity and performance of this design rather

than building a more general, and less eÆcient, implementa-

tion.

5.3 PSO Performance

We measure the performance of Pre-Serialized
Objects in three ways: a set of microbenchmarks
showing basic performance, a benchmark compar-
ing PSOs to object serialization for communication
over VIA, and a benchmark demonstrating the use
of PSOs for high-performance disk I/O.

Benchmark Time

Create PSO object 9.24 �sec
Recover PSO reference 8.9 �sec
Follow recovered PSO reference 0.305 �sec

Assign PSO int �eld 0.033 �sec
Assign Java int �eld 0.023 �sec

Write int PSOArray element 0.053 �sec
Read int PSOArray element 0.049 �sec
Write int array element 0.041 �sec
Read int array element 0.043 �sec

Figure 7: Pre-Serialized Object microbenchmarks.

Figure 7 shows results for a simple microbench-
mark of Pre-serialized Object performance. This
benchmark creates a linked list of objects, with the
same structure as MyObject shown in Figure 6, �ll-
ing a one-megabyte container.

First, the benchmark creates each object in the
list and �lls in each �eld in the object. Next, recov-
ery of the list from the pre-serialized bu�er is simu-
lated by \forgetting" the original list head and map-
ping a new PSO onto the beginning of the bu�er.
Each list entry is traversed by following the someRef
reference to the next list element; this requires that
the next list element be recovered, creating a new
PSO instance mapping onto the container at the ap-
propriate o�set.Next, the benchmark traverses each
list element a second time, which uses the cached
PSO references created during the �rst traversal.

Times are shown for creating a PSO, for recov-



ering a PSO from its pre-serialized form, and for
reading a pre-recovered PSO reference. Also shown
is the time to write a PSO �eld of type int, which
is compared to writing an int �eld to a regular Java
object.

Also shown in Figure 7 are timings for reading
and writing every element of the one-megabyte con-
tainer as a PSOArray, which treats the container as
a simple array of int. These values are compared to
accessing elements of a Java int array. PSOArrays
are only slightly more expensive than regular Java
arrays, due to higher bounds-checking cost in the
Jaguar code mappings implementing PSOArrays.

Pre-Serialized Objects eliminate the high cost
of Java object serialization for communication and
I/O. To demonstrate this, we have augmented
the original JaguarVIA pingpong benchmark (from
Figure 5) to transmit a linked list of simple Java
objects consisting of nine �elds: four bytes, four
ints, and a reference to the next object in the list.

There are two variations on this benchmark.
The �rst uses Pre-Serialized Objects to store ob-
ject data directly into a VIA communications
bu�er. The second uses standard Java object se-
rialization to write the linked list into the bu�er.
This was accomplished by implementing a simple
class, ViaOutputStream, which writes bytes into
a VIA communications bu�er. A standard Java
ObjectOutputStream, which performs object seri-
alization, is created which writes serialized data to
the ViaOutputStream.

To simplify both benchmarks, serialization is per-
formed only by the transmitter; no de-serialization
(or mapping of PSO objects onto the received
packet) is performed by the receiver. In the PSO
version of the benchmark, the time to assign values
to each �eld of each PSO in the linked list is included
in the measurement, which represents the worst-
case performance: a real application may be able
to eliminate this overhead by re-using a PSO mul-
tiple times. In the object serialization benchmark,
only the time to create a new ObjectOutputStream,
and call writeObject with the head of the linked
list as an argument, are included. This is the min-
imum amount of work required to serialize a set of
objects.5

Figure 8 shows the round-trip time as a func-
tion of the message size for the use of PSOs over
VIA, object serialization over VIA, and the raw

5It is necessary to create a new ObjectOutputStream for

each message; otherwise, the stream will serialize the linked

list just once, for the �rst packet, and for subsequent pack-

ets will store a reference to the previously-serialized state.

Because each packet is independent, this is unacceptable.

