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Abstract

With the development of dynamic compilers for Java, Java’s performance promises to rival that of
equivalent C/C++ binary executions. This should ensure that Java will become the platform of choice
for ubiquitous Web-based supercomputing. Therefore, being able to build performance tools for
dynamically compiled Java executions will become increasingly important. In this paper we discuss
those aspects of dynamically compiled Java executions that make performance measurement difficult:
(1) some Java application methods may be transformed from byte-code to native code at run-time; and
(2), even in native form, application code may interact with the Java virtual machine. We describe
Paradyn-J, an experimental version of the Paradyn Parallel Performance Tool that addresses this
environment by describing performance data from dynamically compiled executions in terms of the
multiple execution forms (interpreted byte-code and directly executed native code) of a method, costs
of the dynamic compilation, and costs of residual dependencies of the application on the virtual
machine. We use performance data from Paradyn-J to tune a Java application method, and improve its
interpreted byte-code execution by 11% and its native form execution by 10%. As a result of tuning just
one method, we improve the application’s total execution time by 10% when run under Sun’s ExactVM
(included in the Platform2 release of JDK). Results of our work are guide to virtual machine designers
as what type of performance data should be available through Java VM performance tool APIs.

1 INTRODUCTION

The platform independence of Java makes it ideal for ubiquitous web-based supercomputing. In most cases inter-

preted Java does not perform as well as equivalent native code [11]. For Java to compete, it is clear that it must exe-

cute, at least in part, in native form. Dynamic compilation is the most promising alternative for transforming Java

byte-codes to native code. Thus, as more performance critical Java programs are developed and run by VMs that

implement dynamic compilers, the ability to build performance tools for these types of executions will become

increasingly important. We describe Paradyn-J, an experimental version of the Paradyn Parallel Performance Tool

[12] that addresses this environment by dealing with the multiple execution forms (interpreted byte-code and directly

executed native code) of a method, costs of the dynamic compilation, and costs of residual dependencies of the Java

application program (AP) on the virtual machine (VM). Paradyn-J measures simulated dynamically compiled Java

programs run under Sun’s version 1.1.6 of the Java VM. Paradyn-J generates and inserts byte-code and native code

instrumentation into the VM and AP at run-time; it requires no changes to the VM binary nor to AP .class files prior

to execution.

Figure 1 shows the two execution modes of an environment that uses dynamic compilation: (1) the VM interprets

AP byte-codes; (2) native code versions of AP methods, that the VM compiles at run-time, are directly executed by



Page 2

the operating system/architecture platform with some residual VM interaction (for example, activities like object cre-

ation, thread synchronization, exception handling, garbage collection, and calls from native code to byte-code meth-

ods may require VM interaction). The VM becomes more like a run-time library to the native form of an AP method.

At any point in the execution, the VM may compile a method, and some methods may never be compiled.

There are several challenges associated with the unique characteristics of these executions that make perfor-

mance measurement difficult:

1 Multiple execution forms of the Java application program: Parts of the application program are trans-
formed from byte-code to native code by the VM at run-time; as a result, the location and structure of Java
application method code can change at run-time. From a performance measurement standpoint this causes
two problems. First, a performance tool must be able to measure each form of the Java method, requiring
different types of instrumentation technologies. Second, a tool must be aware of the relationship between the
byte-code and native code version of a method, so that performance data can be correlated.

2 Run-time Transformations: Compilation of Java byte-code to native code occurs at run-time. A perfor-
mance tool must represent performance data associated with the transformational activities.

3 Interaction between the VM and the AP: Even the native code methods interact with the VM (the VM
acts more like a run-time library). Performance data that explicitly describes these VM-AP interactions will
help a programer better understand their application’s execution.

We explicitly represent VM-AP interactions during the interpretation and direct execution of the AP, costs asso-

ciated with the run-time compilation of Java byte-codes to native code, and the relationships between the different

forms of AP code objects so that performance data from different forms of an AP method can be correlated.

To quantify the unique run-time costs associated with dynamic execution, we compare an all-interpreted execu-

tion to a dynamically compiled execution using Sun’s ExactVM dynamic compiler included in the Platform 2 release

of JDK [19]. Our study (presented in Section 2) examines three cases where we suspect that a method’s dynamic

compilation will result in little or no improvement over its all-interpreted execution: (1) small methods with few byte-

code instructions, (2) methods whose native form has a lot of interaction with the VM, (3) methods whose interpreted

execution time is not dominated by interpreting byte-code, for example, methods dominated by I/O costs. Results

from our study demonstrate the need for detailed performance data from dynamically compiled executions; we show

how performance data that allows a user to compare the interpreted execution costs to the native execution costs, to

see the VM costs associated with the native code’s execution, and to see ratios of I/O time to interpreted and native

Figure 1: During a dynamically compiled execution methods may be interpreted by the VM and/or compiled into native
code and directly executed.The native code may still interact with the VM. In this case, the VM acts like a run-time library to
the AP.
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execution times, can be used to more easily determine how to tune the AP to improve its performance. We discuss, in

Section 5, how this same type of performance data could be used by a VM developer to tune the VM.

In Section 3, we describe a tool for measuring dynamically compiled Java executions. Paradyn-J provides the

types of detailed performance data that we discovered were critical to understanding the performance of a dynami-

cally compiled execution. In Section 4, we present results from using Paradyn-J to measure a simulated dynamic exe-

cution of two Java applications. We show how Paradyn-J can profile VM overheads, I/O costs, interpretation costs,

direct execution costs, and run-time compilation costs associated with the byte-code and the native code forms of

individual methods in the Java application. We use performance data from Paradyn-J to tune a dynamically compiled

Java application method, and improve its interpreted byte-code execution by 11% and its native form execution by

10%. Results of these studies point to places were JDK’s new profiling interface, JVMPI [18], should be expanded to

provide the performance data that measure the multiple execution forms of AP code, the run-time transformation

costs associated with dynamically compiling AP byte-codes, and VM overhead associated with interactions with the

execution of AP native and byte-code.

2 EVALUATING DYNAMIC COMPILATION PERFORMANCE

Performance measurement of dynamically compiled executions is more complicated than that of statically compiled

program executions; beyond the general need for detailed performance data, a performance tool needs to deal with the

multiple execution forms of the AP, and with run-time interactions between the AP and the VM. In this section, we

motivate the need for performance data that describe VM costs and other detailed run-time measures associated with

interpreted byte-code and directly executed native code forms of a method. We show examples of how an AP devel-

oper can use such performance data to tune the AP. We demonstrate the need for this type of performance data by

comparing total execution times of dynamically compiled and all-interpreted executions of three Java applications.

We examine three cases where the performance of dynamic compilation and subsequent direct execution of a native

form of a method might be the same as, or worse than, simply interpreting a byte-code version of the method: (1)

methods whose native code interacts frequently with the VM, (2) methods whose execution time is not dominated by

executing method code (e.g. I/O intensive methods), and (3) small methods with simple byte-code instructions.

The performance of a dynamically compiled Java method can be represented as the sum of the time to interpret

the byte-code form, the time to compile the byte-code to native code, and the time to execute the native form of the

method: (where is the number of times the method is executed).

We examine three cases where we suspect that the cost of interpreting a method is less than the cost of dynamically

compiling it ( ). We implemented three Java application ker-

nels to test these cases. Each kernel consists of a main loop method that makes calls to methods implementing one of

the three cases. We ran each application for varying numbers of iterations under ExactVM. We compared executions

with dynamic compiling disabled to executions that used dynamic compiling. ExactVM uses a count based heuristic

to determine when to compile a method; if the method contains a loop it is compiled immediately, otherwise it waits

to compile a method until it has been called 15 times. As a result, the main loop method is immediately compiled

(since it contains a loop), and the methods called by the main loop are interpreted the first 14 times they are called. On

the 15th call, the methods are compiled, and directly executed as native code for this and all subsequent calls. Calls

from the native code in the main loop to the byte-code versions of the methods require interaction with the VM. Calls

a Interp× Compile b NativeEx×+ + a b+ n=

n Interp×( ) a Interp× Compile b NativeEx×+ +( )<
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from the native code in the main loop to native code versions of the methods involve no VM interactions.

Case 1: Methods with VM interactions: The execution of the native form of the method can be dominated by

interactions with the VM. Some examples include methods that do object creation, deletion (resulting in increased

garbage collection), or modification (either modifying an object pointer, or modifications that have side effects like

memory allocation), and methods that contain calls to methods in byte-code form. To test this case, we implemented

a Java application kernel that consists of a main loop that calls two methods. The first method creates two objects and

adds them to a Vector, and the second method removes an object from the Vector. After each main loop iteration, the

Vector’s size increases by one. The Java Class Libraries’ Vector class stores an array of objects in a contiguous chunk

of memory. In our application, there are VM interactions associated with the two objects created in the first method.

The increasing size of the vector will result in periodic interactions with the VM: when an object is added to a full

Vector, the VM will be involved in allocation of a new chunk of memory, and in copying the old Vector’s contents to

this new chunk. Object removal will result in increased garbage collection activity in the VM, as the amount of freed

space increases with each main loop iteration. Our hypothesis was that the dynamic compilation of methods that cre-

ate, modify, and delete objects will not result in much improvement over an all-interpreted execution because their

execution times are dominated by interactions with the VM.

Results are shown as Case 1 in Table 1. For about the first 3,000 iterations, interpreted execution performs better

than dynamically compiled execution. After this, the costs of run-time compilation are recovered, and dynamic com-

pilation performs better. However, there are no great improvements in the dynamically compiled performance as the

number of iterations increase. This is due to VM interactions with the native code due to object creates and modifica-

tions1. Also, the decrease in speed-up values between 10,000 and 100,000 iterations is due to an increase in the

amount of VM interaction caused by larger Vector copies and more garbage collection in the 100,000 iteration case.

Each method’s native execution consists of part direct execution of native code and part VM interaction; in the for-

mula on Page 3, the term can be written as . In this application, it

is likely that theVMInteractionterm dominates this expression, and as a result, dynamic compilation does not result

in much performance improvement. Performance data that represent VM costs of object creation and modification,

and can associate these costs with particular AP methods, can be used by an AP developer to tune the AP. For exam-

ple, if performance data verifies that VM object creation costs dominate the execution of the native and byte-code

forms of a method, then the AP developer could try to move to a more static structure.

Case 2: Methods whose performance is not dominated by interpreting byte-code:A method’s execution

time can be dominated by costs other than executing code (e.g., I/O or synchronization costs). For this case, we

implemented a Java application kernel consisting of a main loop method that calls a method to read a line from an

input file, and then calls a method to write the line to an output file. Our hypothesis was that dynamic compilation of

the read and write methods will not result in much improvement because their native code execution is dominated by

I/O costs.