JaguarVIA timings(from Figure 5). The right-hand
plot does not include the object serialization times,
as these dwarf the PSO and raw VIA measurements.
It is clear that Pre-Serialized Objects eliminate the
high overhead of object serialization: transmitting a
linked list of 128 PSOs �lling a four-kilobyte bu�er
has a round-trip latency of 341 �sec, while using
Java object serialization costs 26843 �sec, a factor
of 78 higher.

For comparison, transmitting an empty 4 Kb
bu�er using JaguarVIA has a round-trip latency of
262 �sec; �lling the bu�er using PSOs adds only
39.5 �sec each way, or (39.5 �sec / 128 objects) =
0.30 �sec per object. If the bu�er were �lled us-
ing the PSOArray mechanism described above, the
cost would be (0.053 �sec per word / 1024 words) =
54.2 �sec. Note that accessing �elds of a PSO does
not require any bounds-checking to be done: the
check is performed when the PSO is created (and
mapped onto an underlying container). However,
the PSOArray must bounds-check each access.

Benchmark Time MByte/sec

DataInputStream 4910 ms 0.203
DataInputStream (bu�ered) 488 ms 0.672
Jaguar PSOArray 28 ms 35.71
C (unbu�ered read) 771 ms 1.32
C (mmap) 23 ms 43.47

Figure 9: File-scan benchmarks.

To evaluate the use of Pre-Serialized Object ar-
rays to implement eÆcient disk I/O in Java, Fig-
ure 9 shows results for a simple benchmark which
scans a one-megabyte �le of random integers for the
maximum value. This not only stresses the I/O
component of the system but brings the data into
the application to perform simple analysis.

There are several variations on the bench-
mark. The �rst two use the standard Java
DataInputStream class, both with and without an
underlying BufferedInputStream. The third uses
the Jaguar PSOArray class to treat a memory-
mapped �le as an array of bytes or integers. The
�nal two results show the same benchmark in C,
using unbu�ered read system calls as well as mmap
to access the �le.

As the results show, only the Jaguar PSOArray
and C-based mmap benchmarks obtain good perfor-
mance (23 and 28 milliseconds, respectively). Both
of these operate on memory-mapped �les, so we
should expect performance to be higher than the
use of �le I/O. The additional cost of the PSOArray
over direct use of mmap from C is due to several
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Figure 8: PSO-over-VIA benchmark results.

factors: the PSOArray methods perform bounds-
checking while the C code does not, and the op-
timizations in our prototype JIT compiler are not
as advanced as in the C compiler.

External Objects and PSOs are a powerful means
of enabling eÆcient I/O in Java. They provide di-
rect access to memory-mapped �les and a means
to reduce the cost of object serialization. We be-
lieve these results indicate that higher-level I/O and
communication mechanisms (such as persistent data
structures and RPC) can be eÆciently implemented
using Jaguar.

6 Issues and Future Work

Our initial experience with Jaguar has indicated
a number of possible avenues for further research.
While our prototype has provided encouraging re-
sults, we are interested in the extension of the
Jaguar approach to other application areas.

One major concern is protection. Currently, the
user must trust Jaguar code extensions (built-in to
the JIT compiler as a set of bytecode-to-machine
code transformation rules) as much the JVM and
the compiler itself. As discussed previously, how-
ever, this is perhaps better than the use of arbitrary
native methods, which have the same trust require-
ments but far greater complexity in general.

However, it is still desirable to express extensions
to the Java environment in a way which enables cer-
tain properties to be veri�ed, such as type-safety,
bounded execution time, and limited impact on the
Java protection model. One approach would be to
use a higher-level language to represent Jaguar code
mappings; typed assembly language [21] is one can-

didate, but other languages are possible. The use
of such a language should make it possible to stat-
ically verify important properties about Jaguar's
code mappings | while this may not permit en-
tirely untrusted Java extensions, the goal is rather
to raise the degree of trustworthiness such that new
code mappings do not have unexpected behavior.