1. We verified this by measuring an all-interpreted and a dynamically compiled execution for a similarly structured
application kernel without object creates, modifies or deletes. Speed ups show dynamic compilation results in better
performance as the number of iterations increase (for 100,000 iterations a speedup of 4.9 vs. a speed up of 1.04 for
Case 1)

b NativeEx× b DirectEx VMInteraction+( )×
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The results of comparing an interpreted to a dynamically compiled execution on different sized input files (num-

ber of main loop iterations) are shown as Case 2 in Table 1. After about 500 iterations, the dynamically compiled exe-

cution performs better than the all-interpreted execution. Speed-ups obtained for an increasing number of iterations

are not that great; I/O costs dominate the native code’s execution time2. The decrease in speed-up values between the

10,000 and 100,000 iteration case is due two factors. First, each read or write system call takes longer on average

(about 3.5%) in the 100,000 case, because indirect blocks are used when accessing the input and output files. Second,

there is an increase in the amount of VM interaction caused by garbage collection of temporary objects created in

DataOutputStream and DataInputStream methods; for larger files, more temporary objects are created and, as a result,

VM garbage collection activity increases

Performance data that represent I/O costs associated with a method’s execution could be used by an AP devel-

oper to tune the AP. For example, performance data that indicate a method’s execution time is dominated by perform-

ing several small writes could be used by an AP developer to reduce the number of writes (possibly by buffering), and

as a result, reduce these I/O costs.

Case 3: Methods with a few simple byte-code instructions:For these methods, the time spent interpreting

method byte-codes is small, so the execution of a native form of the method may not result in much improvement. To

test this case, we wrote a Java application kernel with a main loop method that calls three small methods; two change

the value of a data member and one returns the value of a data member. Our hypothesis was that dynamic compilation

of these three small methods will not result in much improvement because their interpreted execution is not that

expensive.

The results (Case 3 in Table 1) show that there are a non-trivial number of iterations (about 25,000) where an all-

interpreted execution outperforms a dynamically compiled execution. However, as the number of iterations increases,

the penalty for continuing to interpret is high, partly because of the high overhead of the VM to interpret method call

instructions vs. the cost of directly executing a native code call instruction3. Performance data that explicitly represent

VM method call overheads, VM costs to interpret byte-codes, and VM costs to execute native code could be used by

an AP developer to identify that interpreted call instructions are expensive.

The result of this study points to specific examples where detailed performance measures from a dynamically

compiled execution can provide information that is critical to understanding the execution. For real Java applications

consisting of thousands of methods, some with complicated control flow structure, a performance tool that can repre-

sent specific VM and I/O costs associated with byte-code and native code can be used by an AP developer to more

easily determine which AP methods to tune and how to tune them. In Section 5, we discuss the implications of this

study for a VM developer.

2. We verified this by measuring an all-interpreted and a dynamically compiled execution for a similarly structured
application kernel without I/O activity. Speed ups show dynamic compilation results in better performance as the
number of iterations increase (for 100,000 iterations a speedup of 4.9 vs. a speed up of 1.02 for Case 2)

3. We verified this by measuring an all-interpreted and a dynamically compiled execution of a similarly structured appli-
cation kernel that makes calls to empty methods (the cost of executing the method is just the VM overheads to handle
method calls and returns). For 10,000,0000 iterations there was a speed up of 31.8, and for a version with no method
call overheads (all code is in the main loop) a speed up of 11.2.
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3 A PERFORMANCE TOOL FOR DYNAMICALLY COMPILED JAVA

We present Paradyn-J, a prototype implementation of a performance tool for measuring dynamically compiled Java

executions. Paradyn-J generates and inserts (or removes) instrumentation code into AP and VM code at run-time; as a

result, Paradyn-J requires no modifications to the VM nor to the AP prior to execution. We wanted to implement Para-

dyn-J to measure a real Java dynamic compiler, unfortunately, no source code was available for ExactVM [19]or

HotSpot[4]. Instead, we simulated dynamic compilation, and built Paradyn-J to measure its execution. We first

present our simulation and then the details of Paradyn-J’s implementation.

3.1 Simulation of a Dynamic Compiler

Our simulation approximates the three main run-time activities in a dynamically compiled execution: interpretation

of method byte-code; run-time compilation of some methods; and direct execution of the native form of transformed

methods. We simulate dynamic compilation by modifying the Java application and running it with a Java interpreter

(JDK 1.1.6 running on Solaris 2.6). The VM handles all class loading, exception handling, garbage collection, and

object creation. A “dynamically compiled” method is replaced with a wrapper function that initially calls a byte-code

version of the method. After we reach a threshold (based on number of calls) the wrapper calls a routine that simu-

lates the method’s run-time compilation. The “compiling” routine takes an estimated compiling time as a parameter,

and it waits for the specified time. For all subsequent calls to the method, the wrapper function calls a native version

of the method. The native version is written in C with minimal use of the JNI interface [17]. It is compiled into a

shared object that the VM loads at run-time. We approximated each method’s compile time by timing ExactVM’s

run-time compilation of each method.

3.2 Dynamic Instrumentation for VM Code

Paradyn-J uses Paradyn’s dynamic instrumentation [5] to insert and delete instrumentation code into Java virtual

machine code at any point in the interpreted execution. Paradyn’s method for instrumenting functions is to allocate

heap space in the application process, generate instrumentation code in the heap, insert a branch instruction from the

instrumented function to the instrumentation code, and relocate the function’s instructions that were replaced by the

branch to the instrumentation code in the heap. The relocated instructions can be executed before or after the instru-

mentation code. When the instrumented function is executed it will branch to the instrumentation code, execute the

instrumentation code before and/or after executing the function’s relocated instruction(s), and then branch back to the

Case 1: object modifications Case 2: I/O intensive Case 3: small methods

itera-
tions

Dyn
Comp

Interp Speed
up

itera-
tions

Dyn
Comp

Interp Speed
up

iterations Dyn
Comp

Interp Speed
up

100,000 114.7 119.5 1.04 100,000 427.1 436.43 1.02 10,000,000 1.76 35.11 19.94

10,000 1.73 2.04 1.18 10,000 40.47 42.70 1.05 1,000,000 0.83 4.16 5.01

1,000 0.71 0.65 0.91 1,000 4.53 4.64 1.02 100,000 0.74 0.98 1.32

100 0.70 0.63 0.90 100 1.06 0.99 0.94 10,000 0.72 0.67 0.93

1,000 0.73 0.63 0.86

Table 1: Execution time (in seconds) of each Java kernel run by ExactVM comparing interpreted Java (Interp column) to
dynamically compiled Java (Dyn Comp column).Each measurement is the average of 10 runs.
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function.

Because the SPARC instruction set has instructions to save and restore stack frames, the instrumentation code

and the relocated instructions can execute in their own stack frames and using their own register window. This way

instrumentation code will not destroy the values in the function’s stack frame or registers. Figure 2 shows an example

of dynamically instrumenting a VM function.

3.3 Transformational Instrumentation for AP Code

We use an instrumentation technique calledTransformational Instrumentationto dynamically instrument Java

application byte-codes. Our technique solves two problems associated with instrumenting Java byte-codes at run-

time. One problem is that there are no Java Class Library methods or JDK API’s (prior to release 1.2) for obtaining

CPU time for AP processes or threads. As a result, Paradyn-J must use some native code to obtain CPU time mea-

sures for instrumented byte-codes. The second problem is that our byte-code instrumentation needs operand stack

space, and argument and local variable space to execute. For every AP method on the call stack, the VM creates an

execution stack frame, an operand stack, and argument and local variable space for executing the method’s byte-code

instructions; our instrumentation byte-codes also need this space to execute.

One approach to safely executing instrumentation code is to use a method call instruction to jump to byte-code

instrumentation. When the VM interprets a call instruction, it creates a new execution context for the called method,

so instrumentation code will execute in its own stack frame with its own operand stack. There are two problems with

this approach. First, method instructions that are overwritten with calls to instrumentation code cannot be relocated to

the instrumentation code in the heap; in the instrumentation code there is no way to restore the method’s execution

context that is necessary to execute the relocated byte-code instructions. Second, interpreting method call instructions

is expensive. We solve the first problem by relocating the entire method to the heap with extra space for inserting the

method call instructions that call instrumentation code. However, the second problem is unavoidable since method

call instructions are already necessary for obtaining CPU measures from native code.

In Paradyn-J we use this approach for safely executing instrumentation byte-codes. Our technique of relocating

methods when first instrumented, and instrumenting byte-codes with native code is calledTransformational Instru-

Figure 2: Dynamic Instrumentation for Java VM code. In this example VM functioninvokeMethod is instrumented.
An instruction in invokeMethod is replaced with a branch instruction that jumps to the instrumentation code in the
heap, and the overwritteninvokeMethod  instruction is relocated to the instrumentation code.

Java VM Code

invokeMethod() {

}

branch
relocated
invokeMethod
instruction

save
jump
restore

instrumentation code
to save and restore
invokeMethod’s state instrumentation code

to compute the metric
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mentation. Transformational Instrumentation works as follows (illustrated in Figure 3): the first time an instrumenta-

tion request is made for a method, relocate the method to the heap and expand its size by addingnop byte-code

instructions around each instrumentation point. When a branch to instrumentation code is inserted in the method, it

replaces thenop instructions; no method byte-codes are overwritten and, as a result, all method byte-codes are exe-

cuted using the their own operand stack and stack frame. The first bytes in the original method are overwritten with a

goto_w byte-code instruction that branches to the relocated method. SPARC instrumentation code is generated in

the heap, and method call byte-code instructions are inserted at the instrumentation points (thenop byte-code

instructions) to jump to the SPARC instrumentation code.

The VM will create a new execution stack frame and operand stack for the instrumentation code, if the jump to

the instrumentation code is made by a method call byte-code instruction; all branches to instrumentation code are

calls to the static methoddo_baseTramp(int id) that executes the instrumentation code. Theid argument

is used to indicate from which instrumentation point it was called. To calldo_baseTramp we insert one byte-

code instruction to push theid operand on the operand stack and one byte-code instruction to call the method. Also,

since method calls are resolved using the calling class’ constantpool, the class’ constantpool must be modified to add

entries that provide information aboutdo_baseTramp . A class’ constantpool only has to be modified once (when

the class file is loaded), and only has to be modified with entries to resolve one method call (the call to

do_baseTramp ). Finally, the state of the virtual machine (its execution stacks, and register values) must be

checked to see if it is safe to insert these changes. If it is not safe, the changes must be delayed until some point in the

execution when it is safe to insert these changes. To delay the insertion of byte-code instrumentation, special instru-

mentation code is inserted in a method that is lower in the execution stack and that is at a point where Paradyn-J

determines that it will be safe to insert the instrumentation. When this special instrumentation is executed it notifies

Paradyn-J that it should attempt to insert any delayed instrumentation code.

Figure 3: Transformational Instrumentation for Java application byte-codes. The darker colored boxes represent pre-
instrumented Java VM data structures, the lighter colored boxes are added to instrument a Java Method.

Constpool
Methods

code
stack size

Constpool size

goto_w
Modified byte-code

Method Table

do_basetramp(i)

invoke native method
do_basetramp(i)

do_basetramp
method info. . .