Use of a limited extension language may have
the secondary e�ect that it inherently limits the
set of actions which can be implemented as Jaguar
code mappings. For example, loops, unbounded
branches, and ill-formed Java stack and object op-
erations may be restricted by the semantics of the
language. This is desirable as it prevents the abuse
of the Jaguar code mapping technique to inline large
amounts of low-level code as a single Java primitive;
the philosophy of Jaguar is to build in only the mini-
mal set of extensions needed to provide eÆcient Java
access to some server resource.

Pre-Serialized Objects present several untapped
opportunities. The �rst is to exploit PSOs to imple-
ment an eÆcient RPC and data-persistence mech-
anism for Java; combining the use of JaguarVIA
and PSOs should enable a high-performance RPC
mechanism for workstation clusters. We are also
investigating the use of PSOs to implement dis-
tributed data structures for cluster-based Internet
services [10] and databases [11].

The prototype implementation of Pre-Serialized
Objects has several important limitations. The fact
that cross-PSO references are only recoverable if
both PSOs are within the same \container" implies
an informed programming model which makes this
limitation explicit. Currently, it is up to the pro-
grammer to arrange for multiple PSOs to coreside
in a single container if their object references are



to be recovered. While it is possible to remove this
limitation, doing so would involve considerable com-
plexity. We believe that programmers who require
the performance a�orded by PSOs are willing to go
to the trouble to carefully maintain PSO relation-
ships; we intend to test this claim by developing
applications which use this feature.

Jaguar is a general solution for eÆciently binding
Java application code to hardware resources. There
are myriad potential uses for this mechanism, of
which we have yet explored but a few. Other in-
teresting uses include:

� Fast access to devices such as raw disk I/O,
framebu�ers, and NUMA-style memory-bus
network interfaces;

� Transparent data persistence, using a mecha-
nism similar to Pre-Serialized Objects. Certain
Java objects could be tagged as \persistent"
| Jaguar code mappings could directly imple-
ment retention of such objects' state.

� Use of Jaguar code mappings to access shared
memory segments in a multiprocessor machine,
or to implement distributed shared objects
across a network.

Because Jaguar can be applied so generally, it is
important to strike the right balance between de-
velopment of new Java primitives and applications
which utilize those primitives. Our claim is that it
is undesirable to extend the Java environment arbi-
trarily; just what the limits are should be brought
out by further experimentation.

7 Conclusion

Jaguar bridges the gap between Java applica-
tions and the underlying server resources which they
wish to exploit. This is accomplished by translating
Java bytecodes to inlined machine code sequences
at compile time; this ability to abstract system re-
sources as a Java object in this way provides both
safety and high performance. The programming
model presented by Jaguar allows low-level system
software to be coded almost entirely in Java, aided
by the minimal set of additional primitives required
for direct access to hardware resources.

Jaguar addresses two primary concerns which are
essential for enabling high-performance communica-
tions and I/O from Java:

1. EÆcient, protected access to low-level system
resources; and

2. Direct manipulation of memory regions exter-
nal to the Java heap.

We have described JaguarVIA, an eÆcient Java
binding to the VIA communications architecture us-
ing Jaguar code mappings to provide fast access to
VIA queues, doorbell registers, and specially-pinned
data bu�ers. JaguarVIA obtains identical commu-
nication performance to VIA as accessed from C.
Pre-Serialized Objects are another application of
Jaguar code mappings which reduce the cost of Java
object serialization by rewriting object �eld refer-
ences to directly access an externalized form of the
object's state.

We believe that the approach taken by Jaguar
can be extended in a number of ways, both in terms
of applications (such as applying Pre-Serialized Ob-
jects to implement a fast RPC layer) as well as pro-
tection (by expressing Jaguar code transformations
in a higher-level language). Jaguar is a general so-
lution which covers a wide range of application de-
mands on the Java environment. As such, it is im-
portant to consider the performance and complexity
tradeo�s of extending Java with new primitive op-
erations in this way.
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