Class object Constant Pool

BaseTramp.class

id i

do_basetramp(i)

libbaseTramp.so
Original byte-code

SPARC instrumentation

nop

nop
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We re-use much of Paradyn’s code generation facilities for generating SPARC instrumentation code to generate

instrumentation code for Java AP methods. SPARC instrumentation code can be used to instrument Java byte-codes if

we definedo_baseTramp to be a native method. Java’s native method facility is a mechanism through which rou-

tines written in C or C++ can be called by Java byte-codes. The C code fordo_baseTramp is complied into a

shared library, and a JavaBaseTramp class is created that declaresdo_baseTramp to be a static native method

function. When this class is compiled, the Java compiler generates byte-code stub procedures for the native method

that can be called by other byte-code to trigger the VM to load and execute the native code in the shared library.

The C implementation of thedo_baseTramp routine contains a vector of function pointers that call SPARC

instrumentation code. Theid argument is an index into the vector to call the instrumentation code. The

do_baseTramp  method will return to the calling method via the native method interface.

To get the Java VM to execute thedo_baseTramp method, first Paradyn-J has to get the VM has to load the

BaseTramp class file. One way to do this is to add instrumentation to the VM that will call its load routines to

explicitly load theBaseTramp class. Another alternative is to find the main method and, before it is executed,

instrument it to include a call to a BaseTramp method function. This will trigger the VM to load theBaseTramp

class at the point when the function is called. The first option is better because Paradyn-J has control over when the

BaseTramp class has been loaded and, as a result, knows when byte-code instrumentation can be inserted. In our

current implementation, we get the application to load theBaseTramp class by modifying the application’s source

code; a call to aBaseTramp method is added to the application’smain method. As a result, we have to re-com-

pile one AP class (the source file that contains the methodmain) . Paradyn-J can be implemented to get rid of this

extra compiling step; the current version is a simplification for our prototype implementation.

Instrumentation type tags associated with AP and VM resources are used to determine if generated SPARC

instrumentation code should be inserted into Java method byte-codes using Transformational Instrumentation or

should be inserted into Java VM code using Dynamic Instrumentation. The tag types may also be required to generate

different instrumentation code. For example, return values for SPARC routines are stored in a register, and return val-

ues for Java methods are pushed onto the method’s operand stack. Instrumentation code that gets the return value

from a Java method will differ from instrumentation code that gets the return value from a SPARC function. In this

case, the type tag can be used to generate the correct code.

3.4 Paradyn-J’s Interaction with the Java VM

Paradyn-J interacts with the Java VM at run-time whenever the VM loads a Java AP class file or compiles an AP

method. New class files can be loaded by the Java VM at any point in the execution. Classes and their methods are

program resources that Paradyn-J needs to discover and possibly measure; Paradyn-J must be able to discover new

AP code resources whenever the VM loads an AP class file. To do this, instrumentation code is added to the Java VM

routines that perform class file loading. When a class file is loaded by the VM, instrumentation code is executed that

passes Paradyn-J the information necessary to locate the loaded class in VM data structures.

Once the VM has loaded a Java class, Paradyn-J examines the VM’s data structures to discover the newly loaded

methods for the class, and parses each method’s byte-code instructions to find the method’s instrumentation points
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(the method’s entry, exit, and call sites). At this point, instrumentation requests can be made for the class’ methods.

Paradyn-J also interacts with the VM’s run-time compiling routines. Paradyn-J discovers the native form of a

compiled method so that the native form can be instrumented, creates mappings between byte-code and native code

forms of a method so that performance data collected in different forms of an AP method can be correlated, and mea-

sures costs associated with the run-time compilation of a method. Paradyn-J instruments our routine that simulates

run-time compilation. The instrumentation notifies Paradyn-J when a method is “dynamically compiled”. At run-

time, the VM callsdlopen to load the shared objects that contain the native versions of the AP methods and contain

our “compiling” routine. Paradyn-J instruments the VM to catchdlopen events. When Paradyn-J detects that the

VM has loaded our “compiling” routine, Paradyn-J instruments it. Instrumentation at its entry point starts a timer to

measure the run-time compiling overhead. Instrumentation at its exit point stops the timer measuring the compiling

overhead, and gets the name of the native form of the method to obtain mapping information between the method’s

two forms.

For performance tools like ours, that instrument AP byte-codes, there is a problem of how to deal with instru-

mented byte-codes that are about to be transformed by the dynamic compiler. One option is to let the VM compile the

byte-code instrumentation along with the byte-code instructions of the AP method. This solution is not ideal because

there is no guarantee that the VM will produce transformed instrumentation code that is measuring the same thing as

the byte-code instrumentation (the compiler could re-order instrumentation code and method code instructions, or

could optimize away some instrumentation code). A better option is to remove byte-code instrumentation from the

method just prior to compilation, let the VM compile the method, and then generate equivalent native code instru-

mentation, and insert it into the native form of the method. This requires that the performance tool interact with the

VM immediately before and after compilation of a method. Since our simulated compiling routine does not actually

translate byte-code to native code we did not have to worry about this problem for Paradyn-J’s current implementa-

tion. However, when we port Paradyn-J to a real dynamic compiler we will have to handle this case.

4 RESULTS

We present results using performance data from Paradyn-J. We demonstrate how Paradyn-J can provide detailed per-

formance data from two Java applications, a neural network application consisting of 15,800 lines of Java source code

and 23 class files, and a CPU simulator application consisting of 1,200 lines of code and 11 class files. Using this

data, we tuned a method in the neural network application improving the method’s interpreted byte-code execution by

11% and its native code execution by 10%, and improving overall performance of the application by 10% when run

under ExactVM. We profile the CPU simulator application to further show how we can obtain key performance data

from a dynamically compiled execution.

Performance measures that describe specific VM-AP interactions are obtained by dynamically inserting instru-

mentation code into VM routines and Java AP routines to measure the interaction. For example, to measure the object

creation overhead associated with objects created in AP methodfoo, we insert instrumentation into methodfoo that

will set afoo_flag wheneverfoo creates an object, and we insert timer instrumentation into VM routines that han-

dle object creates. The timer code will be executed only when thefoo_flag is set (only when the object is created by

methodfoo  will we measure the VM overhead associated with the object create).
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For the neural network program, we picked good candidate methods to “dynamically compile” by using Para-

dyn-J to measure its all-interpreted execution and choosing the seven application methods that were accounting for

most of the execution time. We wrote JNI native versions and wrapper functions for each of these methods. We first

demonstrate that Paradyn-J can associate performance data with AP methods in their byte-code and native code

forms, and with the run-time compilation of AP methods. Figure 4 shows a performance visualization from Paradyn-

J. The visualization is a time plot showing the fraction of CPUtime per second for the byte-code (in black) and native

(in white) forms of theupdateWeights AP method, showing thatupdateWeights benefits from dynamic com-

pilation. Figure 5 is a table visualization that shows performance measures of total CPUTime (middle column), and

total number of calls (right column) associated with the byte-code (top row) and native (middle row) forms of

updateWeights , and compiling time (left column) associated with the method’s wrapper function (0.174 sec-

onds). This visualization shows data taken part way through the application’s execution. At the point when this was

taken, the procedure calls measure shows that the byte-code version is called 15 times for a total of 0.478 seconds

before it is “dynamically compiled”, and the native code version has executed 54 times for a total of 0.584 seconds.

The implication of this data is that at this point in the execution,updateWeights has already benefited from being

compiled at run-time; if the method was not “dynamically compiled”, and instead was interpreted for each all of these

69 calls, then the total execution time would be 2.2 seconds (69 calls× 0.031 seconds/call). The total execution time

for the method’s “dynamically compiled” execution is 1.2 seconds (0.478 seconds of interpreted execution + 0.174

seconds of compilation + 0.584 seconds of native execution).

We next demonstrate how performance data from Paradyn-J can explicitly represent VM costs associated with

byte-code and native code forms of a method. We measured the number of object creates in each of our “dynamically

compiled” methods. In Figure 6, the visualization shows a method (calculateHiddenLayer ) that accounts for

most of the object creates. This visualization shows data taken part way through the application’s execution. In its

byte-code form (top row), it is called 15 times, creates 158 objects, and accumulates 3.96 seconds of CPU time. After

Figure 4: Performance data for the updateWeights method from the dynamically compiled neural network Java
application. The time plot visualization shows the fraction of CPUtime/second for the native (white) and byte-code (black) form
of the method.
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it is called 15 times, it is compiled at run-time, and its native code form (bottom row) is called 50 times, creates 600

objects, and accumulates 20.8 seconds of CPU time4. Its native form execution is more expensive (at 416 ms per exe-

cution) than its interpreted execution (at 264 ms per execution). This performance data tells the Java application

developer that in both its byte-code and native code form,calculateHiddenLayer creates a lot of objects. At

least part of the reason why it runs so slowly has to do with the VM overhead associated with these object creates.

One way to improve its performance is to try to reduce the number of objects created in the method’s execution. We

examined the method’s Java source code, and discovered that a temporary object was being created in a while loop.

This temporary object had the same value each time it was created and used inside the loop.We modified the method

to hoist the temporary object creation outside the loop. The table in Figure 7 shows total CPUtime and object creates

of the modified version ofcalculateHiddenLayer. This data was taken partway through the application’s exe-

cution. As a result of this change, we were able to reduce the number of object creates by 85% in the byte-code ver-

sion (23 vs. 158 creates), and 75% in the native code version (150 vs. 600 creates). The CPU time spent interpreting

the method’s byte-code form improved by 11% (3.53 vs. 3.96 seconds), and the CPUtime executing the method’s

native code form improved by 10% (18.7 vs. 20.8 seconds).

We wanted to see how well our tuning based on a simulated dynamically compiled execution translates to a real

dynamically compiled execution. We performed the same tuning changes to the original version of the Java applica-

tion (without our modifications to simulate dynamic compilation), and measured its execution time when run under

ExactVM. The overall execution time improved by 10% when run by ExactVM with dynamic compiling, and by 6%

when run by ExactVM with dynamic compiling disabled (Table 2). These results imply that ExactVM’s interactions

with AP native and byte-codes due to handling object creates account for a larger percent of the application’s execu-

tion time (compared to our “dynamic compiler”). ExactVM has improvements over JDK 1.1.6 to reduce garbage col-

lection, method call and object access times, and it does not have any of the JNI interactions with the VM that our

native forms of methods have with the VM. Therefore, it is reasonable to conclude that object creates account for a

larger percentage of the VM overheads in ExactVM executions. As a result, our tuned application achieves a higher

Figure 5: Performance data for the updateWeights method from the dynamically compiled neural network Java
application.The table shows the performance measures total CPUTime (second column) and number of calls (third column),
for both the byte-code (top row), and native (middle row) forms, and compile time (first column) associated w/the wrapper
(bottom row).

4. Each time the method is called, the number of object creates can vary due to changes in the application’s data structures.
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percentage of total execution time improvement when run under ExactVM than when run by our “dynamic com-

piler”.

In this study, we limited our options for performance tuning to the seven methods for which we simulated

dynamic compilation. However, there are close to 1,000 methods in the application’s execution. If this was a real

dynamically compiled execution, then all of these methods would be available for performance tuning. Performance

data from our tool that can measure VM overheads associated with the byte-code and native code form of a method,

help a program developer focus in on those methods to tune, and gives an indication of how to tune the method to

improve its performance.

Figure 6: Performance data for method calculateHiddenLayer . The total CPU time (first column), total number of
object creates (second column), and total number of calls (third column) to the byte-code (top row) and native code (bottom row)
forms of the method.

Figure 7: Performance data for methodcalculateHiddenLayer after removing some object creates.This table shows
that the total CPUtime for both the native and byte-code forms of the method is reduced as a result of reducing the number of
object creates.

Original Tuned Change

Dynamic Comp. 21.09 18.97 10%

All-Interpreted 190.83 179.90 6%

Table 2: Total execution times under ExactVM for the original and the tuned versions of the neural network program.We
improve the performance by 10% with dynamic compiling, and by 6% with dynamic compiling disabled (all-interpreted).
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In general, for a method that does not benefit from being compiled at run-time by the VM, performance data that

help explain why the method does not perform well will help a program developer more easily determine how to tune

the method’s performance. For example, in Section 2 we demonstrated cases where if we had performance data

describing specific VM costs and I/O costs associated with a method’s interpreted byte-code and directly executed

native code, then we could more easily know how to tune the method to improve its performance.

In the second study, using the CPU simulator application, we show additional examples of how Paradyn-J can

provide the type of detailed performance measures that we discovered would be useful in Section 2; we picked meth-

ods to “dynamically compile” based on the three cases we examined in Section 2. For the first case (native code with

a lot of VM interaction), we picked a method that created several String objects. For the second case (methods whose

execution is not dominated by interpreting byte-code), we picked a method that did a lot of I/O. For the third case

(small byte-code methods), we picked a method consisting of 3 byte-code instructions that simply returned the value

of a data member. In Table 3, we show performance data from Paradyn-J’s measurement of each of the three methods.

For case 1, VM object creation overheads account for more than half of the method’s execution time (1.57 out of

2.35 seconds); this tells the AP developer that one way to make this method run faster is to try to reduce this VM

overhead by removing some object creates from this method’s execution.

In the second case, a method that performs a lot of I/O, our tool can represent performance data showing the

amount of CPU seconds and I/O seconds in the interpreted byte-code and directly executed native code form of the

method (a total of 5.65 seconds of I/O time and negligible CPU time in the native code form, and a total of 0.37 sec-

onds of I/O time and 0.044 seconds of CPU time in the byte-code form)5. This performance data tells an AP devel-

oper to focus on reducing the I/O costs since they account for the largest fraction of this method’s execution time

(almost 100% of the native code’s execution, and 90% of the interpreted byte-code’s execution is due to I/O costs).

In the third case, small method functions with a few simple byte-code instructions, our performance data repre-

sents CPU times for both the byte-code and native code form of the method. This data provides us with some expla-

nation of why this method benefits from being dynamically compiled; the fraction of CPU time for the native code

Case 1: object creates Case 2: I/O intensive Case 3: small functions

Measurement Byte-
code

Measurement Native Byte-code Measurement Native Byte-code

Total CPU sec-
onds

2.3515 Total I/O
seconds

5.6493 0.36658 CPU seconds 4.9 µs 6.7µs

Object Creation
Overhead sec-
onds

1.5730 Total CPU
seconds

0.00496 0.04403 MethodCall
Time

2.5µs

Table 3:  Performance data from the CPU Simulation AP.These are detailed performance measures of methods in the AP
that have performance characteristics similar to the three test cases from Section 2.

5. The I/O time for the native code is much larger than that of the byte-code because the native code of the method is called more
frequently than the 15 calls to the interpreted byte-code form of the method. We are representing these numbers as total rather
than per call numbers because each call to the method writes a different number of bytes; they are not directly comparable on a
per call basis.
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version of the method is slightly better than for the byte-code version (4.9µs to 6.7µs per call), however, the added

method call overhead for interpreting (an additional 2.5µs for every 6.7µs of interpreting byte-code) make inter-

preted execution much more expensive. If this had been an all-interpreted execution, then the performance data for

the interpreted byte-code form of the method indicates that interpreting method call instructions is an expensive VM

activity. Therefore, one way to make this method run faster on an interpreter VM, is to reduce the number of method

calls in the execution. In a previous paper [13], we presented a performance tuning study of an all-interpreted execu-

tion of this Java application. In this study we reduce method call overheads by tuning the application to remove some

method calls. Performance data from our tool led us to easily determine which methods to tune and which calls to

remove from the execution to improve its performance. The performance data from these three methods describe the

detailed behaviors needed by AP developers to tune their dynamically compiled applications.

Results of these studies demonstrate the need for performance data from dynamically compiled Java executions

that measure the multiple execution forms of AP code, the run-time transformation costs associated with dynamically

compiling AP byte-codes, and VM overhead associated with interactions with the execution of AP native and byte-

code. This work can act as a concrete guide for VM developers as what to include in VM profiling interfaces (such as

JVMPI) to provide Java application developer’s with information that is critical to understanding their application’s

performance when run by a dynamic compiler VM.

5 OUR PERFORMANCE DATA AND VM DEVELOPERS

The same type of performance data used by an AP developer can also be used by a VM developer to tune the VM. For

example, by characterizing byte-code sequences that do not benefit much from dynamic compilation (like methods

with calls to I/O routines and simple control flow graphs), the VM could identify AP methods with similar byte-code

sequences and exclude them from consideration for run-time compilation. Similarly, performance data showing that

certain types of methods may be good candidates for compiling, can be used by the VM to recognize these methods,

and compile them right away (ExactVM does something like this for the case of methods containing loops). The data

can also point to ways that the compiler can be tuned to produce better native code. For example, performance mea-

sures indicating that VM method call overheads are expensive can be used to tune the compiler to aggressively in-line

methods (this is why HotSpot is designed to aggressively in-line methods).The VM also could use performance infor-

mation about specific interactions between the VM and the native code (e.g. object creation overheads) to try to

reduce some of these expensive VM interactions or to tune the VM routines that are responsible for these interactions

(e.g. the VM routines involved in object creation).

Detailed performance data, collected at run-time, could be used to drive the VM’s run-time compiling heuristics.

For example, the VM could measure I/O and CPU time for a method the first time it is interpreted. If the method is

dominated by I/O time, then exclude it as a candidate for compiling (and stop profiling it). There have been several

efforts to incorporate detailed run-time information into compilers to produce better optimized versions of code

and/or to drive run-time compiling heuristics [21, 6, 2, 1] (these are all for languages other than Java).

6 RELATED WORK

There are several performance profiling tools for measuring interpreted and JIT compiled applications. These tools

provide performance data in terms of the application’s execution. Some tools instrument AP source code prior to the
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AP’s execution. When run by the VM, AP instrumentation code is interpreted just like any other AP code. Other tools

are implemented as special versions of the VM or interact with the VM at run-time using VM API’s to obtain perfor-

mance measures of the AP’s execution.

Some tools instrument the application byte-code (NetProf [14] and ProfBuilder [3] for Java) prior to execution

by the VM. NetProf and ProfBuilder re-write Java .class files by inserting calls to instrumentation library routines.

When the modified application code is run by the VM, an instrumentation library collects timing information associ-

ated with the execution of the instrumented application code. Because these tools instrument Java .class files, they can

easily obtain fine-grained performance measures, such as basic-block or statement level performance measures.

Inserting instrumentation in the application prior to its execution, and letting the VM execute the instrumentation

code along with the other instructions in the application, is an easy way to obtain timing and counting measures in

terms of the application’s code, but there are several problems with this approach. First, there is no way to know

which VM activities are included in timing measures; timing measures associated with a method function could

include thread context switching6, Java class file loading, garbage collection, and run-time compilation. Second, there

is no way to obtain measurements that describe specific VM overheads associated with VM’s execution of the appli-

cation, since these measures require instrumenting VM code. Finally, for JIT compiled and dynamically compiled

executions, there is no control over how the compiler transforms the instrumentation code; the compiler could per-

form optimizations that re-order instrumentation code and method code instructions in such a way that the instrumen-

tation code is no longer measuring the same thing it was prior to compilation.

There are tools for measuring interpreted and JIT compiled Java programs that provide some measure of Java

VM costs associated with the application’s execution. To obtain these measures, the tools are either implemented as

special versions of the Java VM (JProbe [10], JDK’s VM [16], Visual Quantify [15], and Jinsight [7]), or they interact

with the Java VM at run-time using API’s implemented by the VM (OptimizeIt [9], and VTune[8]).

An example of a profiling tool that is implemented as a special version of the Java VM is JProbe. JProbe, profiles

interpreted and JIT-compiled Java. It provides cumulative CPU times and counts associated with application methods,

and counts associated with object creates. It also provides call graph and memory usage displays (showing memory

allocation and garbage collection statistics as the application runs). An example of a tool that interacts with the Java

VM at run-time is Intuitive Systems’ OptimizeIt. OptimizeIt is a tool for measuring interpreted and JIT compiled Java

executions run by Sun’s unmodified Java VM for versions of JDK up to the Java 2 Platform release. OptimizeIt pro-

vides total CPU time for each Java application thread, total CPU time associated with application methods, and a real

time memory profiler that provides the number of object instances per class. OptimizeIt starts all Java applications

that it measures, and uses low-level API’s in the Java VM to obtain performance data for the application. For Sun’s

Java 2 Platform version of the VM, OptimizeIt uses the new Java profiling interface JVMPI [18] to obtain its data.

All of these profiling tools represent performance data in term of the interpreted or JIT compiled application’s

execution. Some provide measures of specific VM costs associated with the application’s execution. For example,

JProbe, OptimizeIt and Visual Quantify provide some memory profiling information in the form of garbage collection

6. The timing instrumentation used by these tools is not thread aware.
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and object instance creation counts. However, in all of these tools most of the VM is hidden and as a result, these

tools cannot describe performance data in terms of arbitrary interactions between the VM and the Java application.

Also, there is no tool that we know of for profiling dynamically compiled Java executions. Paradyn-J is the only one

that can represent arbitrary VM-AP interactions, VM and other run-time costs associated with byte-code and native

code forms of an AP method, and performance measures associated with the run-time compilation of AP methods.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we discussed some of the unique characteristics of dynamically compiled Java executions that make

performance measurement difficult. We described a prototype implementation of a performance tool for measuring

dynamically compiled Java executions that addresses these problems by dealing with the multiple execution forms

(interpreted byte-code and directly executed native code) of a method, costs of the dynamic compilation, and costs of

residual dependencies of the Java application program on the virtual machine. We used Paradyn-J to demonstrate how

we can represent data that is critical to understanding the performance of dynamically compiled executions; perfor-

mance data from Paradyn-J can be used by a Java application developer or by a Java virtual machine developer to

more easily determine how to tune the Java application or the Java virtual machine. Our work is a guide for what type

of performance data should be available through Java VM performance tool interfaces.

For Paradyn-J to be more useful to developers of high performance Java applications, we need to add support for

profiling threaded Java programs. In future versions of Paradyn-J, we will support threaded Java applications by

leveraging off of Paradyn’s new support for threads [20].
